首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of linked extensional detachments, transfer faults, and sediment- and volcanic-filled half-grabens that pre-date regional folding are described in the Late Archaean Margaret anticline, Eastern Goldfields Province, Yilgarn Craton, Western Australia. Coeval structures and rock units include layer-parallel extensional detachments, transfer faults (high-angle rotational faults rooted in the detachments and linking layer-parallel shear zones with varying amounts of extension); felsic intrusions, either as granitoids emplaced in or below the detachments, or as fine-grained intrusive bodies emplaced above the detachments and controlled by the high-angle faults; and half-grabens controlled by the high-angle faults and filled with clastic sedimentary and volcanic rocks. At least 1500 m of section is excised across the detachments. The detachments and high-angle faults are folded by the east-northeast regional compression that formed the Margaret anticline. Extensional deformation in the Margaret anticline is correlated with the regionally recognised felsic magmatism and associated volcanic and volcaniclastic basin fill dated at approximately 2685–2670 Ma across the Eastern Goldfields Province. This suggests the extensional event was province-wide and post-dated initial greenstone deposition (at around 2705 Ma) but pre-dated regional compressive deformation. We suggest the extension is the result of a thermal anomaly in the crust, generated by the insulating effect of a thick pile (of the order of 10 km or greater) of mafic and ultramafic volcanic rocks on precursor Archaean felsic crust. The thermal anomaly has generated renewed production of felsic and mafic volcanic rocks, coeval with uplift and extension in the upper crust.  相似文献   

2.
The Cleo gold deposit, 55 km south of Laverton in the Eastern Goldfields Province of Western Australia, is characterised by banded iron‐formation (BIF)‐hosted ore zones in the gently dipping Sunrise Shear Zone and high‐grade vein‐hosted ore in the Western Lodes.There is evidence that gold mineralisation in the Western Lodes (which occurred at ca 2655 Ma) post‐dates the majority of displacement along the Sunrise Shear Zone, but it remains uncertain if the ore in both structures formed simultaneously or separately. Overall, the Pb, Nd, Sr, C, O and S isotopic compositions of ore‐related minerals from both the Western Lodes and ore zones in the Sunrise Shear Zone are similar. Early low‐salinity aqueous‐carbonic fluids and late high‐salinity fluids with similar characteristics are trapped in inclusions in quartz veins from both the Sunrise Shear Zone and the Western Lodes. The early CO2, CO2–H2O, and H2O‐dominant inclusions are interpreted as being related to ore formation, and to have formed from a single low‐salinity aqueous‐carbonic fluid as a result of intermittent fluid immiscibility. Homogenisation temperatures indicate that these inclusions were trapped at approximately 280°C and at approximately 4 km depth, in the deeper epizonal range. Differences between the ore zones are detected in the trace‐element composition of gold samples, with gold from the Sunrise Shear Zone enriched in Ni, Pb, Sn, Te and Zn, and depleted in As, Bi, Cd, Cu and Sb, relative to gold from the Western Lodes. Although there are differences in gold composition between the Sunrise Shear Zone and Western Lodes, and hence the metal content of ore fluids may have varied slightly between the different ore zones, no other systematic fluid or solute differences are detected between the ore zones. Given the fact that the ore fluids in each zone have very similar bulk properties, the considerable differences in gold grade, sulfide mineral abundance, and ore textures between the two ore zones most likely result from different gold‐deposition mechanisms. The association of ore zones in the Sunrise Shear Zone with pyrite‐replaced BIF suggests that wall‐rock sulfidation was the most significant mechanism of gold precipitation, through the destabilisation of gold‐bisulfide complexes. The Western Lodes, however, do not exhibit any host‐rock preference and multistage veins commonly contain coarse‐grained gold. Fluid‐inclusion characteristics and breccia textures in veins in the Western Lodes suggest that rapid pressure changes, brought about by intermittent release of overpressured fluids and concomitant phase separation, are likely to have caused the destabilisation of gold‐thiocomplexes, leading to formation of higher‐grade gold ore zones.  相似文献   

3.
The Mangalur greenstone belt of Dharwar Craton, South India, is an Archaean schist belt dominated by metavolcanic rocks. The gold mineralization occurs within the metavolcanics and the fabric, mineralogy and geochemistry of these host rocks indicate that they were tholeiitic basalts regionally metamorphosed under medium to low-grade greenschist facies. The basic metavolcanic rocks occur as tholeiitic metabasalts and amphibolites. The rocks have undergone some fractionation and appear to be derived from melts generated by 10 to 25% melting of the mantle at depths 30 to 35 km around temperature 1200°C and pressure 12 kb. The source of gold is mainly in the basalts and not in the surrounding granites.  相似文献   

4.
Gold deposits in the Agnew district display markedly different structural styles. The Waroonga and Songvang deposits are hosted in layer-parallel extensional shears formed under highly ductile conditions. In contrast, the New Holland–Genesis deposits are shallow-dipping quartz-filled brittle fractures and breccia zones that cut across the tightly folded bedding and formed during east–west compression. It is difficult to attribute their formation to a single compressive event. The Waroonga and Songvang deposits formed during D1 extension, uplift and exhumation of the Agnew granitic complex and formation of the Scotty Creek Basin at ca 2670–2660?Ma. The New Holland–Genesis deposits formed during east–west D3 compression at about ca 2650–2630?Ma. An S1 foliation wraps around the Agnew granitic complex and L1 stretching lineations form a radial pattern around the granite, consistent with formation during D1 uplift of the composite granite body. Uplift and erosion of granite bodies in the surrounding area provide a source for the granite clasts in the upper parts of the Scotty Creek Basin. As clasts in the basin are undeformed, no significant deformation occurred prior to the uplift and erosion of the source granites in this area. Syn-tectonic emplacement of the Lawlers Tonalite during formation of the Scotty Creek Basin at ca 2665?Ma may have provided a good heat/fluid source for the mineralising systems during the first gold event. The distribution of the large deposits along the western edge of the Agnew granitic complex indicates that the extensional shear along the granite contact is a first-order control on gold deposition by providing a conduit for rising hydrothermal fluids. The northerly trend of high-grade shoots in the Waroonga deposit coincides with early north-trending growth faults, which are also likely fluid conduits.  相似文献   

5.
冀东迁西—迁安地区紫苏花岗岩的地球化学特征及其成因   总被引:7,自引:0,他引:7  
本文根据地质和地球化学的研究提出本区紫苏花岗岩主要是由英云闪长质、花岗闪长质岩浆侵位之后经麻粒岩相变质而形成的。根据地球化学特征,本区的紫苏花岗岩可分为大离子亲石元素亏损的北区(太平寨—三屯营)和大离子亲石元素较富集的南区(水厂—松汀),它们的地球化学差异反映了其形成时构造条件的不同。  相似文献   

6.
对北祁连造山带老虎山地区下奥陶统和中、上奥陶统硅质岩的沉积学和地球化学研究表明:下奥陶统硅质岩为生物化学作用成因,沉积于被动大陆边缘深海环境;中、上奥陶统下部与玄武岩共生的硅质岩显示热液成因,沉积于洋脊环境;中、上奥陶统上部硅质岩指示生物化学成因,形成于大陆边缘环境。上述特征表明老虎山地区在早奥陶世为相对稳定的被动大陆边缘构造环境,所含硅质岩和陆缘碎屑岩为大陆斜坡相浊流沉积。中、晚奥陶世柴达木板块向华北板块俯冲在弧后产生离散型活动大陆边缘,形成弧后盆地,硅质岩及其共生的枕状玄武岩和浊积岩应属于扩张弧后盆地的产物。  相似文献   

7.
The volcanic rocks hosting the iron deposits in the Aqishan–Yamansu metallogenic belt are sodium-rich.The geochronology,petrography,and geochemistry of minerals and sodium-rich rocks as well as the relationship between these rocks and the iron deposits are studied.Geochemically,the ore-hosting volcanic rocks are sodiumrich(the averages of Na2O and Na2O/K2O are 4.31 wt.%and 8.56,respectively)and belong to the calc-alkaline series.They are enriched in LREEs and LILEs(Ba,U,K,and Sr),but depleted in HFSEs(Nb,Ta,and Ti).SHRIMP zircon U–Pb dating of the crystal tuff in the Aqishan Formation and the dacite in the Tugutu Bulak Formation yields ages of 337.52.3 Ma(n?15,MSWD?0.85)and 313.03.3 Ma(n?13,MSWD?0.74),respectively,indicating that the sodium-rich volcanic rocks formed from the early–late Carboniferous.Electron microprobe data from plagioclases demonstrate that albites and/or oligoclases were formed in the basic–intermediate–acid volcanic rocks.Two stages of albitization are identified,and the latter is likely attributed to the dissolution of iron in the Aqishan–Yamansu belt.The sodium-rich volcanic rocks probably formed by the interaction between volcanic lava and seawater after volcanoes erupted on the seafloor;meanwhile,the albites formed by element substitution in a low-metamorphic environment.The spatiotemporal coupling relationship between sodium-rich volcanic rocks and iron deposits in the Aqishan–Yamansu belt is favorable.Iron dissolved from the dark minerals of basic–intermediate volcanic rocks through sodium metasomatism is one of the material sources for the iron deposits.  相似文献   

8.
Greenstone belts in the northern Murchison Terrane of the Yilgarn Craton contain an extensive suite of 2.9–3.0 Ga, porphyritic komatiites and komatiitic volcaniclastic rocks. These unusual Ti–rich Al–depleted komatiites have been sampled at Gabanintha and are characterised by higher incompatible‐element abundances than most suites of Barberton‐type Al–depleted komatiites. They form a petrogenetically related group with similar Ti– and incompatible‐element‐rich, Al–depleted porphyritic komatiites and komatiitic volcaniclastic rocks from Karasjok in Norway, Dachine in French Guiana and Steep Rock‐Lumby Lake in Canada (here called Karasjok‐type komatiites). Their Al–depletion results from magma generation at depths of >250 km in the presence of residual majorite‐garnet. The porphyritic textures and abundance of amygdales and volcaniclastic rocks typical of this type of komatiite are features of hydrous ultramafic magmas. The incompatible‐element‐rich ultramafic rocks from Dachine contain diamonds that were most likely picked up as parent magmas interacted with mantle lithosphere that had been hydrated and chemically modified. Consequently the interaction of Karasjok‐type komatiite magmas with thick, island arc or continental mantle lithosphere may have resulted in their elevated water and incompatible‐element contents. The occurrence of Karasjok‐type komatiite lavas and volcaniclastic rocks in the northern Murchison Terrane suggests that during the Late Archaean that terrane had a hydrated, metasomatised or subduction‐modified mantle lithosphere.  相似文献   

9.
赣中变质岩带变泥砂质岩石地球化学特征及其地质意义   总被引:3,自引:2,他引:3  
赣中变质岩带主要由变泥砂质岩石和少量斜长角闪岩组成.30个变泥砂质岩石样品分析表明,稀土元素分布模式显示明显富集轻稀土元素及Eu负异常[∑REE=129~296μg/g,δEu=0.51~0.86,(La/Yb)N=3.95~12.9],其不相容元素比值高(Th/Sc=0.57~3.59、La/Sc=1.46~12.4、La/Yb=5.84~19.0、La/Sm=4.69~6.87、Th/U=3.40~6.42),大离子亲石元素富集,Zr、Hf、Sc、Ti、Y、HREE和Sr含量较低,其原岩应为一套砂泥质岩石,沉积于远离陆地的克拉通大陆架浅海环境;δBa=0.10~0.93,Nd同位素亏损地幔模式年龄tDM=1597~2525Ma,εNd(0)=-9.9~-15.8,其源区物质主体由古元古代富铝富钾的花岗质岩石和(或)碎屑沉积岩构成,经历了较强的化学风化作用.  相似文献   

10.
河北滦平球状闪长岩岩石地球化学特征与源区性质探讨   总被引:5,自引:0,他引:5  
滦平球状闪长岩体具有特殊的地球化学性质,其中最显著的岩石化学特征表现为高度富Al2O3(21.58%~26.80%)而相对贫K2O(0.35%~1.87%).地球化学方面以异常高的Sr含量和较高的Ba含量、极低的稀土元素总量、明显的Eu正异常为特征而明显不同于SiO2含量类似的其他钙碱性岩类.此外,该球状闪长岩体还表现为贫Nb、Ta、Zr、Hf、Y等高场强元素和Th、U、Rb等强不相容元素,较强的轻重稀土元素分馏程度,岩石地球化学的总体特征可与埃达克岩相对比,但其Eu正异常和Sr正异常更为明显.岩体中球体的Sr同位素初始值为0.705 33~0.705 37,核部斜长角闪岩捕虏体和壳层的εNd(t)有明显的差别,分别为-12.6和-17.7,Nd同位素地壳保留年龄分别为2.11 Ga和2.64 Ga,表明它们来自古老地壳的不同层位.滦平球状闪长质岩浆可能是由新太古代亏损型拉斑玄武质斜长角闪岩选择性部分熔融(主要是斜长石)形成的高Al2O3岩浆,它们在上升过程中捕获了古元古代的斜长角闪岩.  相似文献   

11.
12.
福建沿海中生代变质带中花岗质岩石的地球化学   总被引:12,自引:1,他引:12  
周旋  于津海 《地球化学》2001,30(3):282-292
福建东南沿海中生代变质带的花岗质岩石分布于东山、晋江和莆田等广大地区。花岗岩中常包含黑云母、石榴子石或白云母。但地球化学研究表明,这些花岗岩属于钙碱性或高钾钙碱性,以低Rb、Zr、Hf、Nb、Y、Ga含量和Rb/Sr比值,以及高Ba、Sr丰度为特征,属于典型的Ⅰ型花岗岩。它们的稀土总量普遍较低,具有轻稀土富集、铕中等亏损的稀土分布模式。本带三个地区花岗岩的微量元素组成存在一定差异,但具有相似的Sr、Nd同位素组成,以高εNd(t)(-4.49~-3.15)和低ISr(0.7055-0.7074)、tDM(1.19-1.29Ga)为特征。地球化学研究显示本带花岗岩形成于相同的构造背景-大型边缘火山弧环境。其母岩浆是由类似于麻源群的古老火成变质岩部分熔融产生的熔融体与同期的幔源玄武质岩浆发生一定程度混合而成。不同地区或同一地区花岗岩地球化学组成上的差异是不同程度的部分熔融和结晶分异的结果。  相似文献   

13.
Volcanic belts in the Kalgoorlie-Norseman district of the EasternGoldfields region of the Western Australian Shield are dominatedby monotonous sequences of metamorphosed tholeiitic pillow basaltsshowing little vertical or lateral variation. These meta-basaltsare chemically similar to Archaean tholeiites from Canada andSouth Africa and are characterized by their low content of K,Rb, and Sr and low Fe2O2/FeO ratios. There is little evidenceof major cyclic compositional trends within the volcanic belts,with both major and trace elements showing limited dispersion.An undifferentiated, uncontaminated source of basaltic materialwas available throughout the development of thick volcanic pilesin the region.  相似文献   

14.
Available petrological, structural and geochronological data suggest that metamorphism and deformation of greenstone sequences and the evolution of intrusive granitoids in the Eastern Goldfields Province, Yilgarn Block, were related to a widespread and integrated tectonic event in the time interval 2700-2600 m.y.Polyphase deformation of the greenstone sequences involved the superimposition of a series of upright folds and related subvertical foliations on earlier macroscopic recumbent folds. Metamorphism was imposed rapidly on these previously deformed but relatively unaltered greenstone sequences, synchronously with a third phase of deformation. Static-style metamorphic recrystallization at very low to medium grades occurred over most of the province, but contemporaneous high grade recrystallization of dynamic style was restricted to elongate narrow zones which were also the sites of synkinematic granitoid diapirism. These zones commonly mark the present margins of greenstone belts.The extensive areas between greenstone belts are dominated by outcrops of post-kinematic granitoids whose abundance may be overestimated because of the limited exposure. Their emplacement caused only minor contact metamorphic overprinting on the pre-existing metamorphic patterns. Also present are banded gneisses interpreted as modified basement to the greenstone sequences. These gneisses are enclosed in post-kinematic granitoid batholiths or occur as remnants in synkinematic diapirs within the dynamic domains. All major granitoid groups, including gneisses, are geochemically similar and show parallel but limited variations. Both field and chemical evidence points to the gneisses being parental to intrusive granitoids derived by both anatectic and solid-state processes.The data provide important constraints on any model for greenstone belt evolution. Our preferred model involves a widespread disturbance resembling the kind currently referred to as a “mantle plume”, which initially led to extrusion of mafic and ultramafic magmas via tensional fractures in a sialic crust, then subsequently caused their deformation and metamorphism and generated the intrusive granitoids by widespread reactivation of the basement. The dynamic metamorphic domains may reflect pre-greenstone crustal lineaments that controlled the initial vulcanism. The evolution of Archean greenstone terrains proposed here appears distinct from that of subsequent Proterozoic and Phanerozoic tectonic belts.  相似文献   

15.
金平龙脖河铜矿位于哀牢山-金沙江构造带的东南端。赋矿围岩为变钠质火山岩,成矿主要类型为构造破碎蚀变岩型铜矿;围岩蚀变以绿泥石化、碳酸盐化、硅化、磁铁矿化等为主。通过对产于变钠质火山岩中不同蚀变程度和矿化程度岩、矿石的地球化学组分进行对比,计算不同岩、矿石体积的变化和组分的迁移。计算结果表明:从弱矿化变钠质火山岩到强矿化变钠质火山岩,随蚀变和矿化的增强,岩石体积分别扩容了14%、12%;组分SiO2、HREE及成矿物质Cu和S等的含量具有逐渐增加的趋势,微量元素中亲铁元素Cr、Ni也有不同程度的迁入富集;而组分CaO、MnO和LREE等的含量则逐渐降低,说明成矿过程中SiO2、HREE及成矿物质Cu和S等是由流体带入的,而CaO、MnO和LREE等则是由流体从围岩中带出的,以及成矿物质主要来源于深部流体。  相似文献   

16.
The Bardoc Tectonic Zone (BTZ) of the late Archaean Eastern Goldfields Province, Yilgarn Craton, Western Australia, is physically linked along strike to the Boulder-Lefroy Shear Zone (BLSZ), one of the richest orogenic gold shear systems in the world. However, gold production in the BTZ has only been one order of magnitude smaller than that of the BLSZ (∼100 t Au vs >1,500 t Au). The reasons for this difference can be found in the relative timing, distribution and style(s) of deformation that controlled gold deposition in the two shear systems. Deformation within the BTZ was relatively simple and is associated with tight to iso-clinal folding and reverse to transpressive shear zones over a <12-km-wide area of high straining, where lithological contacts have been rotated towards the plane of maximum shortening. These structures control gold mineralisation and also correspond to the second major shortening phase of the province (D2). In contrast, shearing within the BLSZ is concentrated to narrow shear zones (<2 km wide) cutting through rocks at a range of orientations that underwent more complex dip- and strike-slip deformation, possibly developed throughout the different deformation phases recorded in the region (D1–D4). Independent of other physico-chemical factors, these differences provided for effective fluid localisation to host units with greater competency contrasts during a prolonged mineralisation process in the BLSZ as compared to the more simple structural history of the BTZ.  相似文献   

17.
Petrographic, petrological and geochemical studies have demonstrated the presence of three distinctive basic volcanic suites in the Eastern Goldfields Province, Yilgarn Block, Western Australia. These are termed the high magnesian series basalts (HMSB), the low magnesian series basalts (LMSB) and the siliceous high magnesian series basalts (SHMSB).The HMSB and SHMSB constitute differentiation series which contain both high MgO (9.5–14 wt.%) and low MgO (<9.5 wt.%) members. These suites are commonly characterized by igneous textures indicative of very rapid crystallization suggesting high eruption temperatures. This feature clearly distinguishes those low MgO members of HMSB which contain amphibole pseudomorphs after spherulitic-textured pyroxene from compositionally similar LMSB. The LMSB are generally characterized by an intergranular texture consisting of plagioclase laths and interstitial amphibole pseudomorphs after pyroxene grains. Variolitic-textured basalts are common and appear to be restricted to the SHMSB suite of basic volcanics.The HMSB and LMSB were derived from source mantle regions which were variably depleted in the incompatible elements. Archaean komatiites were derived from similarly depleted source regions and it is argued that the main petrogenetic difference between these three volcanic suites was the degree of partial melting from which they were derived. The depleted nature of the source regions may have been induced by earlier small degree (< 5%) partial melting events with subsequent extraction of a proportion of that melt. Variations in both the degree of such melting, and the proportions of melt removal, could induce considerable heterogeneity of incompatible elements in the Archaean upper mantle.Source mantle regions of the SHMSB were variably enriched in the incompatible elements and water and parental magmas of the SHMSB were derived from moderately hydrous conditions of partial melting.The relative proportions of each basalt suite varies considerably between the layered successions examined. For example, the basic volcanics overlying the komatiites at Kambalda are SHMSB, while the footwall volcanics consist predominantly of HMSB with subordinate LMSB. However, the Norseman succession, where no ultramafic volcanics are known to occur, is comprised mainly of LMSB with a smaller proportion of HMSB.  相似文献   

18.
喀纳斯群为一套巨厚的中低压型浅变质碎屑岩系,主要由片岩、片麻岩、变质砂岩等组成,其形成时代未有统一的认识,致使阿尔泰构造带的构造演化过程争议较大。对喀纳斯群变质岩进行原岩恢复,认为该套变质岩为副变质岩,考虑到变质碎屑岩的成岩物质继承母岩特征和变质程度的影响,利用碎屑岩研究方法对元素地球化学特征进行探讨,显示出喀纳斯群变质碎屑岩原岩形成环境以大陆岛弧为主,兼有活动大陆边缘的特征,CIA、ICV指数反应出原岩经历了相对温暖、湿润的风化作用,成熟度较低。锆石U-Pb定年结果表明,最年轻的锆石年龄集中在(500±3.0)Ma,代表喀纳斯群的上限年龄,认为该套地层形成于晚寒武世晚期之前,为一套形成于大陆岛弧或活动大陆边缘的复理石建造。新元古代青白口纪初期基底裂解事件,暗示着阿尔泰构造带存在前寒武纪大陆地壳基底。  相似文献   

19.
The Bardoc Tectonic Zone is an ~80 km-long and up to 12 km wide, intensely sheared corridor of Late Archaean supracrustal rocks that is bounded by pre- to syn-tectonic granites in the Eastern Goldfields Province, Yilgarn Craton. This zone has produced over 100 t of gold from a range of deposits, the largest being Paddington (~40 t Au). This shear system is connected along strike to the Boulder – Lefroy Shear Zone, which hosts considerably larger deposits including the giant Golden Mile Camp (>1500 t produced Au). In contrast to the diverse characteristics of gold deposits associated with the Boulder – Lefroy Shear Zone, mineralogical and geochemical data from five representative localities in the Bardoc Tectonic Zone have relatively uniform features. These are: (i) quartz – carbonate veins in competent mafic units with wall-rock alteration characterised by carbonate + quartz + muscovite + chlorite ± biotite + sulf-arsenide + sulfide + oxide + gold assemblages; (ii) arsenopyrite as the dominant sulfur-bearing mineral; (iii) a unique three-stage paragenetic history, commencing with pyrrhotite, and progressing to arsenopyrite and then to pyrite-dominated alteration; (iv) a lack of minerals indicative of oxidising conditions, such as hematite and sulfates; (v) δ34 sulfur compositions of pre- to syn-gold iron sulfides ranging from 1 to 9 ‰; and (vi) a lack of tellurides. These features characterise a coherent group of moderately sized orogenic-gold deposits, and when compared with the larger gold deposits of the Boulder – Lefroy Shear Zone, potentially highlight the petrological and geochemical differences between high-tonnage and smaller deposits in the Eastern Goldfields Province.  相似文献   

20.
云南墨江金矿床硅质岩沉积环境的地球化学探讨   总被引:13,自引:0,他引:13  
墨江金矿床金厂组中下段硅质岩的形成与热水沉积作用有关,但中段受到正常化学沉积作用的影响。根据硅质岩的地球化学特征,初步讨论了硅质岩的沉积(构造)环境。硅质岩的δCe,稀土元素对Ce/La-La/Yn图解、δ^30Si和Sr/Ba值的特征表明它形成于海水较深的沉积环境。根据硅质岩MnO/TiO2,Al/(Al Fe),(La/Ce)N,δCe和(La/Yb)N的特征推测它形成于大陆边缘-远洋盆地过渡位置。结合岩石组合、地球化学特 征和同位素年代学,认为墨江金矿床硅质岩的沉积环境可能为晚泥盆世后期扬子地块被动大陆边缘快速裂陷的深海槽盆,它不是哀牢山蛇绿岩套“三位一体” 中的一部分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号