首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petrological, geochemical and radiogenic isotopic data on ophiolitic‐type rocks from the Marlborough terrane, the largest (~700 km2) ultramafic‐mafic rock association in eastern Australia, argue strongly for a sea‐floor spreading centre origin. Chromium spinel from partially serpentinised mantle harzburgite record average Cr/(Cr + Al) = 0.4 with associated mafic rocks displaying depleted MORB‐like trace‐element characteristics. A Sm/Nd isochron defined by whole‐rock mafic samples yields a crystallisation age of 562 ± 22 Ma (2σ). These rocks are thus amongst the oldest rocks so far identified in the New England Fold Belt and suggest the presence of a late Neoproterozoic ocean basin to the east of the Tasman Line. The next oldest ultramafic rock association dated from the New England Fold Belt is ca530 Ma and is interpreted as backarc in origin. These data suggest that the New England Fold Belt may have developed on oceanic crust, following an oceanward migration of the subduction zone at ca540 Ma as recorded by deformation and metamorphism in the Anakie Inlier. Fragments of late Neoproterozoic oceanic lithosphere were accreted during progressive cratonisation of the east Australian margin.  相似文献   

2.

Ophiolitic and metamorphic rocks of the eastern part of the New England Fold Belt in the Shoalwater Bay region and the Percy Isles are grouped in the Marlborough and Shoalwater terranes, respectively. Marlborough terrane units occur on South Island (Percy Isles) and comprise the Northumberland Serpentinite, antigorite serpentinite with rodingite and more silicic dykes and mafic inclusions, the Chase Point Metabasalt, some 800+ metres of pillow lava, and the intervening South Island Shear Zone containing fault‐bounded slices of mafic and ultramafic igneous rocks, schist, and volcaniclastic sedimentary rocks, and zones of mélange. The Shoalwater terrane, an ancient subduction complex, consists of the Shoalwater Formation greenschist facies metamorphosed quartz sandstone and mudstone on North East Island and on the mainland at Arthur Point, the Townshend Formation, amphibolite‐grade quartzite, schist and metabasalt on Townshend Island, and the Broome Head Metamorphics on the western side of Shoalwater Bay, upper amphibolite facies quartz‐rich gneiss. With the exception of a sliver emplaced onto the western Yarrol terrane, possibly by gravity sliding, Shoalwater terrane rocks show the effects of Late Permian polyphase deformation. The Shacks Mylonite Zone along the northwest edge of the Broome Head Metamorphics marks a zone of oblique thrusting and is part of the major Stanage Fault Zone. The latter is a northeast‐striking oblique‐slip dextral tear fault active during Late Permian west‐directed thrusting that emplaced large ultramafic sheets farther south. Marlborough terrane rocks were emplaced along the Stanage Fault Zone, probably from the arc basement on which rocks of the Yarrol terrane were deposited. Structural trends and the distribution of rock units in the Shoalwater Bay‐Percy Isles region are oblique to the overall structural trend of the northern New England Fold Belt, probably due to the presence of a promontory in the convergent margin active in this region in Devonian and Carboniferous time.  相似文献   

3.
Geological mapping, petrography, geochemistry, and isotope studies enable the division of the Pelotas Batholith into six granitic suites: Pinheiro Machado (PMS), Erval (ES), Viamão (VS), Encruzilhada do Sul (ESS), Cordilheira (CS), and Dom Feliciano (DFS). The rocks of the PMS show a large compositional range (granite through granodiorite to tonalite), and the suite is considered pre- to syncollisional. Other suites show restricted compositional variations (granite to granodiorite) and are late to postcollisional. In general, the suites are metaluminous to slightly peraluminous (PMS, ES, and VS) or peraluminous (CS) or have alkaline tendencies (ESS and DFS). The magmatic evolution corresponds to high-K calc-alkaline to alkaline magmatism. The suites are enriched in K, Rb, and REE compared with rocks of typical calc-alkaline series. Initial 87Sr/86Sr ratios vary from 0.705 to 0.716, except in the CS, where they attain values of 0.732–0.740. Sm–Nd TDM model ages vary between 0.98 and 2.0 Ga, with initial εNd values ranging from −0.3 to −10. U–Pb zircon dates of samples from PMS, VS, and ESS suggest an age between 0.63 and 0.59 Ga for magmatism. Rb–Sr dates of samples of alkaline granites from DFS present ages between 0.57 and 0.55 Ga. The main tectonic controls of the magmatism of the Pelotas Batholith are high-dip sinistral shear zones.  相似文献   

4.
ABSTRACT

To determine the Late Palaeozoic evolution of the Lhasa terrane, we report the results of field mapping, petrological and fossil investigations, and U–Pb dating of detrital zircon grains (n = 474) from lower-greenschist-facies clastic rocks of the Lagar Formation in the Baruo area, Tibet. Our results indicate that the Lagar Formation was deposited during the Late Carboniferous to Early Permian in a shallow-marine environment on the northern margin of Gondwana. Glacial marine diamictites are common within the Lagar Formation and record glaciation of Gondwana during the Late Palaeozoic. Moreover, the detrital materials of the Lagar formation originated mostly from the collision orogenic belt. The ages of detrital zircon grains from the Lagar Formation make up five main groups with ages of 410–540 Ma, 550–650 Ma, 800–1100 Ma, 1600–1800 Ma, and 2300–2500 Ma, which display three characteristic age peaks at ~1150, 2390 and 2648 Ma. We tentatively suggest that the Lhasa terrane was a shallow-marine basin under the influence of the Gondwanan glaciation during the Late Carboniferous–Early Permian.  相似文献   

5.
Abstract

In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.

Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation. © Elsevier, Paris  相似文献   

6.
秦岭商-丹缝合带是分隔北秦岭早古生代造山带和南秦岭晚古生代造山带的地质界线,其中的丹凤蛇绿岩被认为代表了秦岭地区早古生代的洋壳残片。迄今,前人已经提出多种模式来解释丹凤蛇绿岩成因和构造背景(如:岛弧、洋岛和成熟的大洋等)。然而,这些单一的构造演化模式却很难解释两个基本事实:(1)不同类型镁铁质岩(如N-MORB、E-MORB和IAT等)的穿时性分布;(2)几乎所有的早古生代镁铁质岩都显示出多种构造环境的叠加。对陕西太白鹦鸽嘴地区一条具有较完整层序的蛇绿岩剖面研究发现,剖面中存在HTI型(TiO2:1.21%~1.56%)和LTI(TiO2:0.09%~0.35%)两种类型的镁铁质岩(包括玄武岩和辉长岩),HTI型镁铁质岩具有LREE亏损,没有Nb、Ta负异常等的E-MORB特征;LTI具有LREE富集,Nb、Ta负异常的IAT特征。地球化学显示二者的源区均为北秦岭岩石圈地幔楔。本文获得鹦哥嘴蛇绿岩两个LTI型辉长岩锆石U-Pb年龄分别为523.8±1.3Ma和474.3±1.4Ma。认为秦岭早古生代蛇绿岩应是SSZ环境下多阶段演化的结果:第一阶段:约524Ma,秦岭洋盆向北俯冲开始。俯冲板片的脱水作用使熔融温度降低,形成的流体交代地幔楔,在北秦岭南缘产生了一个不成熟的岛弧;第二阶段:先存岛弧裂开阶段,约524~474Ma。秦岭洋壳的持续俯冲,在先形成的岛弧上拉张出了弧间盆地,形成了主要由轻稀土亏损、高Ti拉斑玄武岩和辉长岩组成的E-MORB型岩石组合;第三阶段:弧前盆地闭合阶段,474Ma之后。在这个阶段新生的弧间盆地闭合,俯冲洋壳携带的深海沉积物与北秦岭岩石圈地幔楔相互作用形成了北秦岭李子园的玻安岩。秦岭早古生代蛇绿岩的多阶段成因是典型特提斯构造域演化特征在秦岭地区的重现。  相似文献   

7.
Structural studies of Lower Permian sequences exposed on wave‐cut platforms within the Nambucca Block, indicate that one to two ductile and two to three brittle — ductile/brittle events are recorded in the lower grade (sub‐greenschist facies) rocks; evidence for four, possibly five, ductile and at least three brittle — ductile/brittle events occurs in the higher grade (greenschist facies) rocks. Veins formed prior to the second ductile event are present in some outcrops. Further, the studies reveal a change in fold style from west‐southwest‐trending, open, south‐southeast‐verging, inclined folds (F1 0) at Grassy Head in the south, to east‐northeast‐trending, recumbent, isoclinal folds (F1 0; F2 0) at Nambucca Heads to the north, suggesting that strain increases towards the Coffs Harbour Block. A solution cleavage formed during D1 in the lower grade rocks and cleavages defined by neocrystalline white mica developed during D1 and D2 in the higher grade rocks. South‐ to south‐southwest‐directed tectonic transport and north‐south shortening operated during these earlier events. Subsequently, north‐northeast‐trending, open, upright F3 2 folds and inclined, northwest‐verging, northeast‐trending F4 2 folds developed with poorly to moderately developed axial planar, crenulation cleavage (S3 and S4) formed by solution transfer processes. These folds formed heterogeneously in S2 throughout the higher grade areas. Later northeast‐southwest shortening resulted in the formation of en échelon vein arrays and kink bands in both the lower and higher grade rocks. Shortening changed to east‐northeast‐west‐southwest during later north‐northeast to northeast, dextral, strike‐slip faulting and then to approximately northwest‐southeast during the formation of east‐southeast to southeast‐trending, strike‐slip faults. Cessation of faulting occurred prior to the emplacement of Triassic (229 Ma) granitoids. On a regional scale, S1 trends east‐west and dips moderately to the north in areas unaffected by later events. S2 has a similar trend to S1 in less‐deformed areas, but is refolded about east‐west axes during D3. S3 is folded about east‐west axes in the highest grade, multiply deformed central part of the Nambucca Block. The deformation and regional metamorphism in the Nambucca Block is believed to be the result of indenter tectonics, whereby south‐directed movement of the Coffs Harbour Block during oroclinal bending, sequentially produced the east‐west‐trending structures. The effects of the Coffs Harbour Block were greatest during D1 and D2.  相似文献   

8.
Fault blocks and inliers of uppermost Silurian to Middle Devonian strata in the Yarrol Province of central coastal Queensland have been interpreted either as island-arc deposits or as a continental-margin sequence. They can be grouped into four assemblages with different age ranges, stratigraphic successions, geophysical signatures, basalt geochemistry, and coral faunas. Basalt compositions from the Middle Devonian Capella Creek Group at Mt Morgan are remarkably similar to analyses from the modern Kermadec Arc, and are most consistent with an intra-oceanic arc associated with a backarc basin. They cannot be matched with basalts from any modern continental arc, including those with a thin crust (Southern Volcanic Zone of the Andes) or those built on recently accreted juvenile oceanic terranes (Eastern Volcanic Front of Kamchatka). Analyses from the other assemblages also suggest island-arc settings, although some backarc basin basalt compositions could be present. Arguments for a continental-margin setting based on structure, provenance, and palaeogeography are not conclusive, and none excludes an oceanic setting for the uppermost Silurian to Middle Devonian rocks. The Mt Morgan gold–copper orebody is associated with a felsic volcanic centre like those of the modern Izu–Bonin Arc, and may have formed within a submarine caldera. The data are most consistent with formation of the Capella Creek Group as an intra-oceanic arc related to an east-dipping subduction zone, with outboard assemblages to the east representing remnant arc or backarc basin sequences. Collision of these exotic terranes with the continent probably coincided with the Middle–Upper Devonian unconformity at Mt Morgan. An Upper Devonian overlap sequence indicates that all four assemblages had reached essentially their present relative positions early in Late Devonian time. Apart from a small number of samples with compositions typical of spreading backarc basins, Upper Devonian basalts and basaltic andesites of the Lochenbar and Mt Hoopbound Formations and the Three Moon Conglomerate are most like tholeiitic or transitional suites from evolved oceanic arcs such as the Lesser Antilles, Marianas, Vanuatu, and the Aleutians. However, they also match some samples from the Eastern Volcanic Front of Kamchatka. Their rare-earth and high field strength element patterns are also remarkably similar to Upper Devonian island arc tholeiites in the ophiolitic Marlborough terrane, supporting a subduction-related origin and a lack of involvement of continental crust in their genesis. Modern basalts from rifted backarc basins do not match the Yarrol Province rocks as well as those from evolved oceanic arcs, and commonly have consistently higher MgO contents at equivalent levels of rare-earth and high field strength elements. One of the most significant points for any tectonic model is that the Upper Devonian basalts become more arc-like from east to west, with all samples that can be matched most readily with backarc basin basalts located along the eastern edge of the outcrop belt. It is difficult to account for all geochemical variations in the Upper Devonian basalts of the Yarrol Province by any simplistic tectonic model using either a west-dipping or an east-dipping subduction zone. On a regional scale, the Upper Devonian rocks represent a transitional phase in the change from an intra-oceanic setting, epitomised by the Middle Devonian Capella Creek Group, to a continental margin setting in the northern New England Orogen in the Carboniferous, but the tectonic evolution must have been more complex than any of the models published to date. Certainly there are many similarities to the southern New England Orogen, where basalt geochemistry indicates rifting of an intra-oceanic arc in Middle to Late Devonian time.  相似文献   

9.
Two major divisions of the New England Fold Belt, Zone A and Zone B, are separated by the Peel Fault. Deposition in these two zones was probably contemporaneous (Lower Palaeozoic ‐ Lower Permian). Terminal orogenesis in both zones was also contemporaneous (Middle Permian) but whereas in Zone A deformation was only moderate, metamorphism was of burial type, and granitic emplacement was uncommon, in Zone B many rocks were severely deformed and regionally metamorphosed, and both syn‐tectonic and post‐tectonic granites are widespread.

Pre‐orogenic palaeogeography is envisaged in terms of an evolving volcanic chain ‐ fore‐chain basin ‐ trench system, with an outer non‐volcanic arc developed in the Carboniferous. Cessation of movement on a subduction zone dipping westward beneath the volcanic chain is believed to have caused the Middle Permian deformation, but neither metamorphism nor the granitic rocks are directly related to subduction.  相似文献   

10.
ABSTRACT

The dismembered ophiolites in Wadi Arais area of the south Eastern Desert of Egypt are one of a series of Neoproterozoic ophiolites found within the Arabian–Nubian Shield (ANS). We present new major, trace, and rare earth element analyses and mineral composition data from samples of the Wadi Arais ophiolitic rocks with the goal of constraining their geotectonic setting. The suite includes serpentinized ultramafics (mantle section) and greenschist facies metagabbros (crustal section). The major and trace element characteristics of the metagabbro unit show a tholeiitic to calc-alkaline affinity. The serpentinized ultramafics display a bastite, or less commonly mesh, texture of serpentine minerals reflecting harzburgite and dunite protoliths, and unaltered relics of olivine, orthopyroxene, clinopyroxene, and chrome spinel can be found. Bulk-rock chemistry confirms harzburgite as the main protolith. The high Mg# (91.93–93.15) and low Al2O3/SiO2 ratios (0.01–0.02) of the serpentinized peridotite, together with the high Cr# (>0.6) of their Cr-spinels and the high NiO contents (0.39–0.49 wt.%) of their olivines, are consistent with residual mantle rocks that experienced high degrees of partial melt extraction. The high Cr# and low TiO2 contents (0.02–0.34 wt.%) of the Cr-spinels are most consistent with modern highly refractory fore-arc peridtotites and suggest that these rocks probably developed in a supra-subduction zone environment.  相似文献   

11.
Evolution of the southeastern Lachlan Fold Belt in Victoria   总被引:2,自引:2,他引:0  
The Benambra Terrane of southeastern Australia is the eastern, allochthonous portion of the Lachlan Fold Belt with a distinctive Early Silurian to Early Devonian history. Its magmatic, metamorphic, structural, tectonic and stratigraphic histories are different from the adjacent, autochthonous Whitelaw Terrane and record prolonged orogen‐parallel dextral displacement. Unlike the Whitelaw Terrane, parts of the proto‐Benambra Terrane were affected by extensive Early Silurian plutonism associated with high T/low P metamorphism. The orogen‐parallel movement (north‐south) is in addition to a stronger component of east‐west contraction. Three main orogenic pulses deformed the Victorian portion of the terrane. The earliest, the Benambran Orogeny, was the major cratonisation event in the Lachlan Fold Belt and caused amalgamation of the components that comprise the Benambra Terrane. It produced faults, tight folding and strong cleavage with both east‐west and north‐south components of compression. The Bindian (= Bowning) Orogeny, not seen in the Whitelaw Terrane, was the main period of southward tectonic transport in the Benambra Terrane. It was characterised by the development of large strike‐slip faults that controlled the distribution of second‐generation cleavage, acted as conduits for syntectonic granites and controlled the deformation of Upper Silurian sequences. Strike‐slip and thrust faults form complex linked systems that show kinematic indicators consistent with overall southward tectonic transport. A large transform fault is inferred to have accommodated approximately 600 km of dextral strike‐slip displacement between the Whitelaw and Benambra Terranes. The Benambran and Bindian Orogenies were each followed by periods of extension during which small to large basins formed and were filled by thick sequences of volcanics and sediments, partly or wholly marine. Some of the extension appears to have occurred along pre‐existing fractures. Silurian basins were inverted during the Bindian Orogeny and Early Devonian basins by the Tabberabberan Orogeny. In the Melbourne Zone, just west of the Benambra Terrane, sedimentation patterns in this interval, in particular the complete absence of material derived from the deforming Benambra Terrane, indicate that the two terranes were not juxtaposed until just before the Tabberabberan Orogeny. This orogeny marked the end of orogen‐parallel movement and brought about the amalgamation of the Whitelaw and Benambra Terranes along the Governor Fault. Upper Devonian continental sediments and volcanics form a cover sequence to the terranes and their structural zones and show that no significant rejuvenation of older structures occurred after the Middle Devonian.  相似文献   

12.
胡培远  李才  李林庆  解超明  吴彦旺 《地质通报》2009,28(09):1297-1308
桃形湖蛇绿岩是龙木错-双湖缝合带近期的重要发现。这一发现回答了龙木错-双湖缝合带中不存在完整蛇绿岩剖面的质疑,是该缝合带存在的重要证据,也是古特提斯洋早期裂解时间确定的主要依据之一。其中斜长花岗岩的岩石地球化学特征反映出洋脊花岗岩的属性,包括Al2O3含量较高,准铝质至过铝质(12.56%~16.19%),富Na2O,贫K2O(Na2O/K2O>3),主量元素、微量元素和稀土元素含量较低等,但是其稀土元素配分曲线、微量元素蛛网图又与标准大洋斜长花岗岩有所区别,表现为轻重稀土元素分异很明显,具强烈的Eu正异常(Eu/Eu?鄢=1.92~9.19,均值为5.18),初步推测原因是岩浆迅速上升过程中Ca分离不完全和样品中石榴子石分布不均匀。结合斜长花岗岩的野外产状及以往的研究成果,初步结论是:桃形湖蛇绿岩中的斜长花岗岩形成于近洋脊或准洋脊环境,岩浆源自地幔,与桃形湖蛇绿岩中的变质橄榄岩、堆晶辉长岩、基性熔岩的岩浆同源,是基性—超基性岩浆分异的残余,应属桃形湖蛇绿岩中的浅色岩组分,是蛇绿岩的端元岩石。  相似文献   

13.
根据库鲁克塔格、孔雀河露头区及其南盆内深部资料 ,尤其是多种类型的深水沉积的鉴别 ,得以建立区内地层及沉积相格架。分析表明 ,裂陷槽内南华系—奥陶纪地层属于同一构造环境的产物 ,沉积以深水陆棚 -槽盆相为主体 ,相带呈东西向展布 ,其空间分布范围比传统认识要广大得多。裂陷中心在孔雀河地区 ,南翼在盆内覆盖区北缘 ,原库鲁克塔格地区仅是其北翼 ;满加尔则是其南翼向南延的边缘坳陷 ,从而深化了其时空展布及构造演化历程。  相似文献   

14.
 Basins within the African sector of Gondwana contain a Late Palaeozoic to Early Mesozoic Gondwana sequence unconformably overlying Precambrian basement in the interior and mid-Palaeozoic strata along the palaeo-Pacific margin. Small sea-board Pacific basins form an exception in having a Carboniferous to Early Permian fill overlying Devonian metasediments and intrusives. The Late Palaeozoic geographic and tectonic changes in the region followed four well-defined consecutive events which can also be traced outside the study area. During the Late Devonian to Early Carboniferous period (up to 330 Ma) accretion of microplates along the Patagonian margin of Gondwana resulted in the evolution of the Pacific basins. Thermal uplift of the Gondwana crust and extensive erosion causing a break in the stratigraphic record characterised the period between 300 and 330 Ma. At the end of this period the Gondwana Ice Sheet was well established over the uplands. The period 260–300 Ma evidenced the release of the Gondwana heat and thermal subsidence caused widespread basin formation. Late Carboniferous transpressive strike-slip basins (e.g. Sierra Australes/Colorado, Karoo-Falklands, Ellsworth-Central Transantarctic Mountains) in which thick glacial deposits accumulated, formed inboard of the palaeo-Pacific margin. In the continental interior the formation of Zambesi-type rift and extensional strike-slip basins were controlled by large mega-shear systems, whereas rare intracratonic thermal subsidence basins formed locally. In the Late Permian the tectonic regime changed to compressional largely due to northwest-directed subduction along the palaeo-Pacific margin. The orogenic cycle between 240 and 260 Ma resulted in the formation of the Gondwana fold belt and overall north–south crustal shortening with strike-slip motions and regional uplift within the interior. The Gondwana fold belt developed along a probable weak crustal zone wedged in between the cratons and an overthickened marginal crustal belt subject to dextral transpressive motions. Associated with the orogenic cycle was the formation of mega-shear systems one of which (Falklands-East Africa-Tethys shear) split the supercontinent in the Permo-Triassic into a West and an East Gondwana. By a slight clockwise rotation of East Gondwana a supradetachment basin formed along the Tethyan margin and northward displacement of Madagascar, West Falkland and the Gondwana fold belt occurred relative to a southward motion of Africa. Received: 2 October 1995 / Accepted: 28 May 1996  相似文献   

15.
Low grade metasediments and metavolcanics of the Hill End Synclinorial Zone within the Rockley district, NSW have experienced two phases of macroscopic folding (D1 and D2), both of which are post‐latest Silurian in age. No hiatus is evident between D1 and D2. D1 produced large Fi folds (λ/2 usually > 2 km) lacking mesoscopic elements and having variable axial trends. D2 was associated with the development of regional slaty cleavage (S2) and mesoscopic folds which are parasitic on plunging macroscopic F2 folds (λ/2=0.4–2 km). D2 strain is variable, being most intense in the north of the district where slaty cleavage and tight mesoscopic F2 folds are well developed, and weakest in the south where mesoscopic folds are absent or usually gentle and cleavage is often feebly developed even in mica‐rich rocks, which are stratigraphic equivalents to slates and schists in the north. The F1 fold mechanism may involve multiple folding, simultaneous folding in more than one direction, or complex buckling of layers of variable thickness. D1 and D2 are tentatively correlated with folding events elsewhere in the Hill End Synclinorial Zone.  相似文献   

16.

Palaeozoic intrusive rocks of the New England Batholith from the Rockvale district in the southern New England Orogen form three distinct associations: (i) the Carboniferous Rockvale Adamellite, a member of the Hillgrove Suite of deformed S‐type granitoids; (ii) a small I‐type igneous complex on the northwestern margin of the Rockvale Adamellite: several members of this complex have similar chemical compositions to the most mafic members of the Moonbi Suite of New England Batholith I‐types; and (iii) a suite of dyke rocks ranging in composition from calc‐alkaline lamprophyre through hornblende and biotite porphyrite to aplite. Ion‐microprobe U‐Pb zircon analysis indicates intrusion of the Rockvale Adamellite at 303 ±3 Ma (weighted mean 206Pb/238U age; 95% confidence limits). Preliminary investigation of zircon inheritance within the Rockvale Adamellite is consistent with chemical and isotopic indications of derivation of New England Batholith S‐type granitoids from a relatively juvenile protolith. Deformation of the Rockvale Adamellite occurred after complete crystallization of the pluton and prior to emplacement of dykes and I‐type intrusives. K‐Ar biotite and hornblende ages show broadly synchronous intrusion of I‐type magmas and lamprophyre dykes at ca 255 Ma, indicating that mantle magmatism associated with lamprophyres was contemporaneous with the crustal production of I‐type melts. Chemical similarities between the most mafic Moonbi Suite members and calc‐alkaline lamprophyres may also indicate a direct mantle contribution to some I‐type magmas.  相似文献   

17.
钻井、露头和区域构造资料的分析结果表明,晚古生代的右江盆地存在多期次的岩溶作用,通常具有1~3个岩溶旋回。这些古岩溶作用主要存在于上二叠统顶部、中二叠统茅口组顶部和石炭系顶部,其次是泥盆系的顶部。古岩溶作用的发生与黔桂运动、紫云运动、东吴运动等所形成的层序界面和低位体系域密切。研究区存在包括风化、区域性大气淡水溶蚀、区域性白云岩化、区域性古岩溶、区域性去白云岩化和区域性淡水胶结充填等6种岩溶作用的层序成因类型。  相似文献   

18.
晚古生代右江盆地古岩溶作用研究   总被引:2,自引:0,他引:2  
钻井、露头和区域构造资料的分析结果表明,晚古生代的右江盆地存在多期次的岩溶作用,通常具有1~3个岩溶旋回。这些古岩溶作用主要存在于上二叠统顶部、中二叠统茅口组顶部和石炭系顶部,其次是泥盆系的顶部。古岩溶作用的发生与黔桂运动、紫云运动、东吴运动等所形成的层序界面和低位体系域密切。研究区存在包括风化、区域性大气淡水溶蚀、区域性白云岩化、区域性古岩溶、区域性去白云岩化和区域性淡水胶结充填等6种岩溶作用的层序成因类型。  相似文献   

19.
New occurrences of the Acraman impact ejecta layer were recently discovered in two drillholes, Giles 1 and Murnaroo 1, in the eastern Officer Basin, South Australia, using acritarch biostratigraphy and lithostratigraphy to predict the position. Fractured crystals were also observed in palynological preparations from drillhole SCYW 1a on the Stuart Shelf. These discoveries improve stratigraphic control of Late Neoproterozoic successions, especially in the eastern Officer Basin and will allow a test of the hypothesis that the Acraman impact event caused a global catastrophe.  相似文献   

20.
The southeastern Lachlan Fold Belt at Batemans Bay on the New South Wales south coast is an accretionary complex with a prolonged deformation history. Early features include synsedimentary folds, mélange, disaggregated bedding and faults. Fabrics within the clast-in-matrix mélange and mudstone match those found in cores from the lower slopes of modern accretionary prisms. At the toe of the accretionary prism, the contact between the craton-derived Adaminaby Group and ocean floor deposits of the Wagonga Group is conformable. As subduction continued, the early structures were overprinted by (D1) deformation that produced meridional north – south-trending, tight to isoclinal folds (F1) and associated axial-plane cleavage (S1). This west-dipping subduction occurred in the Late Ordovician/Early Silurian but probably began much earlier. A younger regional deformation (D2) resulted in north – south-trending, open to tight folds (F2), slightly oblique to F1, and an axial-surface cleavage (S2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号