首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Along both sides of the Tancheng-Lujiang Fracture Zone in eastern China, a series of mantle source gas pools constitute a massive-scale tectonic accumulation zone in NNE direction, with the mantle geochemical characteristics of high concentrations of C02 and He, high3He/4He-40Ar/36Ar ratio system and high δ13Coo2 ratios (the main frequency, -3.4%— 4.6%), showing no difference from the tectonic framework of the area. In the area, the tectonic environment is a rift formed as a result of diapiric mantle injection and crust thinning to form graben-type basins and lithospheric fractures. The mantle-derived volcanic rocks and inclusions are well-developed and a high geothermal zone (mantlesource) exists in the area. The characteristics of the three components (solid, liquid and gas) of mantle, concentrated all over the same tectonic space zone, show that the rift system is of a good tectonic environment or passage for mantle degassing and gas migration. The main types of the gas pools are volcano, fault-block, anticline, buried hill and so on, but most of them are combination traps closely related with fracture. For the mantle source gas pools, rift is an optimum tectonic region, and nearby lithospheric fracture, mantle source volcanic rocks or basement uplifts are a favourable structural location when reservoir-caprock association develops.  相似文献   

2.
为了清晰认识发生于青藏高原西北部2008年与2014年的两次于田MS7.3地震发震构造环境与构造地貌特征,本文利用DEM(数字高程模型)数据分析"喀喇昆仑—西昆仑—康西瓦地区"的地形地貌特征,结合区域活动断裂研究资料、相对于塔里木盆地的两期GPS速度场资料和区域运动学特征等讨论两次MS7.3地震所处的青藏高原西北部区域构造环境和地壳运动学特征,分析喀喇昆仑断裂、阿尔金断裂康西瓦段、龙木错-邦达错断裂及贡嘎错断裂所围限的西昆仑地块的地质构造背景、阿尔金断裂西南端发震断裂活动性及孕震环境等发震构造基本条件;进而利用"地形剖面"方法及断裂分布特征分析震源区的地形地貌特征,给出晚第四纪以来的地貌形态与发震构造的关系,从区域构造地貌学和GPS地壳运动学的角度探讨中上地壳变形特征及孕震过程;最后讨论区域孕震构造、克尔牙张性裂谷演化过程和地球动力学背景等。通过地形剖面及区域地貌综合分析新疆于田2008年MS7.3拉张型发震构造和2014年MS7.3走滑拉张型地震的发震构造特点的区别,认为2014年发生的地震可能与2008年MS7.3地震同震库伦应力变化、触发过程及震后变形过程密切相关,并且青藏高原西北部地区存在明显的东西向拉张性构造单元,可能与青藏高原10~15 Ma以来的地壳减薄过程有关。  相似文献   

3.
Abstract : The Hidaka metamorphic belt consists of an island-arc assembly of lower to upper crustal rocks formed during early to middle Paleogene time and exhumed during middle Paleogene to Miocene time. The tectonic evolution of the belt is divided into four stages, D0rs, D1, D2rs, and D3, based on their characteristic deformation, metamorphism, and igneous activity. The premetamorphic and igneous stage (D0) involves tectonic thickening of an uppermost Cretaceous and earliest Tertiary accretionary complex, including oceanic materials in the lower part of the complex. D1 is the stage of prograde metamorphism with increasing temperatures at a constant pressure during an early phase, and with a slight decrease of pressure at the peak metamorphic phase, accompanying flattening of metamorphic rocks and intrusions of mafic to intermediate igneous rocks. At the peak, incipient partial melting of pelitic and psammitic gneisses took place in the amphibolite–granulite facies transition zone, the melt and residuals cutting the foliations formed by flattening. In the deep crust, large amounts of S-type tonalite magma formed by crustal anatexis, intruded into the granulite facies gneiss zone and also into the upper levels of the metamorphic sequence during the subsequent stage. During D1 stage, mafic and intermediate magmas supplied and transported heat to form the arc-type crust and at the same time, the magmatic underplating caused extensional doming of the crust, giving rise to flattening and vertical uplifting of the crustal rocks. D2 stage is characterized by subhorizontal top-to-the-south displacement and thrusting of lower to upper crustal rocks, forming a basal detachment surface (décollement) and duplex structures associated with intrusions of S-type tonalite. Deformation structures and textures of high-temperature mylonites formed along the décollement, as well as the duplex structures, show that the D2 stage movement occurred under a N-S trending compressional tectonic regime. The depth of intra-crustal décollement in the Hidaka belt was defined by the effect of multiplication of two factors, the fraction of partial melt which increases downward, and the fluid flux which decreases downward. The crustal décollement, however, might have extended to the crust-mantle boundary and/or to the lithosphere and asthenosphere boundary. The subhorizontal movement was transitional to a dextral-reverse-slip (dextral transpression) movement accompanied by low-temperature mylonitization with retrograde metamorphism, the stage defined as D3. The crustal rocks from the basal décollement to the upper were tilted eastward on the N–S axis and exhumed during the D3 stage. During D2 and D3 stages, the intrusion of crustal acidic magmas enhanced the crustal deformation and exhumation in the compressional and subsequent transpressional tectonic regime.  相似文献   

4.

The Proterozoic anorogenic magmatic rocks are well developed in the Bayan Obo deposit region. They are composed of trachyte, magnesioarfvedesonite-feldspatite, potash-rhyolite, dacite, rhyolite, quartz porphyry and trachy basalt. A lot of high-K diabase veins (dykes) are also found. These anorogenic magmatic rocks are derived from the mantle. They have lowerɛNd(t) (4.52-5.88) with T Nd DM = 1.54-1.92 Ga. Their Nd isotopic compositions and T Nd DM are consistent with those of ores, implying that the ore-forming materials were derived from these anorogenic magmatic rocks. The zircon U-Pb ages of the rocks are 1.8 Ga. Research results indicate that the Bayan Obo Group was replaced by the hydrothermal solution related to the anorogenic magmatic rocks, resulting in the formation of the deposit.

  相似文献   

5.
Quan-Ru  Geng  Zhi-Ming  Sun  Gui-Tang  Pan  Di-Cheng  Zhu  Li-Quan  Wang 《Island Arc》2009,18(3):467-487
The well‐studied Mesozoic and Cenozoic volcanic rocks of the Gangdise Terrane, southern Tibet, are widely interpreted to have resulted from subduction of the Neotethys; however, Late Paleozoic volcanic rocks and their tectonic setting remain poorly studied. Based on new geological data, we carried out stratigraphical and geochemical analyses of Permian volcano‐stratigraphic sequences within an east–west‐trending, fault‐bounded zone of uplift in the central Gangdise Terrane. Sedimentary rocks in this area consist of platform carbonates and terrigenous clastic rocks that represent widespread shallow‐marine sedimentary basins developed around northern Gondwana. A regression or tectonic uplift event is recorded in Permian sedimentary rocks that show the local development of fluvial environments. The sedimentary succession contains evidence of two volcanic stages: a period of basaltic extrusions and younger explosive felsic magmatism. The first volcanic stage is Early and Middle Permian in age. Tholeiitic basaltic lavas are exposed around Maizhokunggar (Tangjia) and Lhunzhub in central Gangdise. The Lower Permian basalts are relatively enriched in MgO (4.58–12.19%), whereas the Middle Permian basalts are characterized by high Al2O3 contents (11.75–21.22%). Rocks of both ages are enriched in large‐ion lithophile elements (LILE) and light rare earth elements (LREE), and show pronounced negative Nb and Ta anomalies. Total REE contents and light (LREE)/heavy (HREE) ratios increased from the Early to Middle Permian. Observed variations in initial Sr, Nd, and Pb isotopes (87Sr/86Sri = 0.7013–0.7066, 207Pb/204Pbi = 15.53–15.63, and 208Pb/204Pbi = 38.04–38.64 for a given 206Pb/204Pbi; εNd = +0.69 to ?11.55) can be explained by crustal interaction with mantle sources, as is characteristic of metasomatism by slab‐derived fluids or assimilation and fractional crystallization (AFC) processes during magmatic evolution. The observed geochemical signatures, coupled with stratigraphic constraints, support the hypothesis that an initial arc formed during the Permian due to southward subduction of the Paleotethys, predating the well‐known Mesozoic arc preserved in the Gangdise Terrane.  相似文献   

6.
We present a new set of brittle microtectonic measurements carried out in the Pliocene and Quaternary rocks outcropping in several key sectors of the western Betic and Rif orogen, the so-called Gibraltar orogenic arc. This data set, along with available earthquake focal mechanisms and borehole breakouts, allowed us to compile the Pliocene and Quaternary stress map of this area. This map provides new constraints for tectonic models and the present-day tectonic activity of the proposed active eastward subduction of oceanic lithosphere beneath the Gibraltar Arc and roll-back. The horizontal maximum compressive stress (SHmax) is NW-SE in the Betic Orogen and N-S/NNW-SSE in the southern Rif Cordillera. There is a significant consistency between SHmax and the displacement field deduced from GPS measurements with respect to the African plate: both appear to reflect the NW-SE convergence between the African and the European plates that is perturbed in the Rif. We propose that part of the eastern Rif behaves as a quasi-rigid block welded to the stable African plate. This block is bounded by important faults that localized most of the deformation disturbing the stress and surface displacement field. Pliocene to Quaternary N-S to NW-SE Africa-Europe plate convergence seem to be associated to the reorganization of the remnant Early Miocene subduction system in a continental–continental collision framework. Three-dimensional reconstruction of available seismic tomography plotted against the intermediate seismicity shows that only part of the old subduction system, whose orientation ranges from N20°E to N100°E, remains active: the portion ranging from N30°E to N40°E, orthogonal to the regional convergence.  相似文献   

7.
The Proterozoic anorogenic magmatic rocks are well developed in the Bayan Obo deposit region. They are composed of trachyte, magnesioarfvedesonite-feldspatite, potash-rhyolite, dacite, rhyolite, quartz porphyry and trachy basalt. A lot of high-K diabase veins (dykes) are also found. These anorogenic magmatic rocks are derived from the mantle. They have lower?Nd(t) (4.52-5.88) with T Nd DM = 1.54-1.92 Ga. Their Nd isotopic compositions and T Nd DM are consistent with those of ores, implying that the ore-forming materials were derived from these anorogenic magmatic rocks. The zircon U-Pb ages of the rocks are 1.8 Ga. Research results indicate that the Bayan Obo Group was replaced by the hydrothermal solution related to the anorogenic magmatic rocks, resulting in the formation of the deposit.  相似文献   

8.
Intrusions of ultramafic bodies into the lower density continental crust are documented for a large variety of tectonic settings spanning continental shields, rift systems, collision orogens and magmatic arcs. The intriguing point is that these intrusive bodies have a density higher by 300-500 kg m−3 than host rocks. Resolving this paradox requires an understanding of the emplacement mechanism. We have employed finite differences and marker-in-cell techniques to carry out a 2D modeling study of intrusion of partly crystallized ultramafic magma from sublithospheric depth to the crust through a pre-existing magmatic channel. By systematically varying the model parameters we document variations in intrusion dynamics and geometry that range from funnel- and finger-shaped bodies (pipes, dikes) to deep seated balloon-shaped intrusions and flattened shallow magmatic sills. Emplacement of ultramafic bodies in the crust lasts from a few kyr to several hundreds kyr depending mainly on the viscosity of the intruding, partly crystallized magma. The positive buoyancy of the sublithospheric magma compared to the overriding, colder mantle lithosphere drives intrusion while the crustal rheology controls the final location and the shape of the ultramafic body. Relatively cold elasto-plastic crust (TMoho = 400 °C) promotes a strong upward propagation of magma due to the significant decrease of plastic strength of the crust with decreasing confining pressure. Emplacement in this case is controlled by crustal faulting and subsequent block displacements. Warmer crust (TMoho = 600 °C) triggers lateral spreading of magma above the Moho, with emplacement being accommodated by coeval viscous deformation of the lower crust and fault tectonics in the upper crust. Strong effects of magma emplacement on surface topography are also documented. Emplacement of high-density, ultramafic magma into low-density rocks is a stable mechanism for a wide range of model parameters that match geological settings in which partially molten mafic-ultramafic rocks are generated below the lithosphere. We expect this process to be particularly active beneath subduction-related magmatic arcs where huge volumes of partially molten rocks produced from hydrous cold plume activity accumulate below the overriding lithosphere.  相似文献   

9.

The Madang Cenozoic sodic alkaline basalt occurred in the eastern margin of the Tibetan Plateau, where is a key tectonic transform region of Tibet, North China, and Yangtze blocks. The basalts are characterized by the variation in SiO2=42%–51%, Na2O/K2O>4, belonging to the sodic alkaline basalt series. The rocks are enriched in Ba, Th, Nb, Ta, relative to a slight depletion in K, Rb in the trace and rare earth element (REE) spider diagrams that are similar to the typical oceanic island alkaline basalt. The Sr-Nd-Pb isotopic compositions suggest that they are derived from a mixed mantle reservoir. The western Qinling-Songpan tectonic region was controlled by Tibet, North China and Yangtze blocks since Cenozoic, therefore, the region was in the stage of the substance converge from the mantle to upper crust, producing a mixed mantle reservoir in the studied area. The Madang basalts occurred in the specific tectonic background, they result from partial melting of a mixed asthenospheric mantle reservoir in the western Qinling-Songpan tectonic node.

  相似文献   

10.
Basin-fill sequences of Mesozoic typical basins in the Yanshan area, North China may be divided into four phases, reflecting lithosphere tectonic evolution from flexure (T3), flexure with weak rifting (J1+2), tectonic transition (J3), and rifting (K). Except the first phase, the other three phases all start with lava and volcaniclastic rocks, and end with thick coarse clastic rocks and/or conglomerates, showing cyclic basin development rather than simple cyclic rift mechanism and disciplinary basin-stress change from extension to compression in each phase. Prototype basin analysis, based on basin-fill sequences, paleocurrent distribution and depositional systems, shows that single basin-strike and structural-line direction controlling basin development had evidently changed from east-west to northeast in Late Jurassic in the Yanshan area, although basin group still occurred in east-west zonal distribution. Till Early Cretaceous, main structural-line strike controlling basins just turned to northeast by north in the studied area.  相似文献   

11.
An attempt is made to obtain a combined geophysical model along two regional profiles: Black Sea— White Sea and Russian Platform—French Central Massif. The process of the model construction had the following stages: 1. The relation between seismic velocity (Vp, km/s) and density (σ, g/cm3) in crustal rocks was determined from seismic profiles and observed gravity fields employing the trial and error method. 2. Relations between heat production HP (μW/m3), velocity and density were established from heat flow data and crustal models of old platforms where the mantle heat flow HFM is supposed to be constant. The HFM value was also determined to 11 ± 5 mW/m2. 3. A petrological model of the old platform crust is proposed from the velocity-density models and the observed heat flow. It includes 10–12 km of acid rocks, 15–20 km of basic/metamorphic rocks and 7–10 km of basic ones. 4. Calculation of the crustal gravity effects; its substraction from the observed field gave the mantle gravity anomalies. Extensively negative anomalies have been found in the southern part of Eastern Europe (50–70 mgal) and in Western Europe (up to 200 mgal). They correlate with high heat flow and lower velocity in the uppermost mantle. 5. A polymorphic advection mechanism for deep tectonic processes was proposed as a thermal model of the upper mantle. Deep matter in active regions is assumed to be transported (advected) upwards under the crust and in its place the relatively cold material of the uppermost mantle descends. The resulting temperature distribution depends on the type of endogeneous regime, on the age and size of geostructure. Polymorphic transitions were also taken into account.  相似文献   

12.
LA-ICP-MS and SHRIMP U-Pb dating of zircons from orthogneisses and amphibolite from the Central Zone of the Kunlun Orogen is reported in this paper. One orthogneiss sample has metamorphic zircons yielding weighted average 206Pb/238U age of 517.0 5.0/-6.0 Ma, and the other orthogneiss sample con- tains zircons with inherited magmatic cores giving three population 207Pb/206Pb ages of 955 Ma, 895 Ma and 657 Ma for the magmatic protolith, and metamorphic recrystallized rims with peak 206Pb/238U ages of 559 12/?17 Ma and 516 ± 13 Ma. The amphibolite yielded three populations of weighted average 206Pb/238U age of 482.0 10/?8.0 Ma, 516.2 ± 5.8 Ma and 549 ± 10 Ma for the metamorphic zircons. These dating results recorded the tectonothermal events that occurred in the early Paleozoic and the Pre- cambrian time. The records of the Cambrian magmatic-metamorphic event in the Qinling Orogen, the Altyn Tagh belt, north margin of the Qaidam Block and the Kunlun Orogen suggest that continental assembly probably occurred in the early evolutionary history of the Proto-Tethys.  相似文献   

13.
The results of long-term (2001–2009) measurements of fractures in sedimentary rocks of the Badenian and Pannonian age within the Rust-Fertorakos Highland and adjacent areas are presented and interpreted in terms of paleostresses in the study. The Rust-Fertorakos Highland has a nearly north-south trending strike and separates the Vienna and Pannonian Basins. It is expressed not only in the topography but also in the thickness of the sedimentary cover. Faults in the basement of the Rust-Fertorakos Highland have a nearly north-south strike diagonal to the general NE-SW strike of the faults of the basement of the Vienna Basin. The data of measurements of joints made in quarries and on road slopes that were subsequently computer processed using two independent techniques indicate that, along with joint systems, which are orthogonal to the rock bedding and are of a primary lithogenetic origin, joints joining to form systems obliquely oriented to the bedding are quite common in the region. These secondary joint systems have been formed at later stages of development of already lithified rocks under the influence of tectonic paleostresses. Interpreting pairs of secondary systems as conjugated shear joints, the authors have reconstructed the orientations of the axes of the relevant tectonic paleostresses. At some observation points, the identification of conjugated shear systems has been ambiguous. In these cases, two possible solutions for the paleostress axes have been drawn. Despite some ambiguities, all of the solutions obtained have a steady tendency in terms of the orientation of the minimum compression axis T 3. This axis is subhorizontal and is oriented nearly east-west with some variation. The maximum compression axis T 1 and the intermediate principal stress axis T 2 are normally inclined to the horizontal, and the orientation of these axes depends on the observation point.  相似文献   

14.

Timing of the intermediate-basic igneous rocks developed in the area of Kuhai-A’nyêmaqên along the southern east Kunlun tectonic belt is a controversial issue. This paper presents new zircon SHRIMP U-Pb dating data for igneous zircons from the Kuhai gabbro and the Dur’ngoi diorite in the Kuhai-A’nyemaqen tectonic belt, which are 555±9 Ma and 493±6 Ma, respectively. The trace element geochemical features of the Kuhai gabbro and the Dur’ngoi diorite are similar to those of ocean island basalts (OIB) and island arc basalts (IAB), respectively. Thus, the Kuhai gabbro with the age of 555±9 Ma and OIB geochemical features is similar to the Yushigou oceanic ophiolite in the North Qilian orogen, whereas the Dur’ngoi diorite with the age of 493±6 Ma and IAB geochemical features is similar to the island arc volcanic rocks developed in the north Qaidam. The Late Neoproterozoic to Early Ordovician ophiolite complex in the area of Kuhai-A’nyêmaqên suggests that the southern margin of the “Qilian-Qaidam-Kunlun” archipelagic ocean in this period was located in the southern east Kunlun tectonic belt. Therefore, the southern east Kunlun tectonic belt in the early Paleozoic is not comparable to the Mianlüe tectonic belt in the Qinling orogenic belt.

  相似文献   

15.
New geochemical and 40Ar/39Ar age data are presented from the Neogene volcanic units of the Karaburun Peninsula, the westernmost part of Western Anatolia. The volcanic rocks in the region are associated with Neogene lacustrine deposition and are characterized by (1) olivine-bearing basaltic-andesites to shoshonites (Karaburun volcanics), high-K calc-alkaline andesites, dacites and latites (Yaylaköy, Arma?anda? and Kocada? volcanics) of ~ 16–18 Ma, and (2) mildly-alkaline basalts (Ovac?k basalt) and rhyolites (Urla volcanics) of ~ 11–12 Ma. The first group of rocks is enriched in LILE and LREE with respect to the HREE and HFSE on N-MORB-normalised REE and multi-element spider diagrams. They are comparable geochemically with volcanic rocks in the surrounding regions such as Chios Island and other localities in Western Anatolia. The Ovac?k basalt is geochemically similar to the first stage early–middle Miocene volcanic rocks but differs from NW Anatolian late Miocene alkali basalts.  相似文献   

16.
Geology of the Grove Mountains in East Antarctica   总被引:2,自引:0,他引:2  
Grove Mountains consists mainly of a series of high-grade (upper amphibolite to granulite facies) metamorphic rocks, including felsic granulite, granitic gneiss, mafic granulite lenses and charnockite, intruded by late tectonic gneissic granite and post-tectonic granodioritic veins. Geochemical analysis demonstrates that the charnockite, granitic gneiss and granite belonged to aluminous A type plutonic rocks, whereas the felsic and mafic granulite were from supracrustal materials as island-arc, oceanic island and middle oceanic ridge basalt. A few high-strained shear zones disperse in regional stable sub-horizontal foliated metamorphic rocks. Three generations of ductile deformation were identified, in which D1 is related to the event before Pan-African age, D2 corresponds to the regional granulite peak metamorphism, whereas D3 reflects ductile extension in late Pan-African orogenic period. The metamorphic reactions from granitic gneiss indicate a single granulite facies event, but 3 steps from mafic granulite, with P-T condition of M1 800°C, 9.3×105 Pa; M2 800–810°C, 6.4 × 105 Pa; and M3 650°C have been recognized. The U-Pb age data from representative granitic gneiss indicate (529±14) Ma of peak metamorphism, (534±5) Ma of granite emplacement, and (501±7) Ma of post-tectonic granodioritic veins. All these evidences suggest that a huge Pan-African aged mobile belt exists in the East Antarctic Shield extending from Prydz Bay via Grove Mountains to the southern Prince Charles Mountains. This orogenic belt could be the final suture during the Gondwana Land assemblage.  相似文献   

17.
~~Characteristics of the mantle source region of sodium lamprophyres and petrogenetic tectonic setting in northeastern Hunan,China~~  相似文献   

18.
springerlink.com Studies of mantle fluids are currently one of the hot topics in the earth science, greatly contributing to re-vealing origins and evolutions of fluids. In general, the concept of mantle fluids refers to their active compo-nents, such as CO2, H2O, N2, etc., while the noble gases inert in chemical properties belong to another research system. Due to their marked differences in various fluid sources of the Earth[1], the isotopic sig-natures of He and Ar have been widely used a…  相似文献   

19.
The pre‐Cenozoic history of the South China Sea (SCS) region is the object of continued debate. To trace the evolution of the SCS, a better understanding of the petrogenesis and tectonic affiliation of the granitic rocks that comprise the microblocks within the region is necessary. In this study, we analyzed the whole‐rock oxygen and lead isotope ratios of granitic samples dredged from two locations in the Nansha microblock, one of the microblocks in the SCS. Oxygen isotope data combined with previously published Sr isotope data show that group I rocks (δ18O = 6.00–7.20‰; average = 6.64‰) originated from a mantle source contaminated by material and/or fluid input from a Mesozoic subduction zone in the southeastern side of the microblock. Group II rocks (δ18O = 6.86‰–9.13‰; average = 7.75‰) also came from the same source, but they were additionally affected by crustal contamination. The Nansha microblock has high radiogenic lead ratios (206Pb/204Pbi = 18.602–18.756, 207Pb/204Pbi = 15.660–15.713, 208Pb/204Pbi = 38.693–38.893), which indicate that the Nansha microblock is tectonically affiliated with the Nanling–Hainan or South China block. This notion is consistent with the results of a previous Nd isotope study. As a whole, results of our study suggest that some of the other microblocks dispersed in the SCS are also possible fragments of South China block, and thus further studies are needed to better constrain the pre‐Cenozoic evolutionary history of the SCS region.  相似文献   

20.
On the condition that the velocity ratio of compressive wave to shear wave is stable during the propagating process of seismic wave, this paper develops an estimation method for medium quality factor based on single station's travel time difference between direct S and P waves and the first period signal of direct P wave. 8 774 high SNR wave data altogether recorded by 75 stations are analyzed. The results show that: (1) under the normal regional stress field, the quality factors QmSP in the stable tectonic area are higher than that in the active tectonic area around the Weifang-Jiashan section and its surrounding area in the Tanlu fault zone; (2) in the Juxian-Tancheng section the seismic wave attenuation is relatively quick, and the media is relatively broken, suggesting no tectonic stress accumulation; (3) the Xinyi-Sihong section is currently locking and in accumulating elastic strain energy stage, which has the deep environment and conditions of strong earthquake generation similar to those of the 1668 M8.5 Tancheng strong earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号