首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We deal with the problem of a zero mass body oscillating perpendicular to a plane in which two heavy bodies of equal mass orbit each other on Keplerian ellipses. The zero mass body intersects the primaries plane at the systems barycenter. This problem is commonly known as theSitnikov Problem. In this work we are looking for a first integral related to the oscillatory motion of the zero mass body. This is done by first expressing the equation of motion by a second order polynomial differential equation using a Chebyshev approximation techniques. Next we search for an autonomous mapping of the canonical variables over one period of the primaries. For that we discretize the time dependent coefficient functions in a certain number of Dirac Delta Functions and we concatenate the elementary mappings related to the single Delta Function Pulses. Finally for the so obtained polynomial mapping we look for an integral also in polynomial form. The invariant curves in the two dimensional phase space of the canonical variables are investigated as function of the primaries eccentricity and their initial phase. In addition we present a detailed analysis of the linearized Sitnikov Problem which is valid for infinitesimally small oscillation amplitudes of the zero mass body. All computations are performed automatically by the FORTRAN program SALOME which has been designed for stability considerations in high energy particle accelerators.  相似文献   

2.
A new analytic approach to the solution of the Sitnikov Problem is introduced. It is valid for bounded small amplitude solutions (z max = 0.20) (in dimensionless variables) and eccentricities of the primary bodies in the interval (–0.4 < e < 0.4). First solutions are searched for the limiting case of very small amplitudes for which it is possible to linearize the problem. The solution for this linear equation with a time dependent periodic coefficient is written up to the third order in the primaries eccentricity. After that the lowest order nonlinear amplitude contribution (being of order z 3) is dealt with as perturbation to the linear solution. We first introduce a transformation which reduces the linear part to a harmonic oscillator type equation. Then two near integrals for the nonlinear problem are derived in action angle notation and an analytic expression for the solution z(t) is derived from them. The so found analytic solution is compared to results obtained from numeric integration of the exact equation of motion and is found to be in very good agreement. CERN SL/AP  相似文献   

3.
A new analytic expression for the position of the infinitesimal body in the elliptic Sitnikov problem is presented. This solution is valid for small bounded oscillations in cases of moderate primary eccentricities. We first linearize the problem and obtain solution to this Hill's type equation. After that the lowest order nonlinear force is added to the problem. The final solution to the equation with nonlinear force included is obtained through first the use of a Courant and Snyder transformation followed by the Lindstedt–Poincaré perturbation method and again an application of Courant and Snyder transformation. The solution thus obtained is compared with existing solutions, and satisfactory agreement is found.  相似文献   

4.
We present some qualitative and numerical results of the Sitnikov problem, a special case of the three-body problem, which offers a great variety of motions as the non-integrable systems typically do. We study the symmetries of the problem and we use them as well as the stroboscopic Poincarée map (at the pericenter of the primaries) to calculate the symmetry lines and their dynamics when the parameter changes, obtaining information about the families of periodic orbits and their bifurcations in four revolutions of the primaries. We introduce the semimap to obtain the fundamental lines l 1. The origin produces new families of periodic orbits, and we show the bifurcation diagrams in a wide interval of the eccentricity (0 0.97). A pattern of bifurcations was found.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
We study the stability of motion in the 3-body Sitnikov problem, with the two equal mass primaries (m 1 = m 2 = 0.5) rotating in the x, y plane and vary the mass of the third particle, 0 ≤ m 3 < 10−3, placed initially on the z-axis. We begin by finding for the restricted problem (with m 3 = 0) an apparently infinite sequence of stability intervals on the z-axis, whose width grows and tends to a fixed non-zero value, as we move away from z = 0. We then estimate the extent of “islands” of bounded motion in x, y, z space about these intervals and show that it also increases as |z| grows. Turning to the so-called extended Sitnikov problem, where the third particle moves only along the z-axis, we find that, as m 3 increases, the domain of allowed motion grows significantly and chaotic regions in phase space appear through a series of saddle-node bifurcations. Finally, we concentrate on the general 3-body problem and demonstrate that, for very small masses, m 3 ≈ 10−6, the “islands” of bounded motion about the z-axis stability intervals are larger than the ones for m 3 = 0. Furthermore, as m 3 increases, it is the regions of bounded motion closest to z = 0 that disappear first, while the ones further away “disperse” at larger m 3 values, thus providing further evidence of an increasing stability of the motion away from the plane of the two primaries, as observed in the m 3 = 0 case.  相似文献   

6.
This paper deals with the Sitnikov family of straight-line motions of the circular restricted three-body problem, viewed as generator of families of three-dimensional periodic orbits. We study the linear stability of the family, determine several new critical orbits at which families of three dimensional periodic orbits of the same or double period bifurcate and present an extensive numerical exploration of the bifurcating families. In the case of the same period bifurcations, 44 families are determined. All these families are computed for equal as well as for nearly equal primaries (μ = 0.5, μ = 0.4995). Some of the bifurcating families are determined for all values of the mass parameter μ for which they exist. Examples of families of three dimensional periodic orbits bifurcating from the Sitnikov family at double period bifurcations are also given. These are the only families of three-dimensional periodic orbits presented in the paper which do not terminate with coplanar orbits and some of them contain stable parts. By contrast, all families bifurcating at single-period bifurcations consist entirely of unstable orbits and terminate with coplanar orbits.  相似文献   

7.
8.
Mass-weighted symplectic forms provide a unified framework for the treatment of both finite and vanishingly small masses in the N-body problem. These forms are introduced, compared to previous approaches, and their properties are discussed. Applications to symplectic mappings, the definition of action-angle variables for the Kepler problem, and Hamiltonian perturbation theory are outlined This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
A method for the expansion of the perturbative Hamiltonian in the planetary problem is presented, which allows one to immediately detect the terms vanishing under the averaging process. The method bases itself on a geometrical analysis, through the groups SO(3) and SU(2), of the Poincaré canonical variables or of the similar Laplace variables. As an outcome, one obtains a MAPLE program, which calculates the first averaged terms of the perturbative Hamiltonian. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We present a new set of variables for the reduction of the planetary n-body problem, associated to the angular momentum integral, which can be of any use for perturbation theory. The construction of these variables is performed in two steps. A first reduction, called partial is based only on the fixed direction of the angular momentum. The reduction can then be completed using the norm of the angular momentum. In fact, the partial reduction presents many advantages. In particular, we keep some symmetries in the equations of motion (d'Alembert relations). Moreover, in the reduced secular system, we can construct a Birkhoff normal form at any order. Finally, the topology of this problem remains the same as for the non-reduced system, contrarily to Jacobi's reduction where a singularity is present for zero inclinations. For three bodies, these reductions can be done in a very simple way in Poincaré's rectangular variables. In the general n-body case, the reduction can be performed up to a fixed degree in eccentricities and inclinations, using computer algebra expansions. As an example, we provide the truncated expressions for the change of variable in the 4-body case, obtained using the computer algebra system TRIP.  相似文献   

11.
Regular solutions at the 3/2 commensurability are investigated forSitnikovs problem. Utilizing a rotating coordinate system and theaveraging method, approximate analytical equations are obtained for thePoincare sections by means of Jacobian elliptic functions and 3periodicsolutions are generated explicitly. It is revealed that the system exhibitsheteroclinic orbits to saddle points. It is also shown that chaotic regionemerging from the destroyed invariant tori, can easily be seen for certaineccentricities. The procedure of the current study provides reliable answersfor the long-time behavior of the system near resonances.  相似文献   

12.
The usual action-angle variables for the Kepler Problem (the Delaunay variables) are not globally defined, leaving out some orbits (circular orbits or those lying on the xy-plane). Moreover they are trascendental functions of the physical variables, making it quite difficult to write the perturbed Hamiltonian. The way-out proposed here is to pass to a 8-dimensional rank-6 Poisson manifold, that is, to parametrize the state of the Kepler Problem with two 4-dimensional vectors mutually orthogonal and of equal norm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The present research was motivated by the recent discovery of planets around binary stars. Our initial intention was thus to investigate the 3-dimensional nearly circular periodic orbits of the circular restricted problem of three bodies; more precisely Stromgren's class L, (direct) and class m, (retrograde). We started by extending several of Hénon's vertical critical orbits of these 2 classes to three dimensions, looking especially for orbits which are near circular and have stable characteristic exponents.We discovered early on that the periodic orbits with the above two qualifications are fairly rare and we decided thus to undertake a systematic exploration, limiting ourselves to symmetric periodic orbits. However, we examined all 16 possible symmetry cases, trying 10000 sets of initial values for periodicity in each case, thus 160000 integrations, all with z o or o equal to 0.1 This gave us a preliminary collection of 171 periodic orbits, all fairly near the xy-plane, thus with rather low inclinations. Next, we integrated a second similar set of 160000 cases with z o or o equal to 0.5, in order to get a better representation of the large inclinations. This time, we found 167 periodic orbits, but it was later discovered that at least 152 of them belong to the same families as the first set with 0.1Our paper quickly describes the definition of the problem, with special emphasis on the symmetry properties, especially for the case of masses with equal primaries. We also allow a section to describe our approach to stability and characteristic exponents, following our paper on this subject, (Broucke, 1969). Then we describe our numerical results, as much as space permits in the present paper.We found basically only about a dozen families with sizeable segments of simple stable periodic orbits. Some of them are around one of the two stars only but we do not describe them here because of a lack of space. We extended about 170 periodic orbits to families of up to 500 members, (by steps of 0.005 in the parameter), although, in many cases, we do not know the real end of the families. We also give an overview of the different types of periodic orbits that are most often encountered. We describe some of the rather strange orbits, (some of which are actually stable).  相似文献   

14.
A particular multi-angle averaging theorem for systems admitting a finite Fourier expansion of the field is presented, together with its application to the problem of motion around an oblate planet (the J2 problem), in harmonic oscillator formulation. This method of approximate integration has the advantage of working with (close on) directly measurable elements. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
舒斯会  陆本魁 《天文学报》2005,46(2):165-172
研究了Coriolis力和离心力摄动对Robe限制性三体问题主要平动点位置及线性稳定性的影响,给出了Robe限制性三体问题主要平动点的摄动位置和Coriolis力和离心力摄动对主要平动点位置和线性稳定的影响量级.改进了Shrivastava的结果.  相似文献   

16.
In this paper, an efficient iterative method of arbitrary positive integer order of convergence 2 will be established for the two-body universal initial value problem. The method is of dynamic nature in the sense that, on going from one iterative scheme to the subsequent one, only additional instruction is needed. Moreover, which is the most important, the method does not need any a priori knowledge of the initial guess. A property which avoids the critical situations between divergent to very slow convergent solutions, that may exist in other numerical methods which depend on initial guess. Some applications of the method are also given.  相似文献   

17.
We consider the planar three-body problem and prove that, apart from some exceptional cases, there is no additional first integral meromorphic with respect to positions, mutual distances and momenta.  相似文献   

18.
A numerical procedure to systematically find collision orbits in the planar three-body problem has been developed in the preceding paper (Tanikawa et al., 1995). Using this procedure, a search for binary and triple collision orbits has been carried out in the free-fall three-body problem. Some detailed structures of a part of the initial value space are discussed. Various interesting orbits have been found. Examples are oscillatory orbits in which ejected particles change from ejection to ejection, and orbits which are not isosceles initially but nearly isosceles after escape. Some results of isosceles problems (Simó and Martínez, 1988) are extended to non-isosceles problems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We study the existence of invariant tori in a neighbourhood of the collinear equilibrium points of the planar three-body problem. To this end some properties of the normal form of the Hamiltonian reduced to the 4D central manifold are proved. Using this normal form, we show that the nondegeneracy conditions of KAM theorem are satisfied for all positive masses, including the 2:1 resonance case. The evaluation of the conditions is done numerically.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号