首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon dioxide records from polar ice cores and marine ocean sediments indicate that the last glacial maximum (LGM) atmosphere CO2 content was 80–90 ppm lower than the mid-Holocene. This represents a transfer of over 160 GtC into the atmosphere since the LGM. Palaeovegetation studies suggest that up to 1350 GtC was transferred from the oceans to the terrestrial biosphere at the end of the last glacial. Evidence from carbon isotopes in deep sea sediments, however, indicates a smaller shift of between 400 and 700 GtC. To understand the functioning of the carbon cycle this apparent discrepancy needs to be resolved. Thus, older data have been reassessed, new data provided and the potential errors of both methods estimated. New estimates of the expansion of terrestrial biomass between the LGM and mid-Holocene are 700 GtC ± > 300 GtC, using the ocean carbon isotope-based method, compared with of 1100 GtC ± > 500 GtC using the palaeovegetation estimate. If these estimates of the carbon shift to the terrestrial biosphere are equilibrated with the dissolved carbon in the oceans, and the CaCO3 compensation of the ocean is taken into account, then the glacial atmospheric CO2 would have been between 50 (± 30) ppm and 95 (± 50) ppm higher. The glacial atmosphere therefore should have had a CO2 partial pressure of between 330 and 375 μatm. Hence, a rise of between 130 and 175 μatm in atmospheric CO2, rather than 80 μatm, at the end of the last glacial must be accounted for.  相似文献   

2.
Southern Westerlies during the last glacial maximum   总被引:1,自引:0,他引:1  
Vegetation and climate over approximately the past 13,000 yr are reconstructed from fossil pollen in a 9.4-m mire section at Caleta Róbalo on Beagle Channel, Isla Navarino (54°56′S, 67°38′W), southern Tierra del Fuego. Fifty surface samples reflecting modern pollen dispersal serve to interpret the record. Chronologically controlled by nine radiocarbon dates, fossil pollen assemblages are: Empetrum-Gramineae-Gunnera-Tubuliflorae (zone 3b, 13,000–11,850 yr B.P.), Gramineae-Empetrum-assorted minor taxa (zone 3a, 11,850-10,000 yr B.P.), Nothofagus-Gramineae-Tubuliflorae-Polypodiaceae (zone 2, 10,000–5000 yr B.P.), Nothofagus-Empetrum (zone 1b, 5000-3000 yr B.P.), and Empetrum-Nothofagus (zone 1a, 3000-0 yr B.P.). Assemblages show tundra under a cold, dry climate (zone 3), followed by open woodland (zone 2), as conditions became warmer and less dry, and later, with greater humidity and lower temperatures, by closed forest and the spread of mires (zone 1). Comparisons drawn with records from Antarctica, New Zealand, Tasmania, and the subantarctic islands demonstrate broadly uniform conditions in the circumpolar Southern Hemisphere. The influences of continental and maritime antarctic air masses were apparently considerable in Tierra del Fuego during cold late-glacial time, whereas Holocene climate was largely regulated by interplay between maritime polar and maritime tropical air.  相似文献   

3.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

4.
Vegetation and climate during the last glacial maximum in Japan   总被引:1,自引:0,他引:1  
The Japanese Archipelago was almost entirely covered by coniferous forests during the last glacial maximum. Northern Hokkaido was distinguished by coniferous parkland and tundra vegetation, while southern Hokkaido and northernmost Honshu were covered by northern boreal coniferous forests consisting mainly of Picea jezoensis, Picea glehnii, Abies sachalinensis, and Larix gmelinii; Tsuga was missing from the forest. More diverse boreal forests including species from Sakhalin and northern Japan grew together in northeastern Honshu. Central Honshu and the mountains of southwestern Japan supported subalpine coniferous forests which are now mainly restricted in distribution to the central mountains. Temperate coniferous forests (Picea polita, Abies firma, and Tsuga sieboldii) existed principally in the modern mid-temperate and evergreen laurel-oak forest regions. Haploxylon pine and tree birch were also abundant in the boreal and cool-temperate zones, as was Diploxylon in the southern temperate zone. Significant populations of Fagus were found along the Pacific coasts of Kyushu and Shikoku, but they were too small to be defined as a beech forest zone. Quercetum mixtum (Quercus, Ulmus, and Tilia) was more common in the coastal lowlands of southwestern Japan than those of northeastern Honshu; it was completely eliminated from Hokkaido. The reduced mean August temperature inferred from the floral assemblages showed a latitudinal gradient 20,000 yr ago; it was 8–9°C in northern Hokkaido, 7.7–8.7°C in northernmost Honshu, 7.2–8.4°C in the central mountains, 6.5°C in the Chugoku District, and 5–6°C in Kyushu. The probable annual precipitation ranged from 1050 to 1300 mm along coasts in southwestern Japan during the culmination of the last glaciation.  相似文献   

5.
《Quaternary Science Reviews》2007,26(3-4):517-535
A pollen profile from Okarito Pakihi Bog in south Westland, New Zealand extending from near present back to Marine Isotope Stage (MIS) 6 provides a continuous record of vegetation and climate change for the past two glacial cycles. Independent chronological control was obtained by AMS radiocarbon dating of organic sediments in the upper part of the sequence and OSL dating of inorganic silts in the lower part, with a unique tie point provided by the ca 26.5 cal ka Kawakawa Tephra. As was probably a common occurrence in this region, the basin developed as a moraine-dammed proglacial lake and remained lacustrine until the early Holocene, when a peat bog developed. Survival of the depositional site through subsequent multiple ice advances, unusual in a glaciated landscape, was probably assisted by lateral displacement of the basin relative to its source area, across the Alpine Fault.There is good correspondence between inferred periods of substantial treeline depression in the pollen profile and the record for ice advance in this region. More cooling events are evident in the pollen record, however, presumably due to the fragmentary nature of glacial geomorphology. The pollen record also shows broad consistency with the MIS record and hence with the Milankovitch orbital forcing model, but with some departures, including an early onset to the last glacial maximum (LGM). Several sub-Milankovitch scale events are also evident, including a mid-LGM warming and Lateglacial reversals during both the last and the penultimate deglaciation.  相似文献   

6.
A vegetation map reconstructed for the Japanese Archipelago (based upon pollen data from 28 sites and plant macrofossil data from 33 sites) at the time of last glacial maximum shows that coniferous forests covered extensive areas of the land. Boreal conifer forests (dominated by the Picea jezoensis complex, P. glehnii, Abies sachalinensis, A. mariesii, Tsuga diversifolia, and Pinus with Larix gmelinii, though the latter species was confined only to the northern part of northeastern Honshu and Hokkaido) occupied the modern cool-temperature deciduous broadleaf and mid-temperate conifer forest zones, and temperate coniferous forests (mainly Picea maximowiczii, P. polita, P. bicolor, P. koyamai, Abies firma, A. homolepis, Tsuga sieboldii, and Pinus), the present warm-temperate evergreen (laurilignosa) forest zone. Small populations of various broadleaf forest species were scattered in the full-glacial temperate conifer forest mainly along the coastal belt, and the true laurilignosa forest was limited in distribution, occurring only in the paleo-Yaku Peninsula.  相似文献   

7.
Integrated analyses of magnetic, geochemical and textural data on six cores from the northwestern Iberian continental shelf allowed the reconstruction of the paleoenvironmental evolution of this area since the last glacial maximum (LGM). Four sedimentary units were identified, representing a succession from fluvial and subaerial settings to high and finally low-energy marine deposits subsequent to the post-LGM sea-level rise. The uppermost unit was deposited during the Holocene and its magnetic properties were controlled by the interplay between detrital input and early diagenetic reductive dissolution of magnetic minerals. Identification of a primary steady-state early diagenetic signal allowed the recognition of periods of increased detrital input, bounded by intervals of lower detrital input and intensified reductive diagenesis related to intensified upwelling in the area. These paleoenvironmental alternations are consistent with the climatic evolution of the late Holocene. During the Roman Warm Period and Medieval Warm Period, the combined effect of greater humidity and intense agricultural and mining activities led to a greater erosion and transport of detrital sediments to the shelf. In contrast, enhanced diagenetic reduction intervals, caused by upwelling intensification, were roughly coincident with the colder Dark Ages and the Little Ice Age.  相似文献   

8.
An attempt is made to show that the change of angular momentum of the earth, caused by glaciations, may compensate the slowing down effect from tidal friction forces and even reverse the polarity in the terrestrial magnetic field.  相似文献   

9.
Whether or not tropical climate fluctuated in synchrony with global events during the Late Pleistocene is a key problem in climate research. However, the timing of past climate changes in the tropics remains controversial, with a number of recent studies reporting that tropical ice age climate is out of phase with global events. Here, we present geomorphic evidence and an in-situ cosmogenic 3He surface-exposure chronology from Nevado Coropuna, southern Peru, showing that glaciers underwent at least two significant advances during the Late Pleistocene prior to Holocene warming. Comparison of our glacial-geomorphic map at Nevado Coropuna to mid-latitude reconstructions yields a striking similarity between Last Glacial Maximum (LGM) and Late-Glacial sequences in tropical and temperate regions.Exposure ages constraining the maximum and end of the older advance at Nevado Coropuna range between 24.5 and 25.3 ka, and between 16.7 and 21.1 ka, respectively, depending on the cosmogenic production rate scaling model used. Similarly, the mean age of the younger event ranges from 10 to 13 ka. This implies that (1) the LGM and the onset of deglaciation in southern Peru occurred no earlier than at higher latitudes and (2) that a significant Late-Glacial event occurred, most likely prior to the Holocene, coherent with the glacial record from mid and high latitudes. The time elapsed between the end of the LGM and the Late-Glacial event at Nevado Coropuna is independent of scaling model and matches the period between the LGM termination and Late-Glacial reversal in classic mid-latitude records, suggesting that these events in both tropical and temperate regions were in phase.  相似文献   

10.
A pollen record from the Huelmo site (ca. 41°30′S) shows that vegetation and climate changed at millennial time‐scales during the last glacial to Holocene transition in the mid‐latitude region of western South America. The record shows that a Nothofagus parkland dominated the landscape between 16 400 and 14 600 14C yr BP, along with Magellanic Moorland and cupressaceous conifers. Evergreen North Patagonian rainforest taxa expanded in pulses at 14 200 and 13 000 14C yr BP, following a prominent rise in Nothofagus at 14 600 14C yr BP. Highly diverse, closed canopy rainforests dominated the lowlands between 13 000 and 12 500 14C yr BP, followed by the expansion of cold‐resistant podocarps and Nothofagus at ca. 12 500 and 11 500 14C yr BP. Local disturbance by fire favoured the expansion of shade‐intolerant opportunistic taxa between 10 900 and 10 200 14C yr BP. Subsequent warming pulses at 10 200 and 9100 14C yr BP led to the expansion of thermophilous, summer‐drought resistant Valdivian rainforest trees until 6900 14C yr BP. Our results suggest that cold and hyperhumid conditions characterised the final phase of the Last Glacial Maximum (LGM), between 16 400 and 14 600 14C yr BP. The last ice age Termination commenced with a prominent warming event that led to a rapid expansion of North Patagonian trees and the abrupt withdrawal of Andean ice lobes from their LGM positon at ca. 147 000 14C yr BP. Hyperhumid conditions prevailed between 16 400 and 13 000 14C yr BP, what we term the ‘extreme glacial mode’ of westerly activity. This condition was brought about by a northward shift and/or intensification of the southern westerlies. The warmest/driest conditions of the last glacial–interglacial transition occurred between 9100 and 6900 14C yr BP. During this period, the westerlies shifted to an ‘extreme interglacial mode’ of activity, via a poleward migration of stormtracks. Our results indicate that a highly variable climatic interval lasting 5500 14C years separate the opposite extremes of vegetation and climate during the last glacial‐interglacial cycle, i.e. the end of the LGM and the onset of the early Holocene warm and dry period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Many studies have documented the existence of millennial-scale variability in the Earth system during the last glacial period. An increasing number of studies document the occurrence of similar millennial variability during glacial periods previous to the last one. Here we use the simplest possible thermal-bipolar seesaw model to consider this variability for the last four glacial periods. We invert this model and use the high-pass filtered Vostok stable isotope records to make a first, tentative, attempt to estimate high-latitude N. Hemisphere temperature variability over the last four glacial periods, beyond the reach of Greenland ice-core records. The model result is compared against the Vostok methane record, which shows rapid variations in parallel to Greenland temperature records during the last glacial period. A further comparison is carried out against the planktonic oxygen isotope of north Atlantic core ODP 980. There is agreement between the records on the existence of similar millennial-scale variability during the last three glacial periods with very similar characteristics to the variability during the last glacial cycle.  相似文献   

12.
Pb isotopes have been measured in the clay-size fraction of Late Glacial and Holocene deep-sea sediments recovered from two Labrador Sea piston cores that have been previously analyzed for Nd isotopes. The newly acquired Pb isotopic data allow us to better constrain the different source areas that supplied clay-size material during the last deglaciation, until 8.6 kyr (calendar ages). Nd-Pb data can be modeled mainly as a mixture between a Precambrian crust and Lower Paleozoic material originating from the denudation of the pan-African orogen. The old material originates mainly from the Archean, Lower Proterozoic, or both terranes of Greenland (and also probably corresponding terranes of Labrador), although minor input of other Precambrian material is recorded in some detrital carbonate-rich deglacial samples from Orphan Knoll. The Phanerozoic crustal end member consists of sediment material mainly originating from northwestern Europe. This source area is found to be the only significant source of young crustal material in early Holocene sediments from the Greenland Rise. No significant input from the mid-Atlantic volcanism is apparent. This study puts further constraints on the deep circulation pattern during the last deglaciation. It is concluded that at that time, European Phanerozoic material was carried from the Norwegian Sea through the Wyville Thompson Ridge into the Iceland Basin by the North East Atlantic Deep Water. No evidence for an overflow is found either south of the Iceland (Iceland-Scotland Ridge) or through the Denmark Strait.  相似文献   

13.
The glacial history of the Tagliamento morainic amphitheater (southeastern Alpine foreland, Italy) during the last glacial maximum (LGM) has been reconstructed by means of a geological survey and drillings, radiocarbon dating and pollen analysis in the amphitheater and in the sandur. Two phases of glacial culmination, separated by a distinct recession, are responsible for glacial landforms and related sediments in the outer part of the amphitheater. The age of the younger advance fits the chronology of the culmination of the last glaciation in the Alps, well established between 24 and 21 cal ka BP (20 to 17.5 14C ka BP), whereas the first pulse between 26.5 and 23 cal ka BP (22 to 21 14C ka BP), previously undated, was usually related to older (pre-LGM) glaciations by previous authors. Here, the first pulse is the most extensive LGM culmination, but is often buried by the subsequent pulse. The onset and final recession of the late Würm Alpine glaciation in the Tagliamento amphitheater are synchronous with the established global glacial maximum between 30 and 19 cal ka BP. The two-fold LGM glacial oscillation is interpreted as a millennial-scale modulation within the late Würm glaciation, caused by oscillations in inputs of southerly atmospheric airflows related to Dansgaard-Oeschger cycles. Phases of enhanced southerly circulation promoted increased rainfall and ice accumulation in the southern Alps.  相似文献   

14.
西藏纳木错末次盛冰期以来的古植被、古气候和湖面变化   总被引:8,自引:4,他引:4  
西藏纳木错湖相沉积的U系、14C年龄和孢粉分析结果表明,纳木错沿岸的拔湖约1.5~8.3m和8.3~15.6m的T1和T2分别形成于末次盛冰期以来约(11.81±0.10)~(4.22±0.09)kaB.P.期间和(28.2±2.8)kaB.P.左右.该套湖相层的孢粉组合、地层和湖岸堤的分布表明,在末次盛冰期期间,纳木错湖面主要波动于拔湖12~20 m之间,但湖面最低可达拔湖约8m.区域植被主要为以蒿和莎草科为主、含松和桦的草原.在约11.8~4.2ka B.P.期间,湖面波动于拔湖2~9m之间,区域气候整体较为暖湿.其中全新世大暖期出现在约8.4~4.2 ka B.P.期间,气候温暖湿润,区域出现针叶林或针阔叶混交林,气温可能比现今高约5℃,降水量可能比现今多100~200mm,湖面扩张并升高,最高可达拔湖约10m.  相似文献   

15.
西藏纳木错湖相沉积的U系、14C年龄和孢粉分析结果表明,纳木错沿岸的拔湖约1.5~8.3m和8.3~15.6m的T1和T2分别形成于末次盛冰期以来约(11.81±0.10)~(4.22±0.09)kaB.P.期间和(28.2±2.8)kaB.P.左右。该套湖相层的孢粉组合、地层和湖岸堤的分布表明,在末次盛冰期期间,纳木错湖面主要波动于拔湖12~20m之间,但湖面最低可达拔湖约8m。区域植被主要为以蒿和莎草科为主、含松和桦的草原。在约11.8~4.2kaB.P.期间,湖面波动于拔湖2~9m之间,区域气候整体较为暖湿。其中全新世大暖期出现在约8.4~4.2kaB.P.期间,气候温暖湿润,区域出现针叶林或针阔叶混交林,气温可能比现今高约5℃,降水量可能比现今多100~200mm,湖面扩张并升高,最高可达拔湖约10m。  相似文献   

16.
During the last glacial maximum (LGM), glaciers existed in scattered mountainous locations in central Europe between the major ice masses of Fennoscandia and the Alps. A positive degree-day glacier mass-balance model is used to constrain paleo-climate conditions associated with reconstructed LGM glacier extents of four central European upland regions: the Vosges Mountains, the Black Forest, the Bavarian Forest, and the Giant Mountains. With reduced precipitation (25–75%), reflecting a drier LGM climate, the modeling yields temperature depressions of 8–15°C. To reproduce past glaciers more severe cooling is required in the west than in the east, indicating a strong west–east temperature anomaly gradient.  相似文献   

17.
An assemblage of land snails from an aeolianite deposit on the coast of the southern Greek island of Andikithira is shown to date to 16 000 yr BP and thus represents the period of the last glacial maximum (LGM; Oxygen Isotope Stage 2). The assemblage has no modern analogue. Five of the ten species are extinct on the island and some of these now live only at high elevations (> 950 m). Significantly cooler temperatures, some 5-8°C below present, and slightly drier moisture conditions (lower rainfall, partially offset by reduced evapotranspiration at the lower temperature) are inferred. The large temperature depression at the LGM, well documented in northern and central Europe, extended also to the Mediterranean climate of southern Europe. Late Quaternary climatic changes had a considerable impact on the fauna of this isolated island.  相似文献   

18.
High‐resolution pollen, plant macrofossil and sedimentary analyses from early Holocene lacustrine sediments on the Faroe Islands have detected a significant vegetation perturbation suggesting a rapid change in climate between ca. 10 380 cal. yr BP and the Saksunarvatn ash (10 240±60 cal. yr BP). This episode may be synchronous with the decline in δ18O values in the Greenland ice‐cores. It also correlates with a short, cold event detected in marine cores from the North Atlantic that has been ascribed to a weakening of thermohaline circulation associated with the sudden drainage of Lake Agassiz into the northwest Atlantic, or, alternatively, a period with distinctly decreased solar forcing. The vegetation sequence begins at ca. 10 500 cal. yr BP with a succession from tundra to shrub‐tundra and increasing lake productivity. Rapid population increases of aquatic plants suggest high summer temperatures between 10 450 and 10 380 cal. yr BP. High pollen percentages, concentrations and influx of Betula, Juniperus and Salix together with macrofossil leaves indicate shrub growth around the site during the initial phases of vegetation colonisation. Unstable conditions followed ca. 10 380 cal. yr BP that changed both the upland vegetation and the aquatic plant communities. A decrease in percentage values of shrub pollen is recorded, with replacement of both aquatics and herbaceous plants by pioneer plant communities. An increase in total pollen accumulation rates not seen in the concentration data suggests increased sediment delivery. The catchment changes are consistent with less seasonal, moister conditions. Subsequent climatic amelioration reinitiated a warmth‐driven succession and catchment stabilisation, but retained high precipitation levels influencing the composition of the post‐event communities. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The Rocks loess section, in unglaciated western Kentucky, provides a high-resolution environmental record during the last glacial maximum onset. The Peoria Silt (9 m thick) contains 26 terrestrial gastropod species, with up to 15 species within a single 5 cm interval. Thirteen radiocarbon ages, using shells or charcoal, range between 30 and 24.5 cal ka; younger loess has been leached or eroded. Stratigraphic shifts in gastropod assemblages imply significant cooling, particularly ~27 cal ka, as solar insolation was decreasing and the southern Laurentide Ice Sheet rapidly advancing. Midwestern to southern species (e.g. Anguispira kochi, Gastrocopta pentodon, Hawaii miniscula, Helicodiscus parallelus, Vallonia perspectiva) occur only in the lowermost Peoria Silt (~30–27 cal ka). In contrast, cold-tolerant species (Columella alticola, Vertigo modesta, Vallonia gracilicosta) occur only in full glacial Peoria Silt (27–24.5 cal ka). Inferred mean July temperatures, from mutual climatic range methods, range from ~23 °C at 30 cal ka, cooling to ~18 °C by 26 cal ka; about 3–8 °C cooler than today (~26 °C). Superimposed on this cooling trend are multi-centennial variations in detrital carbonate, fossil shell concentrations, palaeotemperature estimates, and oxygen isotope values (Vertigo, Discus, Helicodiscus). The finer-scale variations imply relatively synchronous fluctuations in glacial sediment supply, loess sedimentation, and climate.  相似文献   

20.
Brenda L. Hall   《Quaternary Science Reviews》2009,28(21-22):2213-2230
A history of Holocene glaciation in the Antarctic and sub-Antarctic affords insight into questions concerning present and future ice-sheet and mountain-glacier behavior and global climate and sea-level change. Existing records permit broad correlation of Holocene ice fluctuations within the region. In several areas, ice extent was less than at present in mid-Holocene time. An important exception to this is the West Antarctic Ice Sheet, which has undergone continued recession throughout the Holocene, probably in response to internal dynamics. The first Neoglacial ice advances occurred at 5.0 ka, although some sites (e.g., western Ross Sea) lack firm evidence for glacial expansion at that time. Glaciers in all areas underwent renewed growth in the past millennium, and most have subsequently undergone recession in the past 50 years, ranging from near-catastrophic in parts of the Antarctic Peninsula to minor in the western Ross Sea region and sections of East Antarctica. This magnitude difference likely reflects the much greater warming that is taking place in the Antarctic Peninsula region today as compared to East Antarctica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号