共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary. Results from several recent studies suggest that there are lateral heterogeneities of up to a few per cent in the lowermost 150–200 km of the mantle (Bullen's D " region). Inferred anomaly sizes span the range from less than 50 km to greater than 1000 km.
In this study differences in the velocity structure among regions at the base of the mantle were inferred from an analysis of amplitude ratios of PKPAB and PKPDF for given earthquake-station pairs at distances greater than 155° (Sacks, Snoke & Beach). We distinguish two kinds of regions: A (anomalous) regions in which the mean, median and spread in AB/DF amplitude ratios are significantly higher (> 50 per cent) than for a reference radial earth model and N (normal) regions in which the distribution of the amplitude ratios is as expected.
The AB branch has near-grazing incidence to the core and therefore maximum sensitivity to velocity structure compared to the near-normal incident DF phases. Using an iterative, forward-modelling approach, we have determined general characteristics of the velocity structure for regions at the base of the mantle which can produce amplitude-ratio distributions similar to those for an A region. Agreement between model and data is obtained over the period range from 0.5 s to greater than 10 s using a laterally heterogeneous model for the D " region. the model consists of cells which are 200 km in lateral extent with velocity variations of up to ±1 per cent. This structure is modulated by a region-wide (1000km) perturbation which increases smoothly from zero at the edges of the region to a negative 1 per cent at the centre. Small cells (∼40 km) cannot produce anomalously large amplitude, long-period AB arrivals, and larger cells (∼1000km) cannot match the observed scatter. the ∼200 km scale anomalies could be small-scale convection cells confined to the D " region. 相似文献
In this study differences in the velocity structure among regions at the base of the mantle were inferred from an analysis of amplitude ratios of PKPAB and PKPDF for given earthquake-station pairs at distances greater than 155° (Sacks, Snoke & Beach). We distinguish two kinds of regions: A (anomalous) regions in which the mean, median and spread in AB/DF amplitude ratios are significantly higher (> 50 per cent) than for a reference radial earth model and N (normal) regions in which the distribution of the amplitude ratios is as expected.
The AB branch has near-grazing incidence to the core and therefore maximum sensitivity to velocity structure compared to the near-normal incident DF phases. Using an iterative, forward-modelling approach, we have determined general characteristics of the velocity structure for regions at the base of the mantle which can produce amplitude-ratio distributions similar to those for an A region. Agreement between model and data is obtained over the period range from 0.5 s to greater than 10 s using a laterally heterogeneous model for the D " region. the model consists of cells which are 200 km in lateral extent with velocity variations of up to ±1 per cent. This structure is modulated by a region-wide (1000km) perturbation which increases smoothly from zero at the edges of the region to a negative 1 per cent at the centre. Small cells (∼40 km) cannot produce anomalously large amplitude, long-period AB arrivals, and larger cells (∼1000km) cannot match the observed scatter. the ∼200 km scale anomalies could be small-scale convection cells confined to the D " region. 相似文献
3.
4.
5.
The concept of a deformation of a simple, non-rotating, spherically symmetric earth model with a fluid outer core, although it is a highly artificial physical situation, provides a useful computational algorithm that allows one lo determine analytically modes of vibration without any Love-number theory. In particular, on these analytically determined modes, we impose regularity conditions at the centre and boundary conditions at the surface, as well as conditions of continuity at the inner-core-outer-core boundary and at the core-mantle boundary. They lead to an eigenvalue equation for the frequency of oscillation. The range of frequencies obtained in this way for different earth models gives an indication of the influence of compressibility and non-homogeneity on the spectrum of eigenfrequencies. 相似文献
6.
Cooling the core and mantle by plume and plate flows 总被引:2,自引:0,他引:2
Geoffrey F. Davies 《Geophysical Journal International》1993,115(1):132-146
7.
8.
Generalized Maxwell bodies and estimates of mantle viscosity 总被引:1,自引:0,他引:1
G. Müller 《Geophysical Journal International》1986,87(3):1113-1141
9.
A 2-D time-dependent finite-difference numerical model is used to investigate the thermal character and evolution of a convecting layer which is cooling as it convects. Two basic cooling modes are considered: in the first, both upper and lower boundaries are cooled at the same rate, while maintaining the same temperature difference across the layer; in the second, the lower boundary temperature decreases with time while the upper boundary temperature is fixed at 0°C. The first cooling mode simulates the effects of internal heating while the second simulates planetary cooling as mantle convection extracts heat from, and thereby cools, the Earth's core. The mathematical analogue between the effects of cooling and internal heating is verified for finite-amplitude convection. It is found that after an initial transient period the central core of a steady but vigorous convection cell cools at a constant rate which is governed by the rate of cooling of the boundaries and the viscosity structure of the layer. For upper-mantle models the transient stage lasts for about 30 per cent of the age of the Earth, while for the whole mantle it lasts for longer than the age of the Earth. Consequently, in our models the bulk cooling of the mantle lags behind the cooling of the core-mantle boundary. Models with temperature-dependent viscosity are found to cool in the same manner as models with depth-dependent viscosity; the rate of cooling is controlled primarily by the horizontally averaged variation of viscosity with depth. If the Earth's mantle cools in a similar fashion, secular cooling of the planet may be insensitive to lateral variations of viscosity. 相似文献
10.
Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus 总被引:5,自引:0,他引:5
Plates are an integral part of the convection system in the fluid mantle, but plate boundaries are the product of brittle faulting and plate motions are strongly influenced by the existence of such faults. The conditions for plate tectonics are studied by considering brittle behaviour, using Byerlee's law to limit the maximum stress in the lithosphere, in a mantle convection model with temperature-dependent viscosity.
When the yield stress is high, convection is confined below a thick, stagnant lithosphere. At low yield stress, brittle deformation mobilizes the lithosphere which becomes a part of the overall circulation; surface deformation occurs in localized regions close to upwellings and downwellings in the system. At intermediate levels of the yield stress, there is a cycling between these two states: thick lithosphere episodically mobilizes and collapses into the interior before reforming.
The mobile-lid regime resembles convection of a fluid with temperature-dependent viscosity and the boundary-layer scalings are found to be analogous. This regime has a well defined Nusselt number–Rayleigh number relationship which is in good agreement with scaling theory. The surface velocity is nearly independent of the yield stress, indicating that the 'plate' motion is resisted by viscous stresses in the mantle.
Analysis suggests that mobilization of the Earth's lithosphere can occur if the friction coefficient in the lithosphere is less than 0.03–0.13—lower than laboratory values but consistent with seismic field studies. On Venus, the friction coefficient may be high as a result of the dry conditions, and brittle mobilization of the lithosphere would then be episodic and catastrophic. 相似文献
When the yield stress is high, convection is confined below a thick, stagnant lithosphere. At low yield stress, brittle deformation mobilizes the lithosphere which becomes a part of the overall circulation; surface deformation occurs in localized regions close to upwellings and downwellings in the system. At intermediate levels of the yield stress, there is a cycling between these two states: thick lithosphere episodically mobilizes and collapses into the interior before reforming.
The mobile-lid regime resembles convection of a fluid with temperature-dependent viscosity and the boundary-layer scalings are found to be analogous. This regime has a well defined Nusselt number–Rayleigh number relationship which is in good agreement with scaling theory. The surface velocity is nearly independent of the yield stress, indicating that the 'plate' motion is resisted by viscous stresses in the mantle.
Analysis suggests that mobilization of the Earth's lithosphere can occur if the friction coefficient in the lithosphere is less than 0.03–0.13—lower than laboratory values but consistent with seismic field studies. On Venus, the friction coefficient may be high as a result of the dry conditions, and brittle mobilization of the lithosphere would then be episodic and catastrophic. 相似文献
11.
12.
13.
14.
Geoffrey F. Davies 《Geophysical Journal International》1986,84(1):153-183
Summary. Numerical convection models are presented in which plates are simulated by imposing piecewise constant horizontal velocities on the upper boundary. A 4 × 1 box of constant viscosity fluid and two-dimensional (2-D) flow is assumed. Four heating modes are compared: the four combinations of internal or bottom heating and prescribed bottom temperature or heat flux. The case with internal heating and an isothermal base is relevant to lower mantle or whole mantle convection, and it yields a lower thermal boundary layer which is laterally variable and can be locally reversed, corresponding to heat flowing back into the core locally. When scaled to the whole mantle, the surface deflections and gravity and geoid perturbations calculated from the models are comparable to those observed at the Earth's surface. For models with migrating ridges and trenches, the flow structure lags well behind the changing surface 'plate'configurations. This may help to explain the poor correlation between the main geoid features and plate boundaries. Trench migration substantially affects the dip of the cool descending fluid because of induced horizontal shear in the vicinity of the trench. Such shear is small for whole mantle convection, but is large for upper mantle convection, and would probably result in the Tonga Benioff zone dipping to the SE, opposite to the observed dip, for the case of upper mantle convection. 相似文献
15.
16.
17.
18.
19.
Michael S. Thorne Thorne Lay Edward J. Garnero Gunnar Jahnke † Heiner Igel 《Geophysical Journal International》2007,170(2):635-648
We use an axisymmetric, spherical Earth finite difference algorithm to model SH -wave propagation through cross-sections of laterally varying lower mantle models beneath the Cocos Plate derived from recent data analyses. Synthetic seismograms with dominant periods as short as 4 s are computed for several models: (1) a D" reflector 264 km above the core–mantle boundary with laterally varying S -wave velocity increases of 0.9–2.6 per cent, based on localized structures from a 1-D double-array stacking method; (2) an undulating D" reflector with large topography and uniform velocity increase obtained using a 3-D migration method and (3) cross-sections through the 3-D mantle S -wave velocity tomography model TXBW. We apply double-array stacking to assess model predictions of data. Of the models explored, the S -wave tomography model TXBW displays the best overall agreement with data. The undulating reflector produces a double Scd arrival that may be useful in future studies for distinguishing between D" volumetric heterogeneity and D" discontinuity topography. Synthetics for the laterally varying models show waveform variability not observed in 1-D model predictions. It is challenging to predict 3-D structure based on localized 1-D models when lateral structural variations are on the order of a few wavelengths of the energy used, particularly for the grazing geometry of our data. Iterative approaches of computing synthetic seismograms and adjusting model characteristics by considering path integral effects are necessary to accurately model fine-scale D" structure. 相似文献