首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a new model for the chemical evolution of elliptical galaxies taking into account SN feedback, detailed nucleosynthesis and galactic winds. We discuss the effect of galactic winds on the chemical enrichment of the ICM and compute the energy per particle injected by the galaxies into the ICM. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
X-ray observations of galaxy clusters have shown that the intra-cluster gas has iron abundances of about one-third of the solar value. These observations also show that part (if not all) of the intra-cluster gas metals was produced within the member galaxies. We present a systematic analysis of 20 galaxy clusters to explore the connection between the iron mass and the total luminosity of early- and late-type galaxies, and of the brightest cluster galaxies (BCGs). From our results, the intra-cluster medium (ICM) iron mass seems to correlate better with the luminosity of the BCGs than with that of the red and blue galaxy populations. As the BCGs cannot produce alone the observed amount of iron, we suggest that ram-pressure plus tidal stripping acts together to enhance, at the same time, the BCG luminosities and the iron mass in the ICM. Through the analysis of the iron yield, we have also estimated that SN Ia are responsible for more than 50 per cent of the total iron in the ICM. This result corroborates the fact that ram-pressure contributes to the gas removal from galaxies to the ICM, being very efficient for clusters in the temperature range  2 < kT (keV) < 10  .  相似文献   

3.
There is growing evidence that the active galactic nuclei (AGN) associated with the central elliptical galaxy in clusters of galaxies are playing an important role in the evolution of the intracluster medium (ICM) and clusters themselves. We use high-resolution three-dimensional simulations to study the interaction of the cavities created by AGN outflows (bubbles) with the ambient ICM. The gravitational potential of the cluster is modelled using the observed temperature and density profiles of the Virgo cluster. We demonstrate the importance of the hydrodynamical Kutta–Zhukovsky forces associated with the vortex ring structure of the bubbles, and discuss possible effects of diffusive processes on their evolution.  相似文献   

4.
We measured metal abundances of the intracluster medium in the central regions of 34 nearby clusters of galaxies, using ASCA data. Clusters that have a sharp X-ray emission centred on a cD galaxy are commonly found to exhibit a central increment in the Fe abundance, which is more pronounced in lower temperature clusters; +(0.1–0.2) solar at kT >5 keV, compared with +(0.2–0.3) solar at 1.5< kT <4 keV. These central excess metals are thought to be ejected from cD galaxies. Several low-temperature cD type clusters also show significant Si abundance increase by +(0.1–0.2) solar at the central region. Compared with the Si-rich abundances observed in the outer regions of rich clusters, the Si to Fe abundance ratio of central excess metals tends to be near the solar ratio, implying that type Ia products from cD galaxies are dominant for the central excess metals. On the other hand, some other clusters do not show the central Fe abundance increase. As these clusters tend to contain two or three central giant galaxies, it is suggested that galaxy interactions have removed the central abundance increase.  相似文献   

5.
We have examined the effects of the ultraviolet background radiation (UVB) on the colour–magnitude relation (CMR) of elliptical galaxies in clusters of galaxies in the hierarchical clustering scenario by using a semi-analytic model of galaxy formation. In our model the UVB photoionizes gas in dark haloes and suppresses the cooling of the diffuse hot gas on to galaxy discs. By using a semi-analytic model without the effect of the UVB, Kauffmann & Charlot found that the CMR can be reproduced by strong supernova heating because such supernova feedback suppresses the chemical enrichment in galaxies, especially for small galaxies. We find that the CMR also becomes bluer because of the UVB, in a different way from the effect of supernova feedback. While supernova feedback suppresses the chemical enrichment by a similar mechanism to galactic winds, the UVB suppresses the cooling of the hot gas. This induces suppression of the metallicity of the intracluster medium (ICM). In our model we find that the existence of the UVB can plausibly account for an observed ICM metallicity that is equal to nearly 0.3 times the solar value, and that in this case we can reproduce the CMR and the metallicity of the ICM simultaneously.  相似文献   

6.
We have constructed an analytical model of active galactic nuclei (AGN) feedback and studied its implications for elliptical galaxies and galaxy clusters. The results show that momentum injection above a critical value will eject material from low-mass elliptical galaxies, and leads to an X-ray luminosity, L X, that is  ∝σ8−10  , depending on the AGN fuelling mechanism, where σ is the velocity dispersion of the hot gas. This result agrees well with both observations and semi-analytic models. In more massive ellipticals and clusters, AGN outflows quickly become buoyancy dominated. This necessarily means that heating by a central cluster AGN redistributes the intracluster medium (ICM) such that the mass of hot gas, within the cooling radius, should be  ∝ L X(< r cool)/[ g ( r cool)σ]  , where   g ( r cool)  is the gravitational acceleration at the cooling radius. This prediction is confirmed using observations of seven clusters. The same mechanism also defines a critical ICM cooling time of  ∼0.5 Gyr  , which is in reasonable agreement with recent observations showing that star formation and AGN activity are triggered below a universal cooling time threshold.  相似文献   

7.
We analyse a hydrodynamical simulation model for the recurrent heating of the central intra-cluster medium (ICM) by active galactic nuclei (AGN). Besides the self-gravity of the dark matter and gas components, our approach includes the radiative cooling and photoheating of the gas, as well as a subresolution multiphase model for star formation and supernova feedback. Additionally, we incorporate a periodic heating mechanism in the form of hot, buoyant bubbles, injected into the intragalactic medium (IGM) during the active phases of the accreting central AGN. We use simulations of isolated cluster haloes of different masses to study the bubble dynamics and heat transport into the IGM. We also apply our model to self-consistent cosmological simulations of the formation of galaxy clusters with a range of masses. Our numerical schemes explore a variety of different assumptions for the spatial configuration of AGN-driven bubbles, for their duty cycles and for the energy injection mechanism, in order to obtain better constraints on the underlying physical picture. We argue that AGN heating can substantially affect the properties of both the stellar and gaseous components of clusters of galaxies. Most importantly, it alters the properties of the central dominant (cD) galaxy by reducing the mass deposition rate of freshly cooled gas out of the ICM, thereby offering an energetically plausible solution to the cooling-flow problem. At the same time, this leads to reduced or eliminated star formation in the central cD galaxy, giving it red stellar colours as observed.  相似文献   

8.
We use the Sloan Digital Sky Survey (SDSS) to construct a sample of 625 brightest group and cluster galaxies (BCGs) together with control samples of non-BCGs matched in stellar mass, redshift and colour. We investigate how the systematic properties of BCGs depend on stellar mass and on their privileged location near the cluster centre. The groups and clusters that we study are drawn from the C4 catalogue of Miller et al. but we have developed improved algorithms for identifying the BCG and for measuring the cluster velocity dispersion. Since the SDSS photometric pipeline tends to underestimate the luminosities of large galaxies in dense environments, we have developed a correction for this effect which can be readily applied to the published catalogue data. We find that BCGs are larger and have higher velocity dispersions than non-BCGs of the same stellar mass, which implies that BCGs contain a larger fraction of dark matter. In contrast to non-BCGs, the dynamical mass-to-light ratio of BCGs does not vary as a function of galaxy luminosity. Hence BCGs lie on a different Fundamental Plane than ordinary elliptical galaxies. BCGs also follow a steeper Faber–Jackson relation than non-BCGs, as suggested by models in which BCGs assemble via dissipationless mergers along preferentially radial orbits. We find tentative evidence that this steepening is stronger in more massive clusters. BCGs have similar mean stellar ages and metallicities to non-BCGs of the same mass, but they have somewhat higher α/Fe ratios, indicating that star formation may have occurred over a shorter time-scale in the BCGs. Finally, we find that BCGs are more likely to host radio-loud active galactic nuclei than other galaxies of the same mass, but are less likely to host an optical active galactic nucleus (AGN). The differences we find are more pronounced for the less massive BCGs, i.e. they are stronger at the galaxy group level.  相似文献   

9.
We analyse a sample of 52 000 Milky Way (MW) type galaxies drawn from the publicly available galaxy catalogue of the Millennium Simulation with the aim of studying statistically the differences and similarities of their properties in comparison to our Galaxy. Model galaxies are chosen to lie in haloes with maximum circular velocities in the range 200–250 km s−1 and to have bulge-to-disc ratios similar to that of the MW. We find that model MW galaxies formed 'quietly' through the accretion of cold gas and small satellite systems. Only ≈12 per cent of our model galaxies experienced a major merger during their lifetime. Most of the stars formed ' in situ ', with only about 15 per cent of the final mass gathered through accretion. Supernovae (SNe) and active galactic nuclei (AGN) feedback play an important role in the evolution of these systems. At high redshifts, when the potential wells of the MW progenitors are shallower, winds driven by SNe explosions blow out a large fraction of the gas and metals. As the systems grow in mass, SNe feedback effects decrease and AGN feedback takes over, playing a more important role in the regulation of the star formation activity at lower redshifts. Although model MW galaxies have been selected to lie in a narrow range of maximum circular velocities, they nevertheless exhibit a significant dispersion in the final stellar masses and metallicities. Our analysis suggests that this dispersion results from the different accretion histories of the parent dark matter haloes. Statistically, we also find evidences to support the MW as a typical Sb/Sc galaxy in the same mass range, providing a suitable benchmark to constrain numerical models of galaxy formation.  相似文献   

10.
The dynamical signatures of the interaction between galaxies in clusters and the intracluster medium (ICM) can potentially yield significant information about the structure and dynamical history of clusters. To develop our understanding of this phenomenon we present results from numerical modelling of the galaxy–ICM interaction, as the galaxy moves through the cluster. The simulations have been performed for a broad range of ICM temperatures ( kT cl=1, 4 and 8 keV), representative of poor clusters or groups through to rich clusters.
There are several dynamical features that can be identified in these simulations. For supersonic galaxy motion, a leading bow shock is present, and also a weak gravitationally focused wake or tail behind the galaxy (analogous to Bondi–Hoyle accretion). For galaxies with higher mass replenishment rates and a denser interstellar medium (ISM), the dominant feature is a dense ram-pressure stripped tail. In line with other simulations, we find that the ICM/galaxy–ISM interaction can result in complex time-dependent dynamics, with ram-pressure stripping occurring in an episodic manner.
In order to facilitate this comparison between the observational consequences of dynamical studies and X-ray observations we have calculated synthetic X-ray flux and hardness maps from these simulations. These calculations predict that the ram-pressure stripped tail will usually be the most visible feature, though in nearby galaxies the bow shock preceding the galaxy should also be apparent in deeper X-ray observations. We briefly discuss these results and compare them with X-ray observations of galaxies where there is evidence of such interactions.  相似文献   

11.
The overabundance of Mg relative to Fe, observed in the nuclei of bright ellipticals, and its increase with galactic mass, poses a serious problem for all current models of galaxy formation. Here, we improve on the one-zone chemical evolution models for elliptical galaxies by taking into account positive feedback produced in the early stages of supermassive central black hole growth. We can account for both the observed correlation and the scatter if the observed anti-hierarchical behaviour of the AGN population couples to galaxy assembly and results in an enhancement of the star formation efficiency which is proportional to galactic mass. At low and intermediate galactic masses, however, a slower mode for star formation suffices to account for the observational properties.  相似文献   

12.
We analyse the relation between active galactic nuclei (AGN) host properties and large-scale environment for a representative red and blue AGN host galaxy sample selected from the Data Release 4 Sloan Digital Sky Survey. A comparison is made with two carefully constructed control samples of non-active galaxies, covering the same redshift range and colour baseline. The cross-correlation functions show that the density distribution of neighbours is almost identical for blue galaxies, either active or non-active. Although active red galaxies inhabit environments less dense compared to non-active red galaxies, both reside in environments considerably denser than those of blue hosts. Moreover, the radial density profile of AGN relative to galaxy group centres is less concentrated than galaxies. This is particularly evident when comparing red AGN and non-active galaxies.
The properties of the neighbouring galaxies of blue and red AGN and non active galaxies reflect this effect. While the neighbourhood of the blue samples is indistinguishable, the red AGN environs show an excess of blue-star-forming galaxies with respect to their non-active counterpart. On the other hand, the active and non-active blue systems have similar environments but markedly different morphological distributions, showing an excess of blue early-type AGN, which are argued to be late-stage mergers. This comparison reveals that the observable differences between active red and blue host galaxy properties including star formation history and AGN activity depends on the environment within which the galaxies form and evolve.  相似文献   

13.
By creating and analyzing two dimensional gas temperature and abundance maps of the RGH 80 compact galaxy group with high-quality Chandra data,we detect a high-abundance (■0.7 Z⊙) arc,where the metal abundance is significantly higher than the surrounding regions by ■0.3Z⊙.This structure shows tight spatial correlations with the member galaxy PGC 046529,as well as with the arm-like feature identified on the X-ray image in the previous work of Randall et al.(2009).Since no apparent signature of AGN activity i...  相似文献   

14.
We performed cosmological, magnetohydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields is galactic outflows during the starburst phase of galactic evolution. To do this, we coupled a semi-analytical model for magnetized galactic winds as suggested by Bertone, Vogt & Enßlin to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy cluster fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude that magnetized galactic outflows and their subsequent evolution within the intracluster medium can fully account for the observed magnetic fields in galaxy clusters. Our findings also suggest that measuring cosmological magnetic fields in low-density environments such as filaments is much more useful than observing cluster magnetic fields to infer their possible origin.  相似文献   

15.
We present XMM data for the supercluster A901/2, at   z ∼ 0.17  , which is combined with deep imaging and 17-band photometric redshifts (from the COMBO-17 survey), two degree field (2dF) spectra and Spitzer 24 μm data, to identify active galactic nuclei (AGN) in the supercluster. The 90 ksec XMM image contains 139 point sources, of which 11 are identified as supercluster AGN with   L X(0.5−7.5 keV) > 1.7 × 1041 erg cm−2 s−1  . The host galaxies have   M R < −20  and only two of eight sources with spectra could have been identified as AGN by the detected optical emission lines. Using a large sample of 795 supercluster galaxies, we define control samples of massive galaxies with no detected AGN. The local environments of the AGN and control samples differ at ≳98 per cent significance. The AGN host galaxies lie predominantly in areas of moderate projected galaxy density and with more local blue galaxies than the control sample, with the exception of one very bright type I AGN very near the centre of a cluster. These environments are similar to, but not limited to, cluster outskirts and blue groups. Despite the large number of potential host galaxies, no AGN are found in regions with the highest galaxy density (excluding some cluster cores where emission from the intra-cluster medium obscures moderate luminosity AGN). AGN are also absent from the areas with lowest galaxy density. We conclude that the prevalence of cluster AGN is linked to their environment.  相似文献   

16.
We present the results of a study of galaxy activity in two merging binary clusters (A168 and A1750) using the Sloan Digital Sky Survey (SDSS) data supplemented with the data in the literature. We have investigated the merger histories of A168 and A1750 by combining the results from a two-body dynamical model and X-ray data. In A168, two subclusters appear to have passed each other and to be coming together from the recent maximum separation. In A1750, two major subclusters appear to have started interaction and to be coming together for the first time. We find an enhanced concentration of the galaxies showing star formation (SF) or active galactic nuclei (AGN) activity in the region between two subclusters in A168, which were possibly triggered by the cluster merger. In A1750, we do not find any galaxies with SF/AGN activity in the region between two subclusters, indicating that two major subclusters are in the early stage of merging.  相似文献   

17.
In clusters of galaxies, the reaction of the intracluster medium (ICM) to the motion of the co-existing galaxies in the cluster triggers the formation of unique features, which trace their position and motion. Galactic wakes, for example, are an apparent result of the ICM/galaxy interactions, and they constitute an important tool for deciphering the motion of the cluster galaxies.
In this paper we investigate whether Bondi–Hoyle accretion can create galactic wakes by focusing the ICM behind moving galaxies. The solution of the equations that describe this physical problem provides us with observable quantities along the wake at any time of its lifetime. We also investigate which are the best environmental conditions for the detectability of such structures in the X-ray images of clusters of galaxies.
We find that significant Bondi–Hoyle wakes can only be formed in low-temperature clusters, and that they are more pronounced behind slow-moving, relatively massive galaxies. The scalelength of these elongated structures is not very large: in the most favourable conditions a Bondi–Hoyle wake in a cluster at the redshift of z =0.05 is 12 arcsec long. However, the X-ray emission of the wake is noticeably strong: the X-ray flux can reach ∼30 times the flux of the surrounding medium. Such features will be easily detectable in the X-ray images of nearby, relatively poor clusters of galaxies by the Chandra and XMM-Newton satellites.  相似文献   

18.
Accretion rates on to active galactic nuclei (AGNs) are likely to be extremely variable on short time-scales; much shorter than the typical cooling time of X-ray emitting gas in elliptical galaxies and galaxy clusters. Using the Langevin approach it is shown that, for a simple feedback system, this can induce variability in the AGN power output that is of much larger amplitude, and persists for longer time-scales, than the initial fluctuations. An implication of this is that rich galaxy clusters are expected to show the largest and longest-lived fluctuations. Stochastic variations in the accretion rate also mean that the AGN injects energy across a wide range of time-scales. This allows the AGN to maintain a much closer balance with its surroundings than if it was periodically activated. The possible non-linear correlation between Bondi accretion rate and jet power, found by Allen et al., can be explained if the instantaneous accretion rate, scaled by jet power, varies log-normally. This explanation also implies that the duty cycle of AGN activity increases with the radiative losses of the surroundings, in qualitative agreement with Best et al.  相似文献   

19.
We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation. This model, described in detail by Croton et al. and De Lucia and Blaizot, introduces a 'radio mode' feedback from active galactic nuclei (AGN) at the centre of X-ray emitting atmospheres in galaxy groups and clusters. Thanks to this mechanism, the model can simultaneously explain: (i) the low observed mass dropout rate in cooling flows; (ii) the exponential cut-off in the bright end of the galaxy luminosity function and (iii) the bulge-dominated morphologies and old stellar ages of the most massive galaxies in clusters. This paper is the first of a series in which we investigate how well this model can also reproduce the physical properties of BHs and AGN. Here we analyse the scaling relations, the fundamental plane and the mass function of BHs, and compare them with the most recent observational data. Moreover, we extend the semi-analytic model to follow the evolution of the BH mass accretion and its conversion into radiation, and compare the derived AGN bolometric luminosity function with the observed one. While we find for the most part a very good agreement between predicted and observed BH properties, the semi-analytic model underestimates the number density of luminous AGN at high redshifts, independently of the adopted Eddington factor and accretion efficiency. However, an agreement with the observations is possible within the framework of our model, provided it is assumed that the cold gas fraction accreted by BHs at high redshifts is larger than at low redshifts.  相似文献   

20.
We present an analysis of the X-ray point source populations in 182 Chandra images of galaxy clusters at   z > 0.1  with exposure time >10 ks, as well as 44 non-cluster fields. The analysis of the number and flux of these sources, using a detailed pipeline to predict the distribution of non-cluster sources in each field, reveals an excess of X-ray point sources associated with the galaxy clusters. A sample of 148 galaxy clusters at  0.1 < z < 0.9  , with no other nearby clusters, shows an excess of 230 cluster sources in total, an average of ∼1.5 sources per cluster. The lack of optical data for these clusters limits the physical interpretation of this result, as we cannot calculate the fraction of cluster galaxies hosting X-ray sources. However, the fluxes of the excess sources indicate that over half of them are very likely to be active galactic nuclei (AGN), and the radial distribution shows that they are quite evenly distributed over the central 1 Mpc of the cluster, with almost no sources found beyond this radius. We also use this pipeline to successfully reproduce the results of previous studies, particularly the higher density of sources in the central 0.5 Mpc of a few cluster fields, but show that these conclusions are not generally valid for this larger sample of clusters. We conclude that some of these differences may be due to the sample properties, such as the size and redshift of the clusters studied, or a lack of publications for cluster fields with no excess sources. This paper also presents the basic X-ray properties of the galaxy clusters, and in subsequent papers in this series the dependence of the AGN population on these cluster properties will be evaluated.
In addition the properties of over 9500 X-ray point sources in the fields of galaxy clusters are tabulated in a separate catalogue available online or at http://www.sc.eso.org~rgilmour .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号