首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
长白山天池地区全新世以来火山活动及其特征   总被引:10,自引:0,他引:10  
长白山火山全新世规模最大的喷发活动发生在公元1199-1200年,即800年前的大爆发,被确定为普林尼或布里尼(Plinian)式喷发。这次大爆发形成体积巨大的、分布广泛的以空中降落堆积物为主的火山喷发碎屑堆积物,在长白山火山周围,远至日本都留下了地质记录。文章辨认并划分了这次大爆发火山碎屑物的成因类型:火山喷发空中降落堆积物(airfalltephra)、火山碎屑流(pyroclasticflow)状堆积物和火山泥流(lahar)堆积物,并且点、面结合,近、远和国内、国外兼顾,分析了这些火山碎屑物的主要特征、分布和相互关系,进而确定这些火山碎屑物分别属于两次普林尼式爆发。第1次(早期)普林尼式爆发称赤峰期,火山喷发模式为:普林尼式喷发柱(赤峰空落浮岩层)-火山碎屑流(长白山火山碎屑流层),随即主要由火山碎屑流诱发火山泥流(二道白河火山泥流层);第2次(晚期)普林尼式爆发称园池期,喷发模式为:普林尼式喷发柱(园池空落浮岩火山灰层)-火山碎屑流(冰场火山碎屑流层)。在层序上将气象站期碱流岩置于800年前大爆发火山碎屑物之下是正确的,其时代为晚更新世-全新世早期。  相似文献   

2.
Recent field studies of postglacial volcanic deposits at Glacier Peak indicate the volcano has erupted more often, more voluminously, and more recently than previously thought. These past eruptions produced pyroclastic flows, extensive lahars, and widely distributed tephra falls. Analysis of the magnitude of past eruptions and the distribution of volcanic sediments indicates that future eruptions at Glacier Peak as large as those of the last several thousand years would dramatically affect people and property downstream and downwind from the volcano. Pyroclastic flows and lateral blasts would primarily affect uninhabited valleys within a few tens of kilometers of the volcano. Lahars and floods constitute the major hazard to populated areas from future eruptions, and could affect areas at low elevation along valley floors and in the Puget lowland as far as 100 km downvalley west of the volcano. Air-fall tephra from future eruptions will probably be deposited primarily east of Glacier Peak because of prevailing westerly winds.  相似文献   

3.
长白山火山灾害及其对大型工程建设的影响   总被引:2,自引:0,他引:2  
刘松雪  刘祥 《世界地质》2005,24(3):289-292
长白山火山是世界著名的活火山,历史时期有过多次喷发,有再次爆发的危险.长白山火山最大的一次爆发发生在公元1199-1200年,这次大爆发的火山灰最远到达距其1 000km远的日本北部.依据这次大爆发由火山喷发空中降落堆积物、火山碎屑流和火山泥流造成的巨大火山灾害,预测了长白山火山未来爆发火山灾害的类型、强度和范围,并编制了长白山火山未来爆发火山喷发空中降落堆积物灾害预测图、火山碎屑流灾害预测图和火山泥流灾害预测图.该研究可预防和减轻火山灾害,指导核电站等大型工程选址.  相似文献   

4.
Potential Hazards of Eruptions around the Tianchi Caldera Lake, China   总被引:8,自引:0,他引:8  
Since the eruption of the Tianchi volcano about 1000 years ago, there have been at least 3 to 5 eruptions of small to moderate size. In addition, hazardous avalanches, rock falls and debris flows have occurred during periods between eruptions. A future eruption of the Tianchi volcano is likely to involve explosive interaction between magma and the caldera lake. The volume of erupted magma is almost in a range of 0.1-0.5 km3. Tephra fallout may damage agriculture in a large area near the volcano. If only 1% of the lake water were ejected during an eruption and then precipitated over an area of 200 km2, the average rainfall would be 100 mm. Moreover, lahars are likely to occur as both tephra and water ejected from the caldera lake fall onto flanks of the volcano. Rocks avalanching into the caldera lake also would bring about grave hazards because seiches would be triggered and lake water with the volume equal to that of the landslide would spill out of the existing breach in the caldera and cause flooding  相似文献   

5.
Middle Park, a high‐altitude basin in the Southern Rocky Mountains of north‐central Colorado, contains at least 59 known Paleoindian localities. At Barger Gulch Locality B, an extensive Folsom assemblage (˜10,500 14C yr B.P.) occurs within a buried soil. Radiocarbon ages of charcoal and soil organic matter, as well as stratigraphic positions of artifacts, indicate the soil is a composite of a truncated, latest‐Pleistocene soil and a younger mollic epipedon formed between ˜6000 and 5200 14C yr B.P. and partially welded onto the older soil following erosion and truncation. Radiocarbon ages from an alluvial terrace adjacent to the excavation area indicate that erosion followed by aggradation occurred between ˜10,200 and 9700 14C yr B.P., and that the erosion is likely related to truncation of the latest‐Pleistocene soil. Erosion along the main axis of Barger Gulch occurring between ˜10,000 and 9700 14C yr B.P. was followed by rapid aggradation between ˜9700 and 9550 14C yr B.P., which, along with the erosion at Locality B, coincides with the abrupt onset of monsoonal precipitation following cooling in the region ˜11,000–10,000 14C yr B.P. during the Younger Dryas oscillation. Buried soils dated between ˜9500 and 8000 14C yr B.P. indicate relative landscape stability and soil formation throughout Middle Park. Morphological characteristics displayed by early Holocene soils suggest pedogenesis under parkland vegetation in areas currently characterized by sagebrush steppe. The expansion of forest cover into lower elevations during the early Holocene may have resulted in lower productivity in regards to mammalian fauna, and may partly explain the abundance of early Paleoindian sites (˜11,000–10,000 14C yr B.P., 76%) relative to late Paleoindian sites (˜10,000–8000 14C yr B.P., 24%) documented in Middle Park. © 2005 Wiley Periodicals, Inc.  相似文献   

6.
Jeju Island is a Quaternary shield volcano built upon the Yellow Sea continental shelf off the Korean Peninsula. Decades of borehole drilling reveals that the shield‐forming lavas of the island are underlain by extensive hydrovolcanic deposits (the Seoguipo Formation), which are about 100 m thick and show diverse depositional features. This study provides criteria for distinguishing between hydrovolcanic deposits formed by primary (pyroclastic) and secondary (resedimentation) processes in subaerial and submarine settings based on the observations of several selected cores from the formation. Five facies associations are identified, including: (i) primary hydrovolcanic deposits formed by pyroclastic surges and co‐surge fallouts in tuff rings (facies association PHTR); (ii) primary hydrovolcanic deposits formed by Surtseyan fallout and related pyroclastic transport processes in tuff cones (facies association PHTC); (iii) secondary hydrovolcanic deposits formed by debris flows, hyperconcentrated flood flows, sheet floods and rill flows in subaerial settings (facies association RHAE); (iv) secondary hydrovolcanic deposits formed in submarine settings under the influence of waves, tides and occasional mass flows (facies association RHMAR); and (v) non‐volcaniclastic and fine‐grained deposits formed in nearshore to offshore settings (facies association NVMAR). The primary hydrovolcanic facies associations (PHTR and PHTC) are distinguished from one another on the basis of distinct lithofacies characteristics and vertical sequence profiles. These facies differ from the secondary hydrovolcanic and non‐volcaniclastic facies associations (RHAE, RHMAR and NVMAR) because of their distinctive sedimentary structures, textures and compositions. The depositional processes and settings of some massive and crudely stratified volcaniclastic deposits, which occur in many facies associations, could not be discriminated unambiguously even with microscopic observations. Nevertheless, these facies associations could generally be distinguished because they occur typically in packets or sequences, several metres to tens of metres thick and bounded by distinct stratigraphic discontinuities, and comprise generally distinct sets of lithofacies. The overall characteristics of the Seoguipo Formation suggest that it is composed of numerous superposed phreatomagmatic volcanoes intercalated with marine or non‐marine, volcaniclastic or non‐volcaniclastic deposits. Widespread and continual hydrovolcanic activity, together with volcaniclastic sedimentation, is inferred to have persisted for more than a million years in Jeju Island under the influence of fluctuating Quaternary sea‐levels, before effusion of the shield‐forming lavas. Extensive distribution of hydrovolcanic deposits in the subsurface of Jeju Island highlights that there can be significant differences in the eruption style, growth history and internal structure between shelfal shield volcanoes and oceanic island volcanoes.  相似文献   

7.
Dozens of Paleoindian sites, including the Boca Negra Wash (BNW) Folsom site (LA 124474), are scattered across a basalt plateau (the West Mesa) on the western side of the Albuquerque Basin, and adjacent uplands. The BNW site, like many others in the area, is located near a small (˜60 × 90 m) playa basin that formed in a depression on the basalt surface and was subsequently covered by an eolian sand sheet (Unit 1) dated by OSL to ˜23,000 yr B.P. Most of the basin fill is ˜2 m of playa mud (Units 2 and 3) dating ˜13,970 14C yr B.P. (17,160–16,140 cal yr B.P.) at the sand–mud interface to ˜2810 14C yr B.P. (˜2960–2860 cal yr B.P.) at the top. C/N ratios suggest that the BNW playa basin probably held water more often during the Folsom occupation; stable carbon isotope values indicate C3 vegetation was more common as well, but C4 grasses became dominant in the Holocene. Cores extracted from four playa basins nearby revealed a similar stratigraphy and geochronology, documenting presence of wetlands on playa floors during the Paleoindian occupation of the area. © 2006 Wiley Periodicals, Inc.  相似文献   

8.
The Bandas del Sur Formation preserves a Quaternary extra-calderarecord of central phonolitic explosive volcanism of the LasCañadas volcano at Tenerife. Volcanic rocks are bimodalin composition, being predominantly phonolitic pyroclastic deposits,several eruptions of which resulted in summit caldera collapse,alkali basaltic lavas erupted from many fissures around theflanks. For the pyroclastic deposits, there is a broad rangeof pumice glass compositions from phonotephrite to phonolite.The phonolite pyroclastic deposits are also characterized bya diverse, 7–8-phase phenocryst assemblage (alkali feldspar+ biotite + sodian diopside + titanomagnetite + ilmenite + nosean–haüyne+ titanite + apatite) with alkali feldspar dominant, in contrastto interbedded phonolite lavas that typically have lower phenocrystcontents and lack hydrous phases. Petrological and geochemicaldata are consistent with fractional crystallization (involvingthe observed phenocryst assemblages) as the dominant processin the development of phonolite magmas. New stratigraphicallyconstrained data indicate that petrological and geochemicaldifferences exist between pyroclastic deposits of the last twoexplosive cycles of phonolitic volcanism. Cycle 2 (0·85–0·57Ma) pyroclastic fall deposits commonly show a cryptic compositionalzonation indicating that several eruptions tapped chemically,and probably thermally stratified magma systems. Evidence formagma mixing is most widespread in the pyroclastic depositsof Cycle 3 (0·37–0·17 Ma), which includesthe presence of reversely and normally zoned phenocrysts, quenchedmafic glass blebs in pumice, banded pumice, and bimodal to polymodalphenocryst compositional populations. Syn-eruptive mixing eventsinvolved mostly phonolite and tephriphonolite magmas, whereasa pre-eruptive mixing event involving basaltic magma is recordedin several banded pumice-bearing ignimbrites of Cycle 3. Theperiodic addition and mixing of basaltic magma ultimately mayhave triggered several eruptions. Recharge and underplatingby basaltic magma is interpreted to have elevated sulphur contents(occurring as an exsolved gas phase) in the capping phonoliticmagma reservoir. This promoted nosean–haüyne crystallizationover nepheline, elevated SO3 contents in apatite, and possiblyresulted in large, climatologically important SO2 emissions. KEY WORDS: Tenerife; phonolite; crystal fractionation; magma mixing; sulphur-rich explosive eruptions  相似文献   

9.
ABSTRACT The Cagayan basin of Northern Luzon, an interarc basin 250 km long and 80 km wide, contains a 900 m thick sequence of Plio-Pleistocene fluvial and pyroclastic deposits. These deposits are divided into two formations, the Ilagan and Awidon Mesa, and three lithofacies associations. The facies, which are interpreted as meandering stream, braided stream, lahar, and pyroclastic flow and fall deposits, occur in a coarsening upward sequence. Meandering stream deposits interbedded with tuffs are overlain by braided stream deposits interbedded with coarser pyroclastic deposits; lahars and ignimbrites. The coarsening upward volcaniclastic deposits reflect the tectonic and volcanic evolution of the adjacent Cordillera Central volcanic arc. Uplift of the arc resulted in the progradation of coarser clastics further into the basin, the development of an alluvial fan, and migration of the basin depocentre away from the arc. The coarsening of the pyroclastic deposits reflects the development of a more proximal calc-alkaline volcanic belt in the maturing volcanic arc. The Cagayan basin sediments serve as an example of the type and sequence of non marine volcaniclastic sediments that may form in other interarc basins. This is because the tectonic and volcanic processes which controlled sedimentation in the Cagayan basin also affect other arc systems and will therefore control or significantly influence volcaniclastic sedimentation in other interarc basins.  相似文献   

10.
Late Quaternary rhyolitic tephra units, erupted from the Taupo Volcanic Zone, North Island, New Zealand, were sampled from four stratigraphically correlated sections. Nineteen glass-shard separates from these tephra units were analysed by spark-source mass spectrometry. Data for the rare earth and other trace elements are presented. A statistical analysis of these data suggests an identification and correlation of the samples which is similar to the field-determined stratigraphy.Massive airfall tephra units that have been deposited during a single eruptive episode appeared to be more uniform in elemental concentrations than either multiple-bedded airfall tephra units, or tephra units comprising both airfall and airflow material which were considered to result from multiple-phase eruptions.The rare-earth element chondrite-normalised patterns showed enrichment of the lighter elements compared with the heavier elements. A notable Eu deficiency was recognised which was consistent with the model for enrichment of Eu in the plagioclase feldspars in acidic magma.  相似文献   

11.
Pyroclastic surge is a dilute and turbulent flow of volcanic gas and tephra that is commonly generated during explosive volcanic eruptions and can threaten lives along its flow paths. Assessing its travel distance and delineating future volcanic hazards have therefore been major concerns of volcanologists. Historical eruptions show that most pyroclastic surges travel a few tens of kilometres or less from their sources. Aeolian or aquagene processes have therefore been evoked for the emplacement of supposed surge deposits much beyond this distance. Here we show that a Cretaceous tuff bed in Korea was emplaced by an exceptionally powerful pyroclastic surge that flowed as far as the most powerful pyroclastic flows that formed the low-aspect-ratio ignimbrites (LARI). This has significant implications for interpreting ancient volcanic eruptions and delineating volcanic hazards by pyroclastic surges, and casts intriguing questions on the eruption dynamics and physics of long-runout pyroclastic surges and their distinction from LARI-forming pyroclastic flows.  相似文献   

12.
The intraplate Baegdusan (Changbai) and Ulleung volcanoes located on the border of China, North Korea, and East/Japan Sea, respectively, have been explained by appeals to both hotspots and asthenospheric mantle upwelling (wet plume) caused by the stagnant Pacific plate. To understand the origin of the Baegdusan and Ulleung volcanism, we performed geochemical analyses on the tephra deposits in the East/Japan Sea basins originating from the Baegdusan and Ulleung volcanoes. The volcanic glass in the tephra from the Baegdusan and Ulleung volcanoes ranged from alkaline trachyte to peralkaline rhyolite and from phonolite to trachyte, respectively. The tephra from the two intraplate volcanoes showed highly enriched incompatible elements, such as Tb, Nb, Hf, and Ta, distinct from those of the ordinary arc volcanoes of the Japanese islands. The straddle distribution of the Th/Yb and Ta/Yb ratios of the tephra deposits from the Baegdusan volcano may originate from the alkali basaltic magma resulting from mixing between the wet plume from the stagnant Pacific plate in the transition zone and the overlying shallow asthenospheric mantle. In contrast, the deposits from the Ulleung volcano show a minor contribution of the stagnant slab to the basaltic magma, implying either partial melting of a more enriched mantle, smaller degrees of partial melting of a garnet-bearing mantle source, or a combination of both processes as the magma genesis. Our study indicated that the Baegdusan and Ulleung volcanoes have different magma sources and evolutionary histories.  相似文献   

13.
Violent explosive eruptions occurred between c. 51 and 29 thousand years ago—during the Last Glacial Maximum in East‐Central Europe—at the picturesque volcano of Ciomadul, located at the southernmost tip of the Inner Carpathian Volcanic Range in Romania. Field volcanology, glass geochemistry of tephra, radiocarbon and optically stimulated luminescene dating, along with coring the lacustrine infill of the two explosive craters of Ciomadul (St Ana and Mohos), constrain the last volcanic activity to three subsequent eruptive stages. The explosivity was due to the silicic composition of the magma producing Plinian‐style eruptions, and the interaction of magma with the underlying, water‐rich rocks resulting in violent phreatomagmatic outbursts. Tephra (volcanic ash) from these eruptions are interbedded with contemporaneous loess deposits, which form thick sequences in the vicinity of the volcano. Moreover, tephra layers are also preserved in the older Mohos crater infill, providing an important archive for palaeoclimate studies. Identifying the final phreatomagmatic eruption of Ciomadul at c. 29.6 ka, which shaped the present‐day landform of the 1600‐m‐wide St Ana explosion crater, we were able to correlate related tephra deposits as far as 350 km from the source within a thick loess‐palaeosol sequence at the Dniester Delta in Roxolany, Ukraine. A refined tephrostratigraphy, based on a number of newly found exposures in the Ciomadul surrounding region as well as correlation with the distal terrestrial and marine (e.g. Black Sea) volcano‐sedimentary record, is expected from ongoing studies.  相似文献   

14.
《Gondwana Research》2001,4(3):519-527
A controversy regarding the distinction between the highly welded lava-like ignimbrites sometimes showing strongly rheomorphic characters, and the extensive silicic lava flow has been overwhelming in the recent literature. However, a rethinking, after Walker (1983), has brought into light the concept of ‘grade’ referring to the degree and extent of welding between the pyroclasts. Various parameters and characteristics were suggested for strengthening the idea of densely welded ignimbrites, which differentiate them from lava. Here, a comprehensive study on early Proterozoic acid magmatic rocks forming lower part of the Dongargarh Supergroup, central India, has been made to suggest extensive occurrence of high-grade welded rheomorphic tuffs. The possibility of their being welded ignimbrite rather than lava flow has been explored in the light of facies analysis as well as detailed microscopic evidences. Despite having overall monolithologic look various units bear distinction on account of their nature of welding, enrichment of phenocrysts and degree of stretching. The presence of vitroclastic texture, melt inclusions and radial fracturing of phenocrysts suggests pyroclastic nature of these deposits. Based on these characters four facies — A, B, C and D from bottom to the top respectively, have been identified from field studies around Salekasa. Facies-A and B represent clast-supported/matrix-supported welded pyroclastic flow deposits. Facies-C represents extremely welded thinly laminated rheomorphic tuffs while lava-like tuffs with an autobreccia carapace is represented by facies D. A complete gradation of facies A/B to D through C exists. High to extremely high-grade nature of welding in these deposits suggests a low column-height subaerial plinian to fissure eruption of a very high temperature silicic magma in a continental setting.  相似文献   

15.
The Youngest Toba Tuff contains five distinct glass populations, identified from Ba, Sr and Y compositions, termed PI (lowest Ba) – PV (highest Ba), representing five compositionally distinct pre-eruptive magma batches that fed the eruption. The PI–PV compositions display systematic changes, with higher FeO, CaO, MgO, TiO2 and lower incompatible element concentrations in the low-SiO2 PIV/PV, than the high-SiO2 PI–PIII compositions. Glass shard abundances indicate PIV and PV were the least voluminous magma batches, and PI and PIII the most voluminous. Pressure estimates using rhyolite-MELTS indicate PV magma equilibrated at ~6 km, and PI magma at ~3.8 km. Glass population proportions in distal tephra and proximal (caldera-wall) material describe an eruption which commenced by emptying the deepest PIV and PV reservoirs, this being preferentially deposited in a narrow band across southern India (possibly due to jet-stream and/or plinian eruption transport), and as abundant pumice clasts in the lowermost proximal ignimbrites. Later, shallower magma reservoirs erupted, with PI being the most abundant as the eruption ended, sourcing the majority of distal ash from co-ignimbrite clouds (PI- and PIII-dominant), where associated ignimbrites isolated earlier (PIV- and PV-rich) deposits. This study shows how analysis of tephra glass compositional data can yield pre-eruption magma volume estimates, and enable aspects of magma storage conditions and eruption dynamics to be described.  相似文献   

16.
Rhyolite eruptions in Iceland mostly take place at long-lived central volcanoes, examples of which are found associated with each of the present-day rift-zone ice caps. Subglacial eruptions at Kerlingarfjöll central volcano produced rhyolite tuyas that are notable for their exposures of early-erupted pyroclastic material. Observations from a number of these edifices are synthesised into a general model for explosive rhyolite tuya formation. Eruptions begin with violent phreatomagmatic explosions that generate massive tuff (mT), but the influence of water quickly declines, leading to the formation of massive lapilli-tuffs (mLT) containing magmatically-fragmented vesicular pumice and ash. These are deposited rapidly near the vent, probably by moist pyroclastic density currents, confined by ice but not within a meltwater lake. The explosive-effusive transition is controlled by the ascent rate and gas content of the magma. An unusual obsidian-rich massive lapilli-tuff lithofacies (omLT) is identified and interpreted as pyroclastic material that was intruded into gas-fluidised deposits at the explosive-effusive transition. The effusive phase of eruption involves the emplacement of intrusions and lava caps. Intrusions of lava into the early-erupted phreatomagmatic deposits are characterised by peperitic margins and the formation of hyaloclastite. Intrusions into stratigraphically higher levels of the pyroclastic material show more limited interaction with the host tephra and have microcrystalline cores. Large lava bodies with columnar-jointed margins cap the tuyas and have intrusive basal contacts with the tephras. The main influence of the ice is to confine the rhyolite eruptive products to immediately above the vent region. This is in contrast to subglacial basaltic tuya-forming eruptions, which are characterised by the formation of meltwater lakes, phreatomagmatic fragmentation and subaqueous deposition. The lack of meltwater storage may reduce the potential for large jökulhlaups.  相似文献   

17.
A Middle Pleistocene widespread tephra, defined here as Hegawa-Kasamori 5 tephra (Hgw-Ks5), has been newly recognized over a broad area of Japan. Large-scale pyroclastic flow deposits associated with co-ignimbrite ash fall deposits (CAFDs) of Hgw-Ks5 have been identified in the proximal southern Kyushu area, south-west Japan. Hgw-Ks5 possibly originated from the Aira caldera in southern Kyushu, and it is widely spread and intercalated with deposits of the Kasamori Formation, Honshu Island, more than 1000 km away from the source. In the north-west area of the Aira Caldera, the tephra is sparsely distributed in the form of non-welded ignimbrites, and is exposed stratigraphically above the well-known Kobayashi-Kasamori tephra. Hgw-Ks5 is characterized through petrographic features, major element geochemistry of glass shards, and refractive indices of orthopyroxene. The results of previous stratigraphic isotope studies indicate that the eruptive age of Hgw-Ks5 is 434–458 ka (Marine Isotope Stage 12). Assuming that the CAFDs originating from the Aira Caldera are distributed concentrically, the apparent volume of Hgw-Ks5, estimated from the area of distribution and CAFD thickness, is ~100 km3. Therefore, a volcanic explosivity index of 7 is assigned to the Hgw-Ks5 eruption.  相似文献   

18.
Diamond-bearing kimberlites in the Fort à la Corne region, east–central Saskatchewan, consist primarily of extra-crater pyroclastic deposits which are interstratified with Lower Cretaceous (Albian and Cenomanian) marine, marginal marine and continental sediments. Approximately 70 individual kimberlite occurrences have been documented. The Star Kimberlite, occurring at the southeastern end of the main Fort à la Corne trend, has been identified as being of economic interest, and is characterized by an excellent drill core database. Integration of multi-disciplinary data-sets has helped to refine and resolve models for emplacement of the Star Kimberlite. Detailed core logging has provided the foundation for sedimentological and volcanological studies and for construction of a regionally consistent stratigraphic and architectural framework for the kimberlite complex. Micropaleontologic and biostratigraphic analysis of selected sedimentary rocks, and U–Pb perovskite geochronology on kimberlite samples have been integrated to define periods of kimberlite emplacement. Radiometric age determination and micropaleontologic evidence support the hypothesis that multiple kimberlite eruptive phases occurred at Star. The oldest kimberlite in the Star body erupted during deposition of the predominantly continental strata of the lower Mannville Group (Cantuar Formation). Kimberlites within the Cantuar Formation include terrestrial airfall deposits as well as fluvially transported kimberlitic sandstone and conglomerate. Successive eruptive events occurred contemporaneous with deposition of the marginal marine upper Mannville Group (Pense Formation). Kimberlites within the Pense Formation consist primarily of terrestrial airfall deposits. Fine- to medium-grained cross-stratified kimberlitic (olivine-dominated) sandstone in this interval reflects reworking of airfall deposits during a regional marine transgression. The location of the source feeder vents of the Cantuar and Pense kimberlite deposits has not been identified. The youngest and volumetrically most significant eruptive events associated with the Star Kimberlite occur within the predominantly marine Lower Colorado Group (Joli Fou and Viking Formations). Kimberlite beds, which occur at several horizons within these units, consist of subaerial and marine fall deposits, the latter commonly exhibiting evidence of wave-reworking. Black shale-encased resedimented kimberlite beds, likely deposited as subaqueous debris flows and turbidites, are particularly common in the Lower Colorado Group. During its multi-eruptive history, the Star Kimberlite body is interpreted to have evolved from a feeder vent and overlying positive-relief tephra ring, into a tephra cone. Initial early Joli Fou volcanism resulted in formation of a feeder vent (200 m diameter) and tephra ring. Subsequent eruptions, dominated by subaerial deposits, partly infilled the crater and constructed a tephra cone. A late Joli Fou eruption formed a small (70 m diameter) feeder pipe slightly offset to the NW of the early Joli Fou feeder vent. Deposits from this event further infilled the crater, and were deposited on top of early Joli Fou kimberlite (proximal to the vent) and sediments of the Joli Fou Formation (distal to the vent). The shape of the tephra cone was modified during multiple marine transgression and regression cycles coeval with deposition of the Lower Colorado Group, resulting in wave-reworked kimberlite sand along the fringes of the cone and kimberlitic event deposits (tempestites, turbidites, debris flows) in more distal settings.  相似文献   

19.
长白山天池火山地质学研究的若干进展与灾害分析   总被引:11,自引:0,他引:11  
通过以减轻火山灾害为目的的天池火山锥体顶部地区地质填图工作,发现了天池火山锥体附近不同期次火山泥石流,部分火山泥石流显示的高温定位特征指示了其与千年大喷发的成因联系。这些火山泥石流构成了严重的火山泥石流灾害,天池火山锥体近顶部大型滑坡体的发现则指示了天池火山另一种重要的灾害类型。滑坡体堆积物结构上可分为3种类型。天池火山千年大喷发时不同成分与物性的岩浆混合作用十分发育,指示了天池火山喷发前不同岩浆批的混合与共喷发机理。本文还论述了天池火山近代历史记录喷发物的分布与鉴别特征。  相似文献   

20.
长白山火山历史上最大火山爆发火山碎屑物层序与分布   总被引:11,自引:0,他引:11  
长白山火山历史时期规模最大的火山喷发发生在1199~1200年。这次大爆发分为两次普林尼(Plinian)式喷发:第一次(早期)喷发称赤峰期,第二次(晚期)喷发称园池期。赤峰期喷发模式为:普林尼式喷发柱(赤峰空落浮岩层)—火山碎屑流(长白火山碎屑流层)—火山泥流(二道白河火山泥流层),主要由火山碎屑流诱发火山泥流;园池期火山喷发模式为:普林尼式喷发柱(园池空落浮岩火山灰层)—火山碎屑流(冰场火山碎屑流层)。两次普林尼式喷发空落火山碎屑物总量约120 km3,长白火山碎屑流层总量约8 km3,冰场火山碎屑流层总量约0.5 km3,火山泥流堆积总量约为2 km3。主要论述了这次大爆发的火山喷发碎屑堆积物的层序和分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号