首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apatite fission-track (AFT) and (U+Th)/He (AHe) data, combined with time–temperature inverse modelling, reveal the cooling and exhumation history of the Iberian Massif in eastern Galicia since the Mesozoic. The continuous cooling at various rates correlates with variation of tectonic boundary conditions in the adjacent continental margins. The data provide constraints on the 107 timescale longevity of a relict paleolandscape. AFT ages range from 68 to 174 Ma with mean track lengths of 10.7 ± 2.6 to 12.6 ± 1.8 μm, and AHe ages range from 73 to 147 Ma. Fastest exhumation (≈0.25 km/Ma) occurred during the Late Jurassic to Early Cretaceous main episode of rifting in the adjacent western and northern margins. Exhumation rates have decreased since then and have been approximately one order of magnitude lower. Across inland Galicia, the AFT data are consistent with Early Cretaceous movement on post-Variscan NE trending faults. This is coeval with an extensional episode offshore. The AHe data in this region indicate less than 1.7 km of denudation in the last 100 Ma. This low exhumation suggests the attainment of a mature landscape during Late Cretaceous post-rift tectonic stability, whose remains are still preserved. The low and steady rate of denudation prevailed across inland Galicia despite minor N–S shortening in the northern margin since ≈45 Ma ago. In north Galicia, rock uplift in response to NW strike-slip faulting since Early Oligocene to Early Miocene has caused insufficient exhumation (<3 km) to remove the Mesozoic cooling signal recorded by the AFT data.  相似文献   

2.
The Kuruktag uplift is located directly northeast of the Tarim craton in northwestern China. Neoarchaean-to-Neoproterozoic metamorphic rocks and intrusive rocks crop out widely in the uplift; thus, it is especially suited for a more complete understanding of the thermal evolution of the Tarim craton. Apatite fission-track (AFT) methods were used to study the exhumation history and cooling of these Precambrian crystalline rocks. Nine apatite-bearing samples were collected from both sides of the Xingdi fault transecting the Kuruktag uplift. Pooled ages range from 146.0 ± 13.4 to 67.6 ± 6.7 Ma, with mean track lengths between 11.79 ± 0.14 and 12.48 ± 0.10 μm. These samples can be divided into three groups based on age and structural position. Group A consists of five samples with AFT apparent ages of about 100–110 Ma and is generally associated with undeformed areas. Group B comprises three specimens with AFT apparent ages lower than 80 Ma and is mostly associated with hanging wall environments close to faults. Group C is a single apatite sample with the oldest relative apparent age, 146.0 ± 13.4 Ma. The modelled thermal history indicates four periods of exhumation in the Kuruktag uplift: late-Early Jurassic (180 Ma); Late Jurassic–Early Cretaceous (144–118 Ma); early-Late Cretaceous (94–82 Ma); and late Cenozoic (about 10 Ma). These cooling events, identified by AFT data, are assumed to reflect far-field effects from multi-stage collisions and accretions of terranes along the south Asian continental margin.  相似文献   

3.
The Shi-Hang Belt is a Mesozoic tectonic zone and has always been regarded as the boundary between the Yangtze and Cathaysia blocks. It occupies a key tectonic location and attracts considerable attention due to its dynamic formation mechanism. However, its Cenozoic dynamic process is poorly constrained. The Cenozoic activation of the Shi-Hang Belt, as well as its cooling and exhumation, aids in dating the onset time of the formation of the mountain ranges and reveals the deformation process of the South China Block. To uncover the history of its Cenozoic cooling and denudation, apatite fission-track (AFT) thermochronology was applied to batholiths and strata spread across the Shi-Hang Belt in the Hunan Province. Twenty-three samples are dated with ages ranging from 23.6 ± 1.5 to 45.8 ± 3.0 Ma. Except for two older ages (42.1 ± 2.6 and 45.8 ± 3.0 Ma), the other ages range from 23 to 36 Ma with less variation on both sides of the Chenzhou–Linwu fault. The thermochronological modelling of 15 measured samples demonstrates that rocks rapidly passed through the AFT partial annealing zone to the near surface at different onset times from 36 to 23 Ma. The regional AFT cooling pattern is unrelated to the internal structures of the Shi-Hang Belt characterized by a Mesozoic fold-thrust feature. We attribute the Cenozoic exhumation of the Shi-Hang Belt to the dynamic topography of the South China Block, which is related to mantle downwellings and upwellings due to several episodes of quick subduction of the Pacific Plate underneath Eurasia during the Late Cretaceous–early Cenozoic and the Oligocene–early Miocene. The far-field effect of the India–Tibet collision may have contributed to the exhumation of the Shi-Hang Belt.  相似文献   

4.
A combination of four thermochronometers [zircon fission track (ZFT), zircon (U–Th)/He (ZHe), apatite fission track (AFT) and apatite (U–Th–[Sm])/He (AHe) dating methods] applied to a valley to ridge transect is used to resolve the issues of metamorphic, exhumation and topographic evolution of the Nízke Tatry Mts. in the Western Carpathians. The ZFT ages of 132.1 ± 8.3, 155.1 ± 12.9, 146.8 ± 8.6 and 144.9 ± 11.0 Ma show that Variscan crystalline basement of the Nízke Tatry Mts. was heated to temperatures >210°C during the Mesozoic and experienced a low-grade Alpine metamorphic overprint. ZHe and AFT ages, clustering at ~55–40 and ~45–40 Ma, respectively, revealed a rapid Eocene cooling event, documenting erosional and/or tectonic exhumation related to the collapse of the Carpathian orogenic wedge. This is the first evidence that exhumation of crystalline cores in the Western Carpathians took place in the Eocene and not in the Cretaceous as traditionally believed. Bimodal AFT length distributions, Early Miocene AHe ages and thermal modelling results suggest that the samples were heated to temperatures of ~55–90°C during Oligocene–Miocene times. This thermal event may be related either to the Oligocene/Miocene sedimentary burial, or Miocene magmatic activity and increased heat flow. This finding supports the concept of thermal instability of the Carpathian crystalline bodies during the post-Eocene period.  相似文献   

5.
The origin of the Anti‐Atlas relief is one of the currently debated issues of Moroccan geology. To constrain the post‐Variscan evolution of the Central Anti‐Atlas, we collected nine samples from the Precambrian basement of the Bou Azzer‐El Graara inlier for zircon and apatite fission‐track thermochronology. Zircon ages cluster between 340 ± 20 and 306 ± 20 Ma, whereas apatite ages range from 171 ± 7 Ma to 133 ± 5 Ma. Zircon ages reflect the thermal effect of the Variscan orogeny (tectonic thickening of the ca. 7 km‐thick Paleozoic series), likely enhanced by fluid advection. Apatite ages record a complex Mesozoic–Cenozoic exhumation history. Track length modelling yields evidence that, (i) the Precambrian basement was still buried at ca. 5 km depth by Permian times, (ii) the Central Anti‐Atlas was subjected to (erosional) exhumation during the Triassic‐Early Cretaceous, then buried beneath ca. 1.5 km‐thick Cretaceous‐Paleogene deposits, (iii) final exhumation took place during the Neogene, contemporaneously with that of the High Atlas.  相似文献   

6.
Borehole and surface samples from the Archean Tanzania Craton were analysed for apatite fission track(AFT) and(U-Th)/He data with the aim of deciphering cooling histories of the basement rocks. Fission track dates from borehole and outcrop samples are Carboniferous-Permian(345± 33.3 Ma to271±31.7 Ma) whereas(U-Th)/He dates are Carboniferous-Triassic(336±45.8 Ma to 213±29 Ma) for outcrop grains and are consistently younger than corresponding AFT dates. Single grain(U-Th)/He dates from the borehole are likely to be flawed by excessive helium implantation due to their very low effective uranium contents, radiation damage and grain sizes. All AFT and(U-Th)/He dates are significantly younger than the stratigraphic ages of their host rocks, implying that the samples have experienced Phanerozoic elevated paleo-temperatures. Considerations of the data indicate removal of up to 9 km overburden since the Palaeozoic.Thermal modelling reveals a protracted rapid cooling event commencing during the early Carboniferous(ca. 350 Ma) at rates of 46 m/Ma ending in the Triassic(ca. 220 Ma). The model also suggests minor cooling during the Cretaceous of the samples to surface temperatures. The suggested later cooling event remains to be tested. The major cooling phase during the Carboniferous is interpreted to be associated with compressional tectonics during the Variscan Orogeny sensu far field induced stresses. Coeval sedimentation in the Karoo basins in the region suggests that most of the cooling of cratonic rocks during the Carboniferous was associated with denudation.  相似文献   

7.
The Early Paleozoic evolution of the northern margin of Gondwana is characterized by several episodes of bimodal magmatism intruded or outpoured within thick sedimentary basins. These processes are well recorded in the Variscan blocks incorporated in the Ligurian Alps because they experienced low temperature Alpine metamorphism. During the Paleozoic, these blocks, together with the other Alpine basements, were placed between the Corsica-Sardinia and the Bohemian Massif along the northern margin of Gondwana. In this framework, they host several a variegated lithostratigraphy forming two main complexes(Complexs I and II) that can be distinguished by both the protoliths and their crosscutting relationships, which indicate that the acidic and mafic intrusives of Complex II cut an already folded sequence made of sediments, basalts and granitoids of Complex I. Both complexes were involved in the Variscan orogenic phases as highlighted by the pervasive eclogite-amphibolite facies schistosity(foliation II). However, rare relicts of a metamorphic foliation at amphibolite facies conditions(foliation I)is locally preserved only in the rocks of Complex I. It is debatable if this schistosity was produced during the early folding event e occurred between the emplacement of Complex I and II e rather than during an early stage of the Variscan metamorphic cycle.New SHRIMP and LA ICP-MS Ue Pb zircon dating integrated with literature data, provide emplacement ages of the several volcanic or intrusive bodies of both complexes. The igneous activity of Complex I is dated between 507 ± 15 Ma and 494 ± 5 Ma, while Complex II between 467 ± 12 Ma and 445.5 ± 12 Ma.The folding event recorded only by the Complex I should therefore have occurred between 494 ± 5 Ma and 467 ± 12 Ma. The Variscan eclogite-amphibolite facies metamorphism is instead constrained between ~420 Ma and ~300 Ma. These ages and the geochemical signature of these rocks allow constraining the Early Paleozoic tectono-magmatic evolution of the Ligurian blocks, from a middleeupper Cambrian rifting stage, through the formation of an Early Ordovician volcanic arc during the Rheic Ocean subduction, until a Late Ordovician extension related to the arc collapse and subsequent rifting of the PaleoThetys. Furthermore, the ~420-350 Ma ages from zircon rims testify to thermal perturbations that may be associated with the Silurian rifting-related magmatism, followed by the subduction-collisional phases of the Variscan orogeny.  相似文献   

8.
Multi-method thermochronology applied to the Peake and Denison Inliers (northern South Australia) reveals multiple low-temperature thermal events. Apatite fission track (AFT) data suggest two main time periods of basement cooling and/or reheating into AFT closure temperatures (~60–120°C); at ca 470–440 Ma and ca 340–300 Ma. We interpret the Ordovician pulse of rapid basement cooling as a result of post-orogenic cooling after the Delamerian Orogeny, followed by deformation related to the start of the Alice Springs Orogeny and orocline formation relating to the Benambran Orogeny. This is supported by a titanite U/Pb age of 479 ± 7 Ma. Our thermal history models indicate that subsequent denudation and sedimentary burial during the Devonian brought the basement rocks back to zircon U–Th–Sm/He (ZHe) closure temperatures (~200–150°C). This period was followed by a renewal of rapid cooling during the Carboniferous, likely as the result of the final pulses of the Alice Springs Orogeny, which exhumed the inlier to ambient surface temperatures. This thermal event is supported by the presence of the Mount Margaret erosion surface, which indicates that the inlier was exposed at the surface during the early Permian. During the Late Triassic–Early Jurassic, the inlier was subjected to minor reheating to AFT closure temperatures; however, the exact timing cannot be deduced from our dataset. Cretaceous apatite U–Th–Sm/He (AHe) ages coupled with the presence of contemporaneous coarse-grained terrigenous rocks suggest a temporally thermal perturbation related with shallow burial during this time, before late Cretaceous exhumation cooled the inliers back to ambient surface temperatures.  相似文献   

9.
The Variscan Hauzenberg pluton consists of granite and granodiorite that intruded late- to postkinematically into HT-metamorphic rocks of the Moldanubian unit at the southwestern margin of the Bohemian Massif (Passauer Wald). U–Pb dating of zircon single-grains and monazite fractions, separated from medium- to coarse-grained biotite-muscovite granite (Hauzenberg granite II), yielded concordant ages of 320 ± 3 and 329 ± 7 Ma, interpreted as emplacement age. Zircons extracted from the younger Hauzenberg granodiorite yielded a 207Pb–206Pb mean age of 318.6 ± 4.1 Ma. The Hauzenberg granite I has not been dated. The pressure during solidification of the Hauzenberg granite II was estimated at 4.6 ± 0.6 kbar using phengite barometry on magmatic muscovite, corresponding to an emplacement depth of 16-18 km. The new data are compatible with pre-existing cooling ages of biotite and muscovite which indicate the Hauzenberg pluton to have cooled below T = 250–400 °C in Upper Carboniferous times. A compilation of age data from magmatic and metamorphic rocks of the western margin of the Bohemian Massif suggests a west- to northwestward shift of magmatism and HT/LP metamorphism with time. Both processes started at > 325 Ma within the South Bohemian Pluton and magmatism ceased at ca. 310 Ma in the Bavarian Oberpfalz. The slight different timing of HT metamorphism in northern Austria and the Bavarian Forest is interpreted as being the result of partial delamination of mantle lithosphere or removal of the thermal boundary layer.  相似文献   

10.
In this paper, laser ablation ICP-MS U–Pb detrital zircon ages are used to discuss provenance and early Palaeozoic palaeogeography of continental fragments that originated in the Cadomian–Avalonian active margin of Gondwana at the end of Precambrian, were subsequently extended during late Cambrian to Early Ordovician opening of the Rheic Ocean, and finally were incorporated into and reworked within the European Variscan belt. The U–Pb detrital zircon age spectra in the analysed samples, taken across a late Neproterozoic (Ediacaran) to Early/Middle Devonian metasedimentary succession of the southeastern Teplá–Barrandian unit, Bohemian Massif, are almost identical and exhibit a bimodal age distribution with significant peaks at about 2.1–1.9 Ga and 650–550 Ma. We interpret the source area as an active margin comprising a cratonic (Eburnean) hinterland rimmed by Cadomian volcanic arcs and we suggest that this source was available at all times during deposition. The new detrital zircon ages also corroborate the West African provenance of the Teplá–Barrandian and correlative Saxothuringian and Moldanubian units, questioned in some palaeogeographic reconstructions. Finally, at variance with the still popular concept of the Cadomian basement units as far-travelled terranes, we propose that early Palaeozoic basins, developed upon the Cadomian active margin, were always part of a wide Gondwana shelf and drifted northwards together before involvement in the Variscan collisional belt.  相似文献   

11.
An apatite fission track (AFT) study of crystalline basement in the central Gawler Craton reveals apparent ages in the range of ca 430–58 Ma. The majority of samples underwent protracted monotonic cooling related to regional Paleozoic exhumation, consistent with long-term crustal stability as expected for cratonic interiors. However, multiple samples show evidence of Late Cretaceous–early Paleogene reheating, indicating a more dynamic low-temperature history. Inverse time–temperature modelling of AFT data indicates varying degrees of thermal overprinting between ~60 and 110°C, with substantially overprinted and negligibly overprinted samples in close proximity (<1 km). Time–temperature histories for samples that experienced thermal overprinting reveal localised Late Cretaceous–early Paleogene (ca 100–50 Ma) heating that is significantly younger than the Paleozoic–early Mesozoic exhumation recorded regionally. The highly localised nature and non-systematic patterns of overprinting combined with the lack of major Mesozoic or Cenozoic fault structures are not consistent with a regional thermal event associated with substantial reburial and later exhumation. Rather, localised reheating was most likely caused by heated groundwater from the once-overlying Mesozoic Eromanga Basin aquifer system, whose modern discharge margin (~400 km north of the study area) is marked by thermal mound springs that produce fluids with temperatures up to 100°C. Only basement rocks in close proximity to fluid pathways in the overlying aquifer would have recorded reheating, resulting in the observed sporadic distribution of partially overprinted samples. Thermal history modelling indicates rejuvenated apatite grains cooled to near-surface temperatures in the latest Cretaceous–Paleogene. This was likely in response to local removal of the overlying Eromanga Basin aquifer unit due to a relatively minor degree of exhumation (≤1 km) recorded regionally, which consequently disrupted the anomalous heating mechanism. These results show that the flow of heated groundwater is a feasible reheating mechanism for low-temperature thermochronometers, resulting in cooling patterns that may become decoupled from exhumation in cratonic interiors.  相似文献   

12.
This work is based on apatite fission-track analysis of samples (mostly granites) from the basement of the Cretaceous-Tertiary Phosphate and Ganntour Plateaus, exposed in the Jebilet and Rehamna massifs (Western Meseta, Morocco). This basement belongs to the Carboniferous-Early Permian Variscan Belt, and the earlier marine onlap is Late Triassic in age. However, the AFT ages are post-Triassic and different in the Jebilet (186-203 Ma) and Rehamna (148-153 Ma). Track length modelling support the occurrence of moderate heating events during the Jurassic and the Eocene, respectively, with cooling during the Permian and Cretaceous intervals. These results are partly accounted for by considering a moderate subsidence during the Late Triassic-Liassic, which is a noticeable change in the regional paleogeographic concept of “West Moroccan Arch”. However, the discrepancies between the AFT results from the studied massifs make necessary to explore further explanation. We interpret the observed discrepancies by the difference in age and depth of crystallization of the sampled granites in the Variscan Orogen, i.e. 330 Ma, 5-6 km in the Jebilet versus ~ 300 Ma, 8-10 km in the Rehamna. The importance of the Late Jurassic-Early Cretaceous uplift and erosion of the entire Meseta and that of its Late Eocene burial are emphasized.  相似文献   

13.
The apatite fission track (AFT) ages and thermal modeling of the Longshoushan and deformation along the northern Hexi Corridor on the northern side of the Qinghai-Tibetan Plateau show that the Longshoushan along the northern corridor had experienced important multi-stage exhumations during the Late Mesozoic and Cenozoic. The AFT ages of 7 samples range from 31.9 Ma to 111.8 Ma. Thermal modeling of the AFT ages of the samples shows that the Longshoushan experienced significant exhumation during the Late Cretaceous to the Early Cenozoic (~130–25 Ma). The Late Cretaceous exhumation of the Longshoushan may have resulted from the continuous compression between the Lhasa and Qiangtang blocks and the flat slab subduction of the Neo-Tethys oceanic plate, which affected wide regions across the Qinghai-Tibetan Plateau. During the Early Cenozoic, the Longshoushan still experienced exhumation, but this process was caused by the Indian-Eurasian collision. Since this time, the Longshoushan was in a stable stage for approximately 20 Ma and experienced erosion. Since ~5 Ma, obvious tectonic deformation occurred along the entire northern Hexi Corridor, which has also been reported from the peripheral regions of the Qinghai-Tibetan Plateau, especially in the Qilianshan and northeastern margin of the plateau. The AFT ages and the Late Cenozoic deformation of the northern Hexi Corridor all indicate that the present northern boundary of the Qinghai-Tibetan Plateau is situated along the northern Hexi Corridor.  相似文献   

14.
15.
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track(AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault(LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50°C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with ~1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of Qinling Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at ~100 Ma.  相似文献   

16.
Small oval‐shaped, unshielded monazite grains found in a Variscan garnet–muscovite‐bearing mylonitic paragneiss from the Liegendserie unit of the Münchberg Metamorphic Complex in the northwestern Bohemian Massif, central Europe, yield only pre‐Variscan ages. These ages, determined with the electron microprobe, have maxima at c. 545, 520 and 495 Ma and two side‐maxima at 455 and 575 Ma, and are comparable with previously determined ages of detrital zircon reported from paragneisses elsewhere in the NW Bohemian Massif. The pressure (P)–temperature (T) history of this mylonitic paragneiss, determined from contoured P–T pseudosections, involved an initial stage at 6 kbar/600 °C, reaching peak P–T conditions of 12.5 kbar/670 °C with partial melting, followed by mylonitization and retrogression to 9 kbar/610 °C. The monazite, representing detrital grains derived from igneous rocks of a Cadomian provenance between 575 and 455 Ma, has survived these Variscan metamorphic/deformational events unchanged because this mineral has probably never been outside its P–T stability field during metamorphism.  相似文献   

17.
This study presents laser step-heating 40Ar/39Ar age determinations of basaltic lava samples from Tamu Massif, the oldest and largest edifice of the submarine Shatsky Rise in the northwest Pacific and Earth’s proposed largest volcano. The rocks were recovered during Integrated Ocean Drilling Program Expedition 324, which cored 160 m into the igneous basement near the summit of Tamu Massif. The analyzed lavas cover all three major stratigraphic groups penetrated at this site and confirm a Late Jurassic/Early Cretaceous age for the onset of Shatsky Rise volcanism. Lavas analyzed from the lower and middle section of the hole yield plateau ages between 144.4 ± 1.0 and 143.1 ± 3.3 Ma with overlapping analytical errors (2σ), whereas a sample from the uppermost lava group produced a significantly younger age of 133.9 ± 2.3 Ma suggesting a late or rejuvenated phase of volcanism. The new geochronological data infer minimum (average) melt production rates of 0.63–0.84 km3/a over a time interval of 3–4 million years consistent with the presence of a mantle plume.  相似文献   

18.
This study presents the first suite of apatite fission‐track (AFT) ages from the SE part of the Western Sudetes. AFT cooling ages from the Orlica‐?nie?nik Dome and the Upper Nysa K?odzka Graben range from Late Cretaceous (84 Ma) to Early Palaeocene–Middle Eocene (64–45 Ma). The first stage of basin evolution (~100–90 Ma) was marked by the formation of a local extensional depocentre and disruption of the Mesozoic planation surface. Subsequent far‐field convergence of European microplates resulted in Coniacian–Santonian (~89–83 Ma) thrust faulting. AFT data from both metamorphic basement and Mesozoic sedimentary cover indicate homogenous Late Cretaceous burial of the entire Western Sudetes. Thermal history modeling suggests that the onset of cooling could be constrained between 89 and 63 Ma with a climax during the Palaeocene–Middle Eocene basin inversion phase.  相似文献   

19.
The ∼354–336 Ma Central Bohemian Plutonic Complex is a Variscan magmatic arc that developed in the central Bohemian Massif in response to subduction of the Saxothuringian lithosphere beneath the Teplá–Barrandian microplate. Magmatic to solid state fabrics in the most voluminous portion of this arc (the ∼346 Ma Blatná pluton) record two superposed orogenic events: dextral transpression associated with arc-parallel stretching and arc-perpendicular shortening, and normal shearing associated with exhumation of the high-grade core of the orogen (Moldanubian unit). This kinematic switch is an important landmark in the evolution of this segment of the Variscan belt for it marks the cessation of subduction-related compressive forces in the upper crust giving way to gravity-driven normal movements of the Teplá–Barrandian hanging wall block relative to the high-grade Moldanubian footwall. We use thermal modeling to demonstrate that the emplacement of huge volumes of arc magmas and their slow cooling produced a thermally softened domain in the upper crust and that the magmatic arc granitoids may have played a major role in initiating the orogenic collapse in the Bohemian Massif through lubrication and reactivation of a pre-existing lithospheric boundary and decreasing the overall strength of the rigid orogenic lid.  相似文献   

20.
Apatite fission track (AFT) and (U–Th)/He data from the High Atlas have been obtained for the first time to constrain the tectono‐thermal evolution of the central part of the chain. Results from Palaeozoic basement massifs indicate long residence at low temperatures, consistently with their original location out of the deepest Mesozoic rift troughs and indicating minor exhumation. The best rocks for extracting the Alpine history of the Atlas Mountains are Jurassic intrusives, which yield AFT ages centred on c. 80 Ma; thermal models based on AFT data and constrained by (U–Th)/He suggest that these ages are included in a slow cooling trend from intrusion age to c. 50 Ma ago that we attribute to post‐rift thermal relaxation. This is followed by a stability period of c. 30 Ma and then by a final exhumational cooling until present exposure. Eocene intrusives yield AFT ages similar to those of Rb–Sr and K–Ar suggesting rapid emplacement in the uppermost crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号