首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.  相似文献   

2.
Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.  相似文献   

3.
4.
To be able to predict contaminant transport in groundwater, an accurate conceptual and physical understanding of aquifer properties at multiple scales is required. In this study, physical and hydraulic properties of a coastal sand aquifer were derived using micro and macro X-ray computed tomography (XCT) techniques. Qualitative and quantitative data improved conceptualisation of the aquifer structure at micro and macro scale. At the macro scale (50-mm diameter by 1,500-mm long core) XCT images of undisturbed drill core identified coarse grained laminae (not obvious to the naked eye) of increased porosity and permeability, variations in mineral assemblage and particulate organic matter distribution within the core. Micro-XCT analysis (16-mm diameter cores) of the three main aquifer layers provided quantitative micro-scale data on permeability, porosity, grain, pore and throat size distribution statistics, and grain sphericity. Ratios of mean pore to grain diameter were ~0.65–0.75 and ratios of mean throat to mean grain diameter were ~0.2. Multiple permeability and porosity values were derived from micro domains (~4.35 mm3) within each micro-XCT core. Permeability values varied between and within micro-XCT core samples reflecting the heterogeneity at the millimetre core scale in these sediments. Sphericity values were similar for all three layers (average ~0.4) which reflected SEM observations of the semi-spherical nature of the dominant quartz and feldspar grains. The results of this study indicate that models based on the assumptions of homogeneity in depositional structure below centimetre scale may not suitably address factors affecting flow and transport of contaminants.  相似文献   

5.
The complexity of alluvial-pluvial fan depositional systems makes the detailed characterization of their heterogeneity difficult, yet such a detailed characterization is commonly needed for construction of reliable groundwater models. Traditional models mainly focus on using a single aquifer property to qualitatively or semi-quantitatively characterize the heterogeneity of aquifer, so that they are unable to quantitatively reflect the synthetic heterogeneity of all aquifer properties. In this paper, we propose the heterogeneity synthetic index (HSI) for quantitative characterization of synthetic heterogeneity of an aquifer. The proposed calculation process involves four steps: (1) estimation of the hydraulic conductivity of a sediment sample using the cloud-Markov model, (2) establishment of the sedimentary microfacies distribution model through the Markov chain, (3) characterization of the distribution model of hydrogeological parameters using the improved sequential simulation method according to the “facies-controlled modeling” technique, and (4) application of the entropy weight method to calculate the weight coefficient of the above aquifer properties. The HSI of an aquifer is calculated by superposition of these models according to the corresponding weight coefficient. This approach was applied to the Luancheng aquifer deposit in the southeast Hutuo River alluvial-pluvial fan in the North China Plain (NCP). The results have demonstrated that aquifer 3 which was formed in the middle Pleistocene has the strongest heterogeneity, with an HSI of 0.25–0.75. Aquifer 4 formed in the early Pleistocene shows an intermediate heterogeneity, with the HSI ranging 0.35–0.75. The weakest heterogeneity was found in aquifers 1 and 2 formed in the Holocene and late Pleistocene, with HSI values of 0.40–0.75 and 0.40–0.80, respectively. The heterogeneity of all the four aquifers is relatively strong in the radial direction of the Huai River alluvial-pluvial fan due to the abrupt change of microfacies. In contrast, in the radial direction of the Hutuo River alluvial-pluvial fan, the microfacies change mildly, and the continuity of hydrogeological parameters is better, which has resulted in weaker heterogeneity of the four aquifers in this direction. Findings suggest that the sedimentary environment has significant effects on the aquifer heterogeneity. Considering that there are many aquifer properties, HSI can quantitatively characterize the synthetic heterogeneity of the aquifer and describe the influence of each aquifer property on the synthetic heterogeneity of the aquifer according to its weight coefficient. Thus the HSI approach can be successfully used to deal with the spatial heterogeneity of aquifer and provide a foundation for studies on contaminant transport.  相似文献   

6.
蒋立群  孙蓉琳  梁杏 《地球科学》2021,46(11):4150-4160
为探讨含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响,基于非均质含水层砂箱实验,分别用传统等效均质模型、克立金插值和水力层析刻画含水层渗透系数场,并探讨了先验信息对水力层析结果的影响.将不同方法估算的渗透系数场用以预测地下水流和溶质运移过程,以此判断不同方法估算结果的优劣,分析含水层非均质性对地下水流和溶质运移的影响.结果表明:与克立金插值法相比,水力层析法可以更好地刻画含水层非均质性,较准确地预测地下水流和溶质运移过程;钻孔岩心渗透系数样本值作为先验信息可以提高水力层析法估算结果的精度;传统等效均质模型无法准确预测地下水流和溶质运移过程.含水层非均质性的增强将导致溶质污染羽分布形态和运移路径的空间变异性增强,并且优势通道直接决定溶质的分布及运移路径.   相似文献   

7.
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.  相似文献   

8.
The Snake River Plain aquifer in southeast Idaho is hosted in a thick sequence of layered basalts and interbedded sediments. The degree to which the layering impedes vertical flow has not been well understood, yet is a feature that may exert a substantial control on the movement of contaminants. An axial-flow numerical model, RADFLOW, was calibrated to pumping test data collected by a straddle-packer system deployed at 23 depth intervals in four observation wells to evaluate conceptual models and estimate properties of the Snake River Plain aquifer at the Idaho National Engineering and Environmental Laboratory. A delayed water-table response observed in intervals beneath a sediment interbed was best reproduced with a three-layer simulation. The results demonstrate the hydraulic significance of this interbed as a semi-confining layer. Vertical hydraulic conductivity of the sediment interbed was estimated to be about three orders of magnitude less than vertical hydraulic conductivity of the lower basalt and upper basalt units. The numerical model was capable of representing aquifer conceptual models that could not be represented with any single analytical technique. The model proved to be a useful tool for evaluating alternative conceptual models and estimating aquifer properties in this application. Electronic Publication  相似文献   

9.
10.
We discuss the significance of igneous layering with respect to pluton growth processes. The case study is the Tarçouate Laccolith (Morocco), whose core consists of modally layered hornblende granodiorites with high amount of monzodioritic enclaves, contrasting with peripheral, non-layered biotite granodiorites with low amount of enclaves. Rhythmic layering, with modal grading, cross-stratification and trough layering is associated with monzodioritic layers and wraps around mafic enclaves. Its steep dips ≥ 45° result from tilting that occurred above solidus conditions, as indicated by sub-vertical and synmagmatic granite, aplite and monzodiorite dykes cutting across the layering.The systematic association of igneous layering with mafic enclaves in calc-alkaline plutons suggests that layering originates from recurrent injection of mafic magma. Viscosity calculations suggest that the physicochemical properties of magma alone cannot account for the presence of layering in the central hornblende granodiorite and its coeval absence in the peripheral biotite granodiorite of the Tarçouate Laccolith. Intermittent pulses of hot mafic magma into crystallizing granodiorite likely produced thermal perturbations able to trigger local convection, formation of mafic enclaves and development of igneous layering through protracted crystallization.  相似文献   

11.
Large thermal extractions and extensive implementation of groundwater heat pumps (GWHP) necessitate a validation of the sustainability of their use and possible detrimental effects on groundwater. The goal of this work is to develop a regional heat transport model (of ~13 km × 5 km) for real site conditions. This model should consider all relevant transport processes, despite the large area under investigation. The model is based on a two-dimensional, transient-calibrated groundwater flow model for the “Leibnitzer Feld” (Styria, Austria). The two-dimensional horizontal model is linked via the FEFLOW interface manager with a newly developed “Multi-Layer-Model”-tool, which reproduces thermal aquifer–atmosphere interaction. Based on the regional heat transport model, scenarios are delineated for heating and cooling purposes for large GWHPs, which are appropriate for a small manufacturing business, an administrative building and 10 family homes. First of all, these have large spacing and thereafter, effects of area-covering usage of geothermal systems are evaluated for five administrative buildings located in close proximity to one another (200–350 m) and also for a large number of smaller heat extractions (each representing a one family house system). Modeled spatial and temporal temperature effects on the shallow aquifer are discussed. It was possible to present a simulation of realistic heating and cooling scenarios. This simulation may be introduced into practice once some further simplifications to the system are made. Locally limited heat plumes (max. length: 625 m) were observed for the manufacturing business. Any thermal effects coming from the geothermal systems were shown to be temporally stable. As such, no distinct trend of reduced annual temperatures could be observed.  相似文献   

12.
An analytical solution to describe the transient temperature distribution in a geothermal reservoir in response to injection of cold water is presented. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. Results show that heat loss to the confining rock layers plays a vital role in slowing down the cooling of the reservoir. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be profound on the results.  相似文献   

13.
许雅琴  张可霓  王洋 《岩土力学》2012,33(12):3825-3832
咸水层CO2地质封存是减少大气中CO2排放量的有效途径。CO2注入率是衡量咸水层中CO2注入能力的有效因素,因此,研究注入速率的变化规律及提高的措施是很有工程价值的。在很多区域,地层的低渗透性限制了CO2的注入率。针对鄂尔多斯盆地的水文地质条件,通过数值模拟,探讨在低渗透性咸水层中提高CO2注入率的途径,包括改变储层中的盐度、采用水平井注入、增加注入井段的长度以及采取水力压裂等工程措施。其中改变储层中的盐度可通过在注入CO2前向储层中注入一定量的水来实现。模拟结果表明,这些方式可以有效地提高CO2注入率,其中水平井改造方式和水力压裂工程措施效果显著,盐度改造措施在地层初始含盐度较高时,会有更好的效果。研究结果可为鄂尔多斯盆地和类似地区的咸水层CO2地质封存项目提供参考。  相似文献   

14.
This work studied the effect of completion techniques and reservoir heterogeneity on CO2 storage and injectivity in saline aquifers using a compositional reservoir simulator, CMG-GEM. Two reservoir models were built based on the published data to represent a deep saline aquifer and a shallow aquifer. The effect of various completion conditions on CO2 storage was then discussed, including partial perforation of the reservoir net pay (partial completion), well geometry, orientation, location, and length. The heterogeneity effect was addressed by considering three parameters: mean permeability, the vertical to horizontal permeability ratio, and permeability variation. Sensitivity analysis was carried out using iSIGHT software (design of experiments) to determine the dominant factors affecting CO2 storage capacity and injectivity. Simulation results show that the most favorable option is the perforation of all layers with horizontal wells 250–300 m long set in the upper layers. Mean permeability has the most effect on CO2 storage capacity and injectivity; k v/k h affects CO2 injectivity storage capacity more than permeability variation, V k. More CO2 can be stored in the heterogeneous reservoirs with low mean permeability; however, high injectivity can be achieved in the uniform reservoirs with high mean permeability.  相似文献   

15.
Effect of hypersaline cooling canals on aquifer salinization   总被引:1,自引:1,他引:0  
The combined effect of salinity and temperature on density-driven convection was evaluated in this study for a large (28 km2) cooling canal system (CCS) at a thermoelectric power plant in south Florida, USA. A two-dimensional cross-section model was used to evaluate the effects of hydraulic heterogeneities, cooling canal salinity, heat transport, and cooling canal geometry on aquifer salinization and movement of the freshwater/saltwater interface. Four different hydraulic conductivity configurations, with values ranging over several orders of magnitude, were evaluated with the model. For all of the conditions evaluated, aquifer salinization was initiated by the formation of dense, hypersaline fingers that descended downward to the bottom of the 30-m thick aquifer. Saline fingers reached the aquifer bottom in times ranging from a few days to approximately 5 years for the lowest hydraulic conductivity case. Aquifer salinization continued after saline fingers reached the aquifer bottom and coalesced by lateral movement away from the site. Model results showed that aquifer salinization was most sensitive to aquifer heterogeneity, but was also sensitive to CCS salinity, temperature, and configuration.  相似文献   

16.
 Regulations aiming to protect exploitable groundwater resources were edicted in Belgium a few years ago. Therefore, prevention and protection zones are defined by law and must be determined practically around each pumping well or spring, based on local hydrogeological conditions. The determination of hydrodynamic and hydrodispersive parameters, characterizing the local flow and transport properties of the aquifer, requires pumping and tracing tests. The interpretation of these field experiments, considering the heterogeneity of the geological layers, is performed through the use of numerical FEM simulations of the groundwater flow and pollutant transport conditions in a deterministic framework. After calibration of the model on experimental measurements, multiple simulations with contaminant injections at various points of the modeled domain allow the determination of the transfer time of the pollutant in the studied aquifer whilst taking the updated heterogeneity into account. On the basis of the computed transfer times in the saturated zone, the various prevention and protection areas can be assessed based on provisions of the law. Received: 27 June 1997 · Accepted: 29 July 1997  相似文献   

17.
Relict rock glaciers are complex hydrogeological systems that might act as relevant groundwater storages; therefore, the discharge behavior of these alpine landforms needs to be better understood. Hydrogeological and geophysical investigations at a relict rock glacier in the Niedere Tauern Range (Austria) reveal a slow and fast flow component that appear to be related to the heterogeneous structure of the aquifer. A numerical groundwater flow model was used to indicate the influence of important internal structures such as layering, preferential flow paths and aquifer-base topography. Discharge dynamics can be reproduced reasonably by both introducing layers of strongly different hydraulic conductivities or by a network of highly conductive channels within a low-conductivity zone. Moreover, the topography of the aquifer base influences the discharge dynamics, which can be observed particularly in simply structured aquifers. Hydraulic conductivity differences of three orders of magnitude are required to account for the observed discharge behavior: a highly conductive layer and/or channel network controlling the fast and flashy spring responses to recharge events, as opposed to less conductive sediment accumulations sustaining the long-term base flow. The results show that the hydraulic behavior of this relict rock glacier and likely that of others can be adequately represented by two aquifer components. However, the attempt to characterize the two components by inverse modeling results in ambiguity of internal structures when solely discharge data are available.  相似文献   

18.
Most studies that incorporate subsurface heterogeneity in groundwater flow and transport models only analyze and simulate the spatial variability of hydraulic conductivity. Heterogeneity of the other flow and transport parameters are usually neglected. This approach is often justified, but there are, however, cases in which disregarding the heterogeneity of the other flow and transport parameters can be questionable. In low permeability media, for instance, diffusion is often the dominant transport mechanism. It therefore seems logical to incorporate the spatial variability of the diffusion parameters in the transport model. This study therefore analyses and simulates the spatial variability of the effective diffusion coefficient and the diffusion accessible porosity with geostatistical techniques and incorporates their heterogeneity in the transport model of a low permeability formation. The formation studied was Boom clay (Belgium), a candidate host rock for the deep geological disposal of high-level radioactive waste. The calculated output radionuclide fluxes of this model are compared with the fluxes calculated with a homogeneous model and a model with a heterogeneous hydraulic conductivity distribution. This analysis shows that the heterogeneity of the diffusion parameters has a much larger effect on the calculated output radionuclide fluxes than the heterogeneity of hydraulic conductivity in the low permeability medium under study.  相似文献   

19.
A vulnerability-based approach for delineating groundwater protection zones around springs in fractured media has been developed to implement Swiss water-protection regulations. It takes into consideration the diversity of hydrogeological conditions observed in fractured aquifers and provides individual solutions for each type of setting. A decision process allows for selecting one of three methods, depending on the spring vulnerability and the heterogeneity of the aquifer. At the first stage, an evaluation of spring vulnerability is required, which is essentially based on spring hydrographs and groundwater quality monitoring. In case of a low vulnerability of the spring, a simplified method using a fixed radius approach (“distance method”) is applied. For vulnerable springs, additional investigations must be completed during a second stage to better characterize the aquifer properties, especially in terms of heterogeneity. This second stage includes a detailed hydrogeological survey and tracer testing. If the aquifer is assessed as slightly heterogeneous, the delineation of protection zones is performed using a calculated radius approach based on tracer test results (“isochrone method”). If the heterogeneity is high, a groundwater vulnerability mapping method is applied (“DISCO method”), based on evaluating discontinuities, protective cover and runoff parameters. Each method is illustrated by a case study.  相似文献   

20.
A mathematical model is developed for simulating the thermal energy transfer in a confined aquifer with different geological properties in the underlying and overlying rocks. The solutions for temperature distributions in the aquifer, underlying rock, and overlying rock are derived by the Laplace transforms and their corresponding time-domain solutions are evaluated by the modified Crump method. Field data adopted from the literature are used as examples to demonstrate the applicability of the solutions in modeling the heat transfer in an aquifer thermal energy storage (ATES) system. The results show that the aquifer temperature increases with time, injection flow rate, and water temperature. However, the temperature decreases with increasing radial and vertical distances. The heat transfer in the rocks is slow and has an effect on the aquifer temperature only after a long period of injection time. The influence distance depends on the aquifer physical and thermal properties, injection flow rate, and injected water temperature. A larger value of thermal diffusivity or injection flow rate will result in a longer influence distance. The present solution can be used as a tool for designing the heat injection facilities for an ATES system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号