首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Lockne impact structure in Jämtland (63°00'20"N, 14°49'30"E) formed in the Middle Ordovician at approximately 455 Ma. The structure is a concentric crater with a total diameter of 13.5 km. The impact took place in a marine environment. Seawater played an important role in the cratering process and in crater morphology and the amount of melt remaining in the structure. Seawater rushed back into the crater in a resurge, eroding and redepositing the ejecta among the resurge deposit. Seawater furthermore facilitated the hydrothermal system, which was driven by the residual heat in the structure. The Lockne structure hosts shocked quartz and an iridium anomaly. The rim wall round the crater collapsed in the modification stage of the crater and was annihilated by the resurge. The fractured basement and the impact breccia were initially rich in open cavities. These became partly filled with dominantly calcite. The filling contributed to a low-density contrast, generating a negative gravity anomaly of 22 gu. The gravity model indicates a central uplift and a NW-directed tilt of the structure. This tilt is also seen in the magnetic models. The apparent absence of any impact melt is probably real and related to the environment of impact.  相似文献   

2.
Despite the extensive records on geomorphological studies in Iran, meteorite impact craters have so far not been considered in to account. Based on both remote sensing technique and field work we have recognized the circular structure of Zirouki crater in the Samsour desert, southeast of Iran, which if confirmed as an impact structure, would be the third impact structure candidate in the Middle East after the Wabar craters in Saudia Arabia and Jebel Waqf as Suwwan in Jordan. Geomorphological investigation of the possible impact structure of Zirouki crater was done based on multi criteria methodology including of geological, topographical, geophysical and petrographical studies. Among different studies, topographical investigation indicated that the crater shape morphology was quite obvious with a central uplift projection; as well geophysical pattern provided very strong evidence for possible impact structure, indicating the presence of circular negative gravity anomaly at the whole of the crater.  相似文献   

3.
The Diamantina ~120 km-diameter ring feature, a unique feature in western Queensland, is manifested by a near-360° circular drainage pattern, radial creeks and a coincident radiometric K–Th–U pattern. The structure has been studied in the context of an investigation of the nature and origin of Australian circular structures. Geophysical signatures, including total magnetic intensity (TMI), gravity and seismic reflection transect data from the region of the ring feature are examined to help test the origin of the structure. A western subdued TMI arc with a ~110 km diameter is offset by ~30 km eastward from the western rim of the drainage ring. Bouguer anomaly data show a gravity low near the centre of the ring structure, but no outer circular pattern. Two recent seismic transects indicate a moderately reflective to weakly reflective crust below flat lying strata of the Jurassic–Cretaceous Eromanga and Permian–Triassic Galilee basins, and above a usually well-defined ~39–45 km-deep Moho. An approximately ~100 km-wide seismically non-reflective to weakly reflective zone overlapping the Diamantina ring feature separates crust of different seismic reflection character to either side. The nature of the seismic non-reflective crust is unknown. A potential interpretation of the ring structure in terms of asteroid impact cannot be confirmed or rejected given the present state of knowledge, owing to (1) the near-30 km depth of the seismically non-reflective zone along the transects; and (2) the shift of the TMI part ring zone relative to the geomorphic expression of the Diamantina ring feature. A test of the nature and origin of the Diamantina ring feature requires a cored drill hole near the centre of the TMI ring structure.  相似文献   

4.
石油地震资料揭示出塔里木盆地中央巴楚隆起为结晶基底和古生代地层相对隆升区,多数地区缺失中新生界,顶部为第四系陆相碎屑岩不整合覆盖隐伏隆起。在隆起南北两侧构造变形比较强烈,均发育基底卷入的逆冲构造和古生界内逆冲构造。运用断层相关褶皱理论,通过对研究区的二维地震测网解释及钻井标定,综合研究得出巴楚隆起北侧吐木休克卷入基底逆冲断层倾向南,向北逆冲,前寒武系基底到早古生代地层被错断。新生代时期的生长地层特征指示基底卷入构造于古近纪、中新世-上新世和更新世均有活动。构造分析表明基底卷入构造于中生代末期还有一次活动,说明吐木休克构造由多期构造运动形成。向北逆冲的吐木休克基底断层和盖层褶皱构造的向南反冲逆冲断层或滑脱断层共同组成基底卷入楔形构造,楔形点同时位于基底和盖层中。盖层构造以中寒武统膏岩为滑动面,向南逆冲,发育断层扩展或滑脱背斜构造。基底断层和盖层滑脱断层在剖面上组成典型的楔形构造几何形态,平面上形成三角形构造。地震剖面综合解释成果图显示,吐木休克弧形逆冲构造东部盖层反冲构造,即基底卷入楔形构造表现较为清楚,向西则表现不太明显,但地震反射波组(地层转折)指示盖层中仍存在这些反冲构造。纵向地震剖面和联络地震剖面均显示出存在该类构造。吐木休克基底卷入断层弧形构造顶部位移最大,盖层变形相对最小;向东西两侧基底断层位移逐渐减小,盖层构造位移相应逐渐增加。研究认为,塔里木巴楚隆起系挤压作用下,刚性地壳发生挠曲而形成的变形区带。  相似文献   

5.
吕庆田  姜枚  高锐 《地球学报》1997,18(1):78-86
青藏高原是印度板块板欧亚板块碰撞形成的巨大变形带,岩石圈地幔的变形特征对高原的隆或意义重大。本文分析了远震PKP走时残差沿高原中部剖面的变化,发现莫霍面的断错在整个高原是普遍存在的;利用人工地震资料作为约束,用重力资料对莫霍面的形态进行了反演模拟,认为岩石圈地幔的断错和叠覆可能是青藏高原隆升的重要机制;最后讨论了板块中部热和密度不均匀性以及地幔流动对青藏高原岩石圈变形的影响。  相似文献   

6.
The centre of the 13?×?11 km Spider impact structure, Western Australia, displays an unusual system of eroded folds and imbricated thrusts surrounding a sandstone dome. As inferred from GIS-integrated remote sensing, geological and digital elevation data, the structural setting of the original crater was influenced by, and hence post-dates, the formation of the Mt Barnett Syncline, the east?–?west-oriented axis of which runs through the Spider structure. The syncline formed during the regional Yampi Orogeny (ca 900 Ma), thus constraining the maximum age of the impact event. The sandstone dome in the centre of Spider formed prior to the imbrication, as interpreted from the present setting that indicates a deflection of the southward moving material during the crater collapse. Two modes of formation are discussed in order to explain the south-directed shortening in the Spider impact structure: (i) impact into the bottom of a syncline-controlled palaeovalley leading to uplift of the central crater floor followed by gravity-driven asymmetric sliding preferentially from the northern crater wall and valley slope, respectively; and (ii) moderately oblique (~10?–?30°) impact from the north onto the axis of the syncline, producing a central uplift under the influence of downrange residual momentum and, thus, asymmetric deformation inside the uplift and farther downrange. Neither model alone explains all the observations, and only a combination of both may provide a satisfactory solution.  相似文献   

7.
The Gulpuliyul structure is the eroded remains of a possible impact structure of Mesoproterozoic age, in western Arnhem Land, Northern Territory, on the Arnhem Shelf of the northwestern McArthur Basin. Enigmatic, highly deformed and brecciated strata, within the roughly circular or pentagonal feature about 8.5 km across, contrast with mildly deformed rocks of the surrounding Arnhem Shelf. Shock-metamorphic features have yet to be observed. Other features of the Gulpuliyul Structure are: (i) sharp and faulted outer boundaries; (ii) strata within the structure are younger than adjacent country rocks; i.e., the rocks have been emplaced downwards into the structure; (iii) outcrops display an overall concentric or tangential pattern, the stratigraphy is essentially coherent, and there is an overall younging from the centre outwards; and (iv) strata are commonly overturned by southward-directed thrusting and recumbent folding. It is suggested that the projectile impacted at a shallow angle from the north, to produce a southward-deepening crater about 8.5 km across. The depth of the transient crater was probably between ~500?–?700 m (minimum) and ~800 m (maximum). The central uplift probably rebounded only about 300?–?400 m. The present erosion level is thought to lie near the top of the low central uplift, at about or just below the floor of the final crater. The age of the possible impact is Mesoproterozoic (ca 1600?–?1325 Ma); it is most likely to have occurred very early in the Mesoproterozoic (1600?–?1500 Ma).  相似文献   

8.
The studies on configuration, character/property of the basement of Qiangtang basin is helpful for evaluating petroleum and nature gas resources as well as understanding the basin evolvement. Recently a moderate to high-grade metamorphic gneiss rock was found underlying beneath very low metamorphic Ordovician strata in Mayer Kangri to the north of the central uplift. That fact actually proved existence of the crystalline basement just the distribution and structures of pre-Paleozoic crystalline basement still remain puzzle. In recent years a number of active sources deep seismic profiling, to aim at lithospheric structure of northern Tibet and petroleum resources of the Qiangtang basin, had been conducted that make it possible to image the structure of the basement of the Qiangtang. Near vertical reflection profiles, included those acquired previously and those during 2004 to 2008, have been utilized in this study. By through the interaction process and interpretation between the reflection profiles and the wide-angle profile, a model with the detailed structure and velocity distribution from surface to the depth of 20 km of Qiangtang basin has been imaged.Based on the results and discussions of this study, the preliminary conclusions are as follows: (1) The velocity structure section (~20 km) that is interactively constrained by the refraction and reflection seismic data reveals that the sedimentary stratum gently lie until 10 km in the south Qiangtang basin. (2) The basement consists of fold basement (the upper) and crystalline basement (the lower).The fold basement buried at the average depth of 6 km with a velocity of 5.2–5.8 km/s. The shallowest appear at range of the central uplift. The crystalline basement is underlying beneath the fold basement at the average depth of 10 km with a velocity of 5.9–6.0 km/s except near Bangong-Nujiang suture. (3) The high-velocity body at the depth range of 3–6 km of the central uplift is considered as a fragment of the crystalline basement that perhaps was raised by Thermal or deformation. (4) The lower-consolidated fold basement show more affinity of Yangtze block but the crystalline basement seems more approximate to Lhasa terrene in geophysical nature. We have attempted to improve the resolution and reliability by interaction of the active seismic data and prove it effective to image complex basement structure. It will be a potential to process the piggy-back acquisition data and has wide prospects.  相似文献   

9.
The Gnargoo structure is located on the Gascoyne Platform, Southern Carnarvon Basin, Western Australia, and is buried beneath about 500 m of Cretaceous and younger strata. The structure is interpreted as being of possible impact origin from major geophysical and morphometric signatures, characteristic of impact deformation, and its remarkable similarities with the proven Woodleigh impact structure, about 275 km to the south on the Gascoyne Platform. These similarities include: a circular Bouguer anomaly (slightly less well-defined at Gnargoo than at Woodleigh); a central structurally uplifted area comprising a buried dome with a central uplifted plug; and the lack of a significant magnetic anomaly. Gnargoo shows a weakly defined inner 10 km-diameter circular Bouguer anomaly surrounded by a broadly circular zone, ~75 km in diameter. The north?–?south Bouguer anomaly lineament of the Giralia Range (a regional topographic and structural feature) terminates abruptly against the outer circular zone which is, in turn, intersected on the eastern flank by the Wandagee Fault. A <?28 km-diameter layered sedimentary dome of Ordovician to Lower Permian strata, surrounding a cone-shaped, central uplift plug of 7?–?10 km diameter, are inferred from the seismic data. Seismic-reflection data indicate a minimum central structural uplift of 1.5 km, as compared to a model uplift of 7.3 km calculated from the outer structural diameter. An interpretation of Gnargoo in terms of a plutonic or volcanic caldera/ring origin is unlikely as these features display less regular geometry, are typically smaller and no volcanic rocks are known in the onshore Gascoyne Platform. An interpretation of Gnargoo as a salt dome is likewise unlikely because salt structures tend to have irregular geometry, and no extensive evaporite units are known in the Southern Carnarvon Basin. Morphometric estimates of the rim-to-rim diameter based on seismic data for the central dome correspond to the observed diameter deduced from gravity data, and fall within the range of morphometric parameters of known impact structures. The age of Gnargoo is constrained between the deformed Lower Permian target rocks and unconformably overlying undeformed Lower Cretaceous strata. Because of its large dimensions, if Gnargoo is an impact structure, it may have influenced an environmental catastrophe during this period.  相似文献   

10.
The about 6-km diameter, near-circular Waqf as Suwwan structure located at E36°48′/N31°03′ in eastern Jordan was only recently recognized as a somewhat eroded, complex impact structure. Surface geological mapping, geophysical interpretation, remote sensing, and petrographic and mineralogical analyses have been carried out to understand the structure. In particular, the complex geology of the remnant of the central uplift has been scrutinized. A recent drilling project afforded an opportunity to expand the investigation of the structure to previously inaccessible strata of the ring syncline in the environs of the central uplift. Three boreholes were drilled, two to 140 and 110 m depth to the north and outside of the central uplift, and a further short hole to 5 m depth into the innermost part of the central uplift. Preliminary assessment of these cores has revealed the presence of around 11 m of fluvial breccias (wadi deposit) that are dominated by chert fragments at the top of the syncline fill. This is underlain by a normal succession of late Maastrichtian to Campanian strata. A variety of microstructures such as fracturing with vertical, as well as inclined at 45° and 30° fractures occurs throughout the cores. Some joints have slickensides along their walls. Limestone and marly limestone constitute the most abundant rocks in the boreholes. Distinct shock deformation effects are entirely lacking in the cores from the syncline. These observations are interpreted as a result of substantial erosion of the impact structure down to a level within the crater floor. The microstructures and the preliminary results of the analyses of sediment ages, textures, and compositions (nanofossils and sediment mineralogy) show that sediments as old as Campanian and as young as late Maastrichtian were affected by the impact. Unfortunately, the drilling did not expose any lithologies such as impact melt breccias that could lend themselves to absolute chronological analysis for a better constraint of the impact age.  相似文献   

11.
An integrated offshore/onshore reflection and refraction experiment was shot across the Chicxulub impact crater in 1996. The refraction data were previously inverted in 3D using first-arrival travel-time tomography. A regularized inversion, in which both data misfit and model roughness are minimized simultaneously, was used to determine a smooth velocity tomogram across the inner crater region. However, the experimental geometry for the refraction data was irregular, causing concern that this velocity model might not be well resolved. In this paper, we present a suite of checkerboard tests to investigate the lateral resolution of our velocity model. The Chicxulub crater is located partly onshore and partly offshore, with its centre close to the Yucatan coastline in Mexico. The shallow water limited acquisition of marine reflection data to distances of not closer than 25 km from the crater centre, and the centre of the structure is imaged with refraction data only. Intriguing velocity anomalies were observed across the central crater region, providing constraints on the lithological and structural form of Chicxulub. A high-velocity body within the central crater is most likely to represent lower-crustal rocks that were stratigraphically uplifted during the formation of this complex crater. The concave shape of this stratigraphic uplift suggests clues to the mechanics of large-crater collapse—the rocks appear to have moved upward and outward. An inward-dipping zone of lowered velocity has been interpreted as delimiting the outer edge of a central zone of melt-rich rocks. The resolution tests presented here indicate that these observed velocity anomalies are likely to be real.  相似文献   

12.
Lithoprobe and industry seismic profiles have furnished evidence of major zones of easterly dipping Grenville deformed crust extending southwest from exposed Grenville rocks north of Lake Ontario. Additional constraints on subsurface structure limited to the postulated Clarendon–Linden fault system south of Lake Ontario are provided by five east–west reflection lines recorded in 1976. Spatial correlations between seismic structure and magnetic anomalies are described from both Lake Ontario and the newly reprocessed New York lines.In the Paleozoic to Precambrian upper crust, the New York seismic sections show: (1) An easterly thickening wedge of subhorizontal Paleozoic strata unconformably overlying a Precambrian basement whose surface has an apparent regional easterly dip of 1–2°. Minor apparent normal offsets, possibly on the order of tens of meters, occur within the Paleozoic section. The generally poorly reflective unconformity may be locally characterized by topographic relief on the order of 100 m; (2) Apparent local displacement on the order of 90 m at the level of the Black River Group diminishes upward to little or no apparent offset of Queenston Shale; (3) Within the limited seismic sections, there appears to be no evidence that the complete upper crustal section is vertically or subvertically offset; (4) Dipping structure in the Paleozoic strata (15° to 35°) resembles some underlying Precambrian basement elements; (5) The surface continuity of inferred faults constituting the Clarendon–Linden system is not strongly supported by the seismic data.Beneath the Paleozoic strata, the seismic sections show both linear and arcuate reflector geometry with easterly apparent dips of 15° to 35° similar to the deep structures imaged on seismic lines from nearby Lake Ontario and on Lithoprobe lines to the north. The similarity supports an extension of easterly dipping Central Metasedimentary Belt structures of the Grenville orogen from southern Ontario to beneath western New York State.From a comparison of the magnetic and gravity fields with the New York seismic sections, we suggest: (1) The largely nonmagnetic Paleozoic strata appear to contribute negligibly to magnetic anomalies. Seismically imaged fractures in the New York Paleozoic strata appear to lie mainly west of a positive gravity anomaly. The relationship between magnetic and gravity anomalies and the changes in the geometry of interpreted Precambrian structures remains enigmatic; (2) North to northeast trending curvilinear magnetic and gravity anomalies parallel, but are not restricted to the principal trend of the postulated Clarendon–Linden fault system. Paleozoic fractures of the Clarendon–Linden system may partly overlie a southward extension of the Composite Arc Belt boundary zone.  相似文献   

13.
The IODP‐ICDP Expedition 364 drilled into the Chicxulub crater, peering inside its well‐preserved peak ring. The borehole penetrated a sequence of post‐impact carbonates and a unit of suevites and clast‐poor impact melt rock at the top of the peak ring. Beneath this sequence, basement rocks cut by pre‐impact and impact dykes, with breccias and melt, were encountered at shallow depths. The basement rocks are fractured, shocked and uplifted, consistent with dynamic collapse, uplift and long‐distance transport of weakened material during collapse of the transient cavity and final crater formation.  相似文献   

14.
利用2条衔接并横过青藏高原羌塘盆地中央隆起的反射地震剖面探测数据,进行了初至波层析成像试验,以揭示羌塘中央隆起的表层结构特征。研究结果表明,大量的反射地震单炮记录初至清晰,长排列接收丰富了浅表构造趋势特征的信息,层析走时射线密度随地下构造的复杂程度而变化。层析反演得到的速度结构显示了高速层起伏剧烈的变化特征,其厚度与地表出露地层的年代负相关。深反射地震初至波走时层析成像可以提供丰富的地壳近地表结构信息。  相似文献   

15.
冲绳海槽西部陆坡第四纪沉积地层划分   总被引:1,自引:0,他引:1  
董刚  蔡峰  闫桂京  李清  梁杰  孙运宝  骆迪  李昂 《地质学报》2018,92(12):2550-2560
冲绳海槽西部陆坡是认识深海斜坡沉积的重要区域。通过对高分辨率地震资料的精细解释,结合已有的研究成果,在冲绳海槽西部陆坡海底以下识别出4个主要的地震层序界面,相应地划分出四个主要地震层序,各层序分别对应全新世沉积层(Q4)、晚更新世沉积层(Q3)、中更新世沉积层(Q2)和早更新世沉积层(Q1)。从陆坡上部往下由斜交前积反射结构过渡到杂乱的反射结构,在地震剖面上可识别出杂乱的丘形反射单元,是滑塌体和重力流沉积的典型地震反射特征,反映出一种高能的、极不稳定的沉积环境。海槽轴部以平行-亚平行的地震反射特征为主,显示了稳定的深海-半深海的沉积环境。地震反射结构的多样性反映了冲绳海槽西部陆坡沉积环境的复杂性和沉机作用类型的多样性,沉积地层结构是多种因素共同作用的结果。东海陆架和冲绳海槽发育相同的第四纪地层垂向序列,同时冲绳海槽西部陆坡与东海陆架第四纪沉积层在层序界面、沉积层厚度、变形程度和产状等方面存在着差异,单靠地震资料来进行两个地区的地层对比存在着不确定性。  相似文献   

16.
2014年,大陆架科学钻探项目(CSDP)确定采用自主研发的轻便型海洋钻井平台"探海1号"在南黄海盆地中部隆起上实施首口科学钻探井(CSDP-2井),其科学目标是探查中部隆起的中-古生界地质结构和油气地质条件,解决南黄海中部隆起海相残留盆地长期悬而未决的地层属性问题,同时为区域地质、海陆演化与海相油气资源前景研究和评价提供基础资料。据此确定钻孔的选址原则为:钻探海域水深不超过30 m,在预定2 800 m的钻探深度范围内钻遇多套完整的中-古生界海相地层。根据钻探目标和选址原则,针对中部隆起没有钻探资料的状况,以区域地质特征和周边钻井对比为参考,以地震资料多属性解释为手段,标定了地震反射层位,解释并编制了反射层构造图,拟定了钻探井位,预测了钻探层位;采用地震储层预测技术预测了有利储层。上述工作形成了无井勘探区的钻探井位部署技术流程和方法,经钻探厘定了三叠纪-奥陶纪海相沉积层,并发现了多个油气显示层,达到了预定钻探目标。  相似文献   

17.
塔里木盆地作为典型的多旋回叠合盆地,中生代以来经历了印支、燕山和喜山等多期构造运动,造成中—新生界构造格局与古生界构造格局差异较大.应用航磁、重力、钻井、测井以及地震等资料,获得了盆地中-新生界地层分布、区域构造变形特点和含油气性特征,兼顾基底形态和后期改造作用影响,对塔里木盆地中-新生界构造单元划分为“三坳一隆一斜坡”,即北部坳陷区、西南坳陷区、东南坳陷区、中央隆起区和东北斜坡区5个一级构造单元和11个二级构造单元.显然,该构造单元的划分对盆地中—新生界次生油气蘸和隐蔽油气藏勘探具有重要意义.  相似文献   

18.
《International Geology Review》2012,54(12):1079-1102
In the past few years, meteoritic and cometary impacts have emerged as a major geological agent in the construction and evolution of planetary surfaces. Formation of complex central ring, peak ring and multiring craters involves excavation and melting of large volumes of crustal material. High-resolution geophysical mapping measuring gravity, magnetics, and topography of the Moon and Mars have recently provided information on the subsurface structure of large basins and aided in identifying buried giant craters. The terrestrial crater record has been significantly erased by tectonic, magmatic, and erosion processes and only a small proportion of impact structures remain. Record of multiring craters is limited to three examples: Vredefort, Sudbury and Chicxulub. Deep geophysical surveys and geochemical and isotopic studies of those craters provide means to evaluate the influence of large impacts on the lithospheric and crustal evolution by providing estimates of excavation depth and volume, amounts of material fragmented, ejected, vaporized and melted, and effects on the crustal stratigraphy and crustal thickness. Analyses on the melt from Vredefort, Sudbury, and Chicxulub indicate andesitic composition derived from lower-crustal material. The melt formed inside the lower transient cavity from lower crustal material that was then redistributed and emplaced in upper-crustal levels, resulting in crustal redistribution. Crystalline basement clasts fragmented and incorporated into the breccias show varying degrees of alteration but no significant thermal effects. Ejecta were deposited locally within the crater region and ballistic material and fine ejecta are globally distributed on the planetary surface. Impacts influence the crust–mantle boundary, with Moho uplift. Material from the mantle was not incorporated into the melt and impact breccias, indicating that the excavation cavities were confined to the lower crust. This is also apparently the case for the giant basins on the Moon, including the 2500 km diameter South Pole-Aitken Basin. Considering the numbers of large multiring basins, possible flux of large impacts, and effects on target surfaces, crustal scale redistribution of material during those large impacts has played a major role in the evolution of planetary surfaces.  相似文献   

19.
Common-depth-point seismic reflection profiling indicates that the crust beneath western McMurdo Sound is capped by a thin veneer of layered reflectors. The absence of deep, layered reflectors suggests the crust beneath the coast is made up primarily of intrusions which we associate with plutons generated during the Ross Orogeny. The layered reflectors dip and thicken to the east, away from the coast, where they are found at two-way reflection times of 7 s, corresponding to depths of 14–16 km. Reflection data support earlier refraction, gravity, and magnetic interpretations that indicate fundamental differences in the crust beneath McMurdo Sound and the Transantarctic Mountains. Differences may be due to early Paleozoic subduction of the Ross Embayment crust beneath the Transantarctic Mountains during the Ross Orogeny. Orogeny has produced an over-thickened crust beneath the Ross orogenic belt which was followed by several periods of reactivation including the Jurassic thermal event and the uplift of the present-day Transantarctic Mountains in early Tertiary time. The presence of the McMurdo Volcanics and preliminary interpretations of reflection data suggest that the Sound is now being thinned by processes of extension.  相似文献   

20.
In 1977 the Federal Institute for Geosciences and Natural Resources, Hannover, carried out a large scale multichannel reflection seismic survey in the Labrador Sea. This survey provided an opportunity for the direct comparison of the geologic structure of the Labrador and Greenland margins. The seismic records across the Labrador Shelf show a thick, prograding sedimentary wedge consisting of several seismic sequences onlapping an acoustic basement that dips steeply seaward. The surface of the acoustic basement is irregular below the continental slope, indicating Late Cretaceous—Early Tertiary faulting. The thick sedimentary section below the slope is divided by an unconformity, tentatively identified as Late Tertiary in age, into two seismic megasequencies which can be subdivided. The acoustic basement on the Greenland side is also strongly faulted but is overlain, in the south, by a thin sedimentary section. The sediment cover thickens on the Greenland Shelf to the north as the shelf becomes wider.As with more southerly parts of the western Atlantic margin, a positive free-air anomaly (30–50 mgal) lies landward of the shelf break off Labrador and a smaller negative anomaly follows the base of the slope. Similar, but generally narrower features are observed along the Greenland margin. West of the negative anomaly off the Greenland slope a narrow band of lower amplitude positive anomalies tends to be associated with an acoustic basement high observed in the reflection profiles. A landward negative gradient in the simple Airy isostatic anomaly across this margin suggests that the ocean—continent boundary is related to this high.Detailed magnetic measurements across the northern Labrador margin show that well-developed oceanic anomalies trending north-northwest lie east of the large Labrador Shelf gravity high, beyond the 2000 m isobath. Landward of these magnetic anomalies is a quiet magnetic zone within which the linear gravity high is parallel to the shelf break and correlates with a deep, sediment-filled basin. It is inferred that oceanic-type crust or greatly-attenuated continental crust underlies this basin and that continental crust thickens markedly westward of the gravity high over a distance of about 50 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号