首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
针对多源遥感影像之间成像机理不同、非线性光谱辐射畸变大以及灰度梯度差异明显等所导致的匹配困难问题,提出深度特征融合匹配算法(Feature Fusion Matching Algorithm, FFM)。(1)通过构建特征图金字塔网络提取影像深度特征,使用特征连接结构将语义丰富的高层特征与定位精确的低层特征互补融合,解决多源影像同名特征难以表征的问题并提高特征向量的定位精度;(2)对原始维度1/8的特征图进行交叉变换来融合自身邻域信息与待匹配影像特征信息,通过计算特征向量间的相似性得分得到初次匹配结果,针对特征稀疏区域,提出滑动窗口自适应得分阈值检测算法来提升匹配效果;(3)将匹配结果映射至亚像素级特征图,在小窗口内计算像素间的匹配概率分布期望值来检校优化匹配结果,提高匹配点对的准确性;(4)使用PROSAC算法对匹配结果进行提纯,有效剔除误匹配的同时最大限度保留正确匹配点。试验选取6对多源遥感影像,将FFM同SuperPoint、SIFT、ContextDesc以及LoFTR算法进行对比,结果表明FFM算法在匹配点正确率、匹配点均方根误差以及分布均匀度等方面远优于其他算法。将FFM匹...  相似文献   

2.
及时准确的洪涝范围提取可以提高应急管理部门对于洪涝灾害的响应能力,减轻灾害影响。SAR遥感不受云雨影响,是洪涝灾害监测的有效工具。然而,由于卫星重返周期的限制,基于SAR的洪涝连续观测较难实现。在应急背景下,如何快速、实时进行洪涝范围提取是急需解决的问题。本文提出了一种结合遥感、VGI等多源数据的洪涝范围提取与模拟方法:(1)构建Albert+CNN的文本分类模型提取社交媒体洪涝信息;(2)基于异常值剔除方法利用社交媒体和OSM等VGI数据代替人工采样对Sentinel-1 SAR数据进行分类,提取洪涝范围;(3)结合社交媒体、水位数据等多源数据基于SNIC分割和成本距离等方法模拟无可用SAR数据时的洪涝淹没情况,提高洪涝的淹没范围提取频次。研究表明,本文基于Albert+CNN与异常值剔除的样本自动生成方法,可以有效辅助SAR数据的洪涝分类;利用VGI数据结合水情、DEM等多源数据进行了洪涝范围的模拟可以增加洪涝监测的时间分辨率。本研究有助于提高洪涝信息提取能力,为VGI支持洪涝灾害的应急管理提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号