首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital interpretation method using the high-resolution remotely sensed images, e.g. the Landsat 8 OLI, GF-2 remote sensing images. The spatiotemporal characteristics of land-use changes across China during 2010–2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio etc. The results indicated that the built-up land increased by 24.6×103 km2 while the cropland decreased by 4.9×103 km2, and the total area of woodland and grassland decreased by 16.4×103 km2. The spatial pattern of land-use changes in China during 2010–2015 was concordant with that of the period 2000–2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010–2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial govern and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12th Five-Year Plan (2011–2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in central and western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future.  相似文献   

2.
Based upon the 1970 aero-photo topographic map, and TM/ETM satellite images taken in 1991 and 2000, the authors artificially interpreted boundaries of lake and glaciers in Nam Co Catchment, and quantified lake-glacier area variations in different stages by "integrated method" with the support of GIS. Results show that from 1970 to 2000, lake area increased from 1942.34 km^2 to 1979.79 km^2 at a rate of 1.27 km^2/a, while glacier area decreased from 167.62 km^2 to 141.88 km^2 at a rate of 0.86 km^2/a. The increasing rate of lake in 1991-2000 was 1.76 km^2/a that was faster than 1.03 km^2/a in 1970-1991, while in the same period of time, the shrinking rates of glaciers were 0.97 km^2/a and 0.80 km^2/a respectively. Important factors, relevant to lake and glacier response to the climate, such as air temperature, precipitation, potential evapotranspiration and their values in warm and cold seasons, were discussed. The result suggests that temperature increasing is the main reason for the accelerated melting of glaciers. Lake expansion is mainly induced by the increase of the glacier melting water, increase of precipitation and obvious decrease of potential evapotranspiration. Precipitation, evaporation and their linkages with lake enlargement on regional scale need to be thoroughly studied under the background of global warming and glacier retreating.  相似文献   

3.
Land cover change affects surface radiation budget and energy balance by chang- ing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990-2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990-2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 WIm2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

4.
The sedimentary record from the paleolake at Les Echets in eastern France allowed a reconstruction of the lacustrine response to several abrupt climate shifts during the last glacial period referred to as Dansgaard–Oeschger (DO) cycles. The high-resolution diatom stratigraphy has revealed distinct species turnover events and large fluctuations in stable oxygen isotope values in diatom frustules, as a response to DO climate variability. More or less identical species compositions became re-established during each DO stadial and interstadial phases, respectively. However, the relative abundance of the most dominant species within these assemblages varies and might indicate differences in climatic conditions. Interstadial phases are characterized by identical species successions. Transitions from stadial to interstadial conditions show a distinct FragilariaCyclotella succession, which resembles the diatom regime shifts that have been recognized in some lakes in the Northern Hemisphere since the mid-nineteenth century.  相似文献   

5.
Spatial distribution of wind erosion and its driving factors in China   总被引:3,自引:0,他引:3  
Soil erosion by wind means the soil particles are eroded and transported by wind. Fine particles of soil are transported as suspended load and may travel much greater distances than the coarse coarse materials do which are transported as creep and saltation. The finest particles and chemical microsome constitute the aerosol which can even keep for several years in atmosphere from descending. Wind erosion is a serious problem in many parts of the world. In China, up to 2400 km2 of land is dese…  相似文献   

6.
Gao  Xiaoyu  Cheng  Weiming  Wang  Nan  Liu  Qiangyi  Ma  Ting  Chen  Yinjun  Zhou  Chenghu 《地理学报(英文版)》2019,29(2):180-196
Journal of Geographical Sciences - Landforms are an important factor determining the spatial pattern of cropland through allocation of surface water and heat. Therefore, it is of great importance...  相似文献   

7.
Current ecosystem models used to simulate global terrestrial carbon balance generally suggest that terrestrial landscapes are stable and mature, but terrestrial net primary productivity(NPP) data estimated without accounting for disturbances in species composition, environment, structure, and ecological characteristics will reduce the accuracy of the global carbon budget. Therefore, the steady-state assumption and neglect of elevation-related changes in forest NPP is a concern. The Qilian Mounta...  相似文献   

8.
Liu  Cuiling  Xu  Yaping  Wang  Fahui 《地理学报(英文版)》2019,29(11):1908-1922
Journal of Geographical Sciences - This study uses six censuses (1953, 1964, 1982, 1990, 2000, and 2010) at the county level since the foundation of the People’s Republic of China to examine...  相似文献   

9.
This study examines spatial and temporal changes in 16 extreme temperature indices at 37 weather stations in Xinjiang and their associations with changes in climate means during 1961–2008. Linear regression analyses reveal that significant increasing trends in temperature were observed over Xinjiang, with the rate of 0.13 °C/decade, 0.24 °C/decade, and 0.52 °C/decade for annual mean temperature, annual maximum, and minimum temperature, respectively. Annual frequency of cool nights (days) has decreased by -2.45 days/decade (-0.86 days/decade), whereas the frequency of warm nights (days) has increased by 4.85 days/decade (1.62 days/decade). Seasonally, the frequencies of summer warm nights and days are changing more rapidly than the corresponding frequencies for cool nights and days. However, normalization of the extreme and mean series shows that the rate of changes in extreme temperature events are generally less than those of mean temperatures, except for winter cold nights which are changing as rapidly as the winter mean minimum temperatures. These results indicate that there have been seasonally and diurnally asymmetric changes in extreme temperature events relative to recent increases in temperature means in Xinjiang.  相似文献   

10.
A mean annual temperature increase has been recorded on the Yunnan–Guizhou Plateau of China during the last century. This temperature increase has been significantly greater since the 1950s. Thus, paleolimnological analyses may be utilized to better understand ecological responses to recent changing climate over decadal to centennial timescales, especially in regions with sparse lake monitoring data. Here, we present paleolimnological results from a 210Pb/137Cs-dated sediment core spanning approximately the last ~250 years from a remote, alpine, semi-closed oligotrophic lake (Lugu Lake) on the northwestern Yunnan–Guizhou Plateau. Sediment profiles of diatoms, geochemical variables (LOI550, TOC and C/N) and median grain size were analyzed and compared with the climate data (1951 AD–2010 AD) from the Lijiang weather station. Endogenous productivity of Lugu Lake has increased gradually over the last 30 years. The majority of diatom taxa encountered in the core are typical of alkaline oligotrophic lakes. Diatom assemblages were dominated by Cyclostephanos dubius, Cyclotella taxa, and fragilarioid taxa. Diatom species composition has changed significantly with three assemblage shifts at different scales over the ~250-year period. Diatom species diversity reveals a distinct increase before ~1970 AD, followed by a decline. In addition, a decreasing trend in diatom cell-size was consistent with recent warming trends. Redundancy analysis (RDA) shows that regional air temperature trends (annual, spring, summer, and winter) have played a significant role (p < 0.05) in determining diatom compositional changes over the past six decades. Results of this study suggest that regional warming is the main driving force behind recent changes in diatom composition at Lugu Lake, while nutrients may also have impact on the diatom change in recent 10 years.  相似文献   

11.
气候变化背景下中国玉米生产潜力变化特征   总被引:1,自引:1,他引:1  
玉米作为中国第一大粮食作物,探究其生产潜力在气候变化背景下的时空变化特征对中国有效应对气候变化具有重要意义。论文结合全球农业生态区模型、极点对称模态分解方法和集对分析方法,探讨了中国玉米生产潜力的周期性波动特征及长期变化趋势,进而分析了其空间格局演变过程。结果表明:1960—2010年间,中国玉米生产潜力呈增加趋势,由1960年代的9.10亿t增至2000年代的9.45亿t左右。在年际尺度上,中国玉米生产潜力主要以准3 a和准5 a的周期进行波动;在年代际尺度上,存在准10 a和准20 a的波动周期。其中,准3 a的周期波动是中国玉米生产潜力长时间变化的最主要特征,这主要是受年降水量变化的影响。从空间格局来看,中国玉米生长适宜区主要集中在加格达奇—锡林浩特—临河—西宁—天水—中甸沿线以东;1960—2000年间,玉米生产潜力界线在中国东北部和临河—西宁沿线发生了较为明显的移动。华北平原、辽河平原、四川盆地等地区的玉米单产潜力变化趋势具有较强的一致性,松嫩平原、三江平原、关中盆地、长江中下游平原等地区的玉米单产潜力变化过程与上述地区恰好相反。在这2类地区,玉米单产潜力的变化均较显著,但变化方向在年代际尺度上具有交替性。  相似文献   

12.
以1992年、2002年、2013年的Landsat TM/ETM+/OLI遥感影像为基础,人工解译阿尔泰山区三期冰湖边界与类型,叠置获取由SRTM DEM派生的流域、海拔、坡向属性,分析冰湖的时空分布与变化特征,探讨影响该区冰湖演化的因素。研究表明:1目前该区共有冰湖1147片,总面积101.63 km2。近20年冰湖总体数量增多、面积增大。2冰川侵蚀湖与冰碛阻塞湖对气候变化的响应不同。3随着气温升高,冰川侵蚀湖水量盈亏峰值上升至更高海拔,冰碛阻塞湖变化愈不稳定。4西风环流对该区冰湖影响深远,偏西向坡面降水量充足,故偏西向冰川侵蚀湖总体变化量小,而偏西向冰碛阻塞湖则在收入持续大于支出的情况下不断扩张。5相对于中国西部其他高山高原区,该区海拔低,冰湖对气候变化响应十分敏感,各空间单元中冰湖收入与支出水量多少受气温升高与降水减少幅度的影响大。  相似文献   

13.
宜人气候可以分为避暑型和避寒型两种类型,但现有研究鲜有关注国内两类气候的分布特征及差异。本文采用1981—2010年2132个国家气象观测站数据,基于温湿指数、风寒指数和着衣指数计算各个气象站点的气候综合舒适指数,结合协同克里金空间插值方法对全国避暑型和避寒型宜人气候的分布特征进行了研究,并对两类气候的地域差异进行了分析。结果表明:① 中国避暑型气候区包括40°N以北的西北边疆和东北地区、西北中部地区及西南地区三大集中分布区。中国避寒型气候区集中分布在北回归线以南的低纬地区。② 国内夏冬两季的气候不舒适地域广阔,包括环渤海、长三角等经济发达、人口稠密地区,避暑型与避寒型气候资源的开发潜力显著。③ 两类宜人气候呈现明显的地域分离特征,拥有避暑和避寒双重属性的地方极少。④ 国内避寒型气候是稀缺资源,具有垄断性特征;而避暑型气候相对分布广泛,是一种相对遍在性资源。本文不仅丰富了宜人气候分布特征研究的理论成果,而且可为地方气候资源的旅游开发提供科学依据。  相似文献   

14.
气候变化背景下1981-2010年中国玉米物候变化时空分异   总被引:1,自引:0,他引:1  
秦雅  刘玉洁  葛全胜 《地理学报》2018,73(5):906-916
基于中国玉米种植区内114个农气站1981-2010年的长序列物候观测数据,量化分析了玉米8个连续物候期的时空分异特征和相应的生长阶段长度变化规律。结果表明:1981-2010年间,玉米生育期内平均温度和有效积温(GDD)呈现增加趋势,降水量和日照时数呈现减少趋势。气候变化背景下,玉米物候期发生了显著变化。春玉米物候期以提前趋势为主,包括西北内陆玉米区春玉米、西南山地丘陵玉米区春玉米;夏玉米和春夏播玉米各物候期在不同区域均呈现推迟的趋势,西北内陆玉米区夏玉米各物候期推迟的幅度大于黄淮平原夏玉米各物候期推迟的幅度。玉米物候期的变化改变了相应生长阶段的长度,中国春/夏/春夏播玉米营养生长期(播种期—抽雄期)呈现不同程度的缩短趋势,而对应的生殖生长期(抽雄期—成熟期)呈现不同程度的延长趋势;春玉米生育期(播种期—成熟期)延长,夏/春夏播玉米生育期缩短。  相似文献   

15.
中国1951-1980年及1981-2010年的气候区划   总被引:2,自引:4,他引:2  
根据资料均一性、完整性和连续性,从1951-2010年中国756个站气象观测日值数据集中,遴选了654个站(1951-1980年)和658个站(1981-2010年)的资料,依据气候区划理论,遵循同一区划原则,采用同一区划方法和指标体系,分别对中国1951-1980年及1981-2010年2个时段的气候状况进行了区划。结果将中国分为12个温度带、24个干湿区、56个气候区;对比表明:虽然这2个时段所划分的气候区数量一致,但与1951-1980年相比,在56个气候区中,有30个区在1981-2010年间出现了水平位置移动或范围盈缩;其余26气候区虽然水平位置、范围未出现显著移动或盈缩,但多数区域的区划指标值也出现了变化,说明在过去60年中,中国气候格局已出现了一定程度的变化。  相似文献   

16.
应急响应是政府管理部门进行高效、科学应对各类突发事件的重要保障,受到世界各国的重视。针对重大自然灾害启动的自然灾害救助应急响应分四级,一般重大灾害一般启动四、三级响应,而特大灾害则需启动二、一级响应。本文统计分析了2005-2010年中国自然灾害救助应急响应的启动情况,结果表明:①应急响应南北分异特征明显,主要是由针对我国南方地区频繁发生的洪涝和台风灾害启动的四、三级等低级别响应决定,反映了近年一般重大灾害的发生以南方地区为主。②应急响应也呈现东西分异特征,其中,尤以针对中西部地区发生的特大地震、罕见的山洪泥石流以及影响严重的旱灾和低温雨雪冰冻等灾害启动的二、一级等高级别响应最为明显,反映了近年中西部地区灾害损失偏重发生。③中国针对各灾种的应急响应的区域分布特点,大致反映了各灾种的地理分布规律。  相似文献   

17.
基于自然地理分区的1990-2010年中国粮食生产格局变化   总被引:4,自引:0,他引:4  
1978年以来,在全球变化与工业化、城市化背景下,中国粮食生产格局发生了明显变化,这一变化不仅影响到国家尺度上的粮食供销格局,也影响农业资源的利用效率、农业生产的受灾风险,甚至区域生态安全。以往的研究大多在南北地区、三大地带、八大粮食产区等分区基础上考察这一变化,难以充分反映这一变化的自然地理特点。利用1990-2010年县域粮食产量数据和粮食生产集中度指标,通过考察不同雨量带、温度带和地貌类型区集中度指数的变化来揭示格局变化的自然地理特点。研究发现:1990-2010年间,中国各区粮食产量均有不同程度的增长,但由于增长幅度不同,中国粮食生产中心由800 mm以上雨量带向400~800 mm雨量带偏移,由亚热带向中温带和暖温带转移,并逐渐向平原地区集中。结果表明,中国粮食生产格局变化不利于水热资源的高效利用,但却有利于发展机械耕作,从而提高劳动生产率。应对格局变化,中国粮食生产应进一步提高水资源保障能力和防灾减灾能力。  相似文献   

18.
1 Introduction As a body of ecosystem, vegetation influences energy balance, climatic, hydrologic and biochemical cycles. Simultaneously it is also influenced by the above-mentioned factors. Therefore, vegetation activity is a perfect sensitivity guidelin…  相似文献   

19.
基于REOF-EEMD的西南地区气候变化区域分异特征   总被引:1,自引:0,他引:1  
西南地区是全球变化区域响应的特殊地区,探究其气候变化区域分异特征具有重要的科学意义。文中选用REOF方法开展研究区气温和降水变化特征的空间分区,借助EEMD与BG分割算法等方法细致辨析了不同气候分区的气候演变特征。结果显示:① 西南地区年均温和年均降水变化均可划分为3个亚区,各自的空间界限高度相似,但降水Ⅱ、Ⅲ区的界限更偏南。② 20世纪50年代以来各气温亚区的年均温显著升高,川渝气温变化与全球变暖同步,黔西、黔中、滇北散布若干点状冷区。各降水亚区的时空差异明显,相较Ⅲ区,Ⅰ、Ⅱ区年均降水的波动性及年代际变化的差异更显著。③ ENSO事件对研究区气候变化的影响深远,不同气温、降水亚区对其的响应不尽相同。④ 不同气温亚区年均温序列突变点的收敛性较强,大致发生在1997年前后。不同降水亚区年均降水序列突变点的收敛性较弱。⑤ 各气温亚区年均温增加的持续性较强,Ⅱ、Ⅲ区尤甚。降水Ⅰ、Ⅱ区降水变化趋势不甚明显且具有一定的随机性,Ⅰ区的可能呈减速趋缓的减湿趋势,Ⅱ区的可能出现弱度减湿趋势,Ⅲ区降水趋于弱增。  相似文献   

20.
Using NDVI data of NOAA-AVHRR in recent 20 years and the temperature and precipitation data of West China, the vegetation activity is discussed by adopting the EOF and REOF decomposed functions. Results show that the overall increasing trend of vegetation activity in different seasons reflects an advanced and prolonged growth period of vegetation under the circumstance of climate warming, but the vegetation evolvement has much inconsistency between different regions and seasons. There are four notable regions, eight sub-areas for vegetation evolvement in spring and summer, and nine sub-areas in autumn. The vegetation activity in most sub-areas is increasing. The most notable region is represented by Lhaze station on the Tibetan Plateau. Two other marked stations are represented by Altay station in Xinjiang Uygur Autonomous Region and Pengshui station in Sichuan Province. But the time series analysis of NDVI makes clear that the trends of the other two sub-areas, Turpan station in Xinjiang and Huashan station in Shaanxi Province, are descending. It is an important reason for vegetation evolvement that temperature ascends in most of the regions and descends in the east region in some seasons. But another important reason for vegetation evolvement is that precipitation is ascending in the west and descending in the east of the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号