首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combining cosmogenic 3He and 21Ne (3Hec and 21Nec) measurements on both pyroxene and olivine from the Pleistocene Bar Ten flows (85–107 ka) greatly increases our ability to evaluate the accuracy of 3Hec and 21Nec production rates and, therefore, 3Hec and 21Nec surface exposure ages. Comparison of 3Hec and 21Nec age-pairs yielded by experimentally determined production rates and composition-based model calculations indicates that the former give more accurate surface exposure ages than the latter in this study. However, experimental production rates should be adjusted to the composition of the minerals being analyzed to obtain the best agreement between 3Hec and 21Nec ages for any given sample. 21Nec/3Hec values are 0.400 ± 0.029 and 0.204 ± 0.014 for olivine and pyroxene, respectively, in Bar Ten lava flows, in agreement with previously published values, and indicate that 21Nec/3Hec in olivine and pyroxene is not affected by erosion and remains constant with latitude, elevation, and time (up to 10 Myr). Samples with 21Nec/3Hec that do not agree with these values may indicate the presence of non-cosmogenic helium and/or neon. The neon three-isotope diagram can also indicate whether or not all excess neon in mineral separates comes from cosmogenic sources. An error-weighted regression for olivine defines a spallation line [y = (1.033 ± 0.031)x + (0.09876 ± 0.00033)], which is indistinguishable from that for pyroxene (Schäfer et al., 1999). We have derived a production rate of 25 ± 8 at/g/yr for 21Nec in clinopyroxene (En43–44) based on the 40Ar/39Ar age of the upper Bar Ten flow. Our study indicates that the production rate of 21Nec in olivine may be slightly higher than previously determined. Cosmogenic 3He and 21Ne remain extremely useful, particularly when paired, in determining accurate eruption ages of young olivine- and pyroxene-rich basaltic lava flows.  相似文献   

2.
Cosmogenic 21Ne was utilised to determine exposure ages of young subaerial basaltic lava flows from the Newer Volcanic Province, western Victoria, Australia. The ages (36–53 ka) determined from co-existing cosmogenic 21Ne and 3He in olivines separated from basalts are consistent within analytical uncertainties with ages previously determined by cosmogenic 36Cl exposure dating. This paper illustrates the potential of cosmogenic neon exposure ages in studying the eruption, surface morphology, and erosion history of young volcanic rocks, which are difficult to date using other conventional methods, such as K-Ar or 40Ar/39Ar dating. The present study demonstrates that combined cosmogenic 3He and 21Ne dating, specifically measured cosmogenic 3He/21Ne ratios, on the same samples, is powerful for evaluating the validity of calculated cosmogenic 3He and 21Ne surface exposure ages.  相似文献   

3.
Stable cosmogenic isotopes such as 3He and 21Ne are useful for dating of diverse lithologies, quantifying erosion rates and ages of ancient surfaces and sediments, and for assessing complex burial histories. Although many minerals are potentially suitable targets for 3He and 21Ne dating, complex production systematics require calibration of each mineral–isotope pair. We present new results from a drill core in a high-elevation ignimbrite surface, which demonstrates that cosmogenic 3He and 21Ne can be readily measured in biotite and hornblende. 21Ne production rates in hornblende and biotite are similar, and are higher than that in quartz due to production from light elements such as Mg and Al. We measure 21Nehbl/21Neqtz = 1.35 ± 0.03 and 21Nebio/21Neqtz = 1.3 ± 0.02, which yield production rates of 25.6 ± 3.0 and 24.7 ± 2.9 at g? 1 yr? 1 relative to a 21Neqtz production rate of 19.0 ± 1.8 at g? 1 yr? 1. We show that nucleogenic 21Ne concentrations produced via the reaction 18O(α,n)21Ne are manageably small in this setting, and we present a new approach to deconvolve nucleogenic 21Ne by comparison to nucleogenic 22Ne produced from the reaction 19F(α,n)22Ne in F-rich phases such as biotite. Our results show that hornblende is a suitable target phase for cosmogenic 3He dating, but that 3He is lost from biotite at Earth surface temperatures. Comparison of 3He concentrations in hornblende with previously measured mineral phases such as apatite and zircon provides unambiguous evidence for 3He production via the reaction 6Li(n,α)3H  3He. Due to the atypically high Li content in the hornblende (~ 160 ppm) we estimate that Li-produced 3He represents ~ 40% of total 3He production in our samples, and must be considered on a sample-specific basis if 3He dating in hornblende is to be widely implemented.  相似文献   

4.
K–Ar ages of young basalts (<500 ka) are often higher than the actual eruption age, due to low potassium contents and the frequent presence of excess Ar in olivine and pyroxene phenocrysts. Geological studies in the San Francisco and Uinkaret volcanic fields in Arizona have documented the presence of excess 40Ar and have concluded that K–Ar ages of young basalts in these fields tend to be inaccurate. This new study in the San Francisco volcanic field presents 3Hec and 21Nec ages yielded by olivine and pyroxene collected from three Pleistocene basalt flows – the South Sheba (∼190 ka), SP (∼70 ka), and Doney Mountain (∼67 ka) lava flows, – and from one Holocene basalt, the Bonito Lava Flow (∼1.4 ka) at Sunset Crater. These data indicate that, in two of three cases, 40Ar/39Ar and K–Ar ages of the young basalts agree well with cosmic-ray surface exposure ages of the same lava flow, thus suggesting that excess 40Ar is not always a problem in young basalt flows in the San Francisco volcanic field. The exposure age of the Bonito lava flow agrees within uncertainty with dendrochronological and archeological age determinations. K–Ar and cosmogenic 3He and 21Ne ages from the SP flow are in agreement and much older than the OSL age (5.5–6 ka) reported for this lava flow. Furthermore, if the non-cosmogenic ages are assumed to be accurate, the subsequent calculated production rates at South Sheba and SP flow sample sites agree well with values in the literature.  相似文献   

5.
We use a numerical model describing cosmogenic nuclide acquisition in sediment moving through the upper Gaub River catchment to evaluate the extent to which aspects of source area geomorphology and geomorphological processes can be inferred from frequency distributions of cosmogenic 21Ne (21Nec) concentrations in individual detrital grains. The numerical model predicts the pathways of sediment grains from their source to the outlet of the catchment and calculates the total 21Nec concentration that each grain acquires along its pathway. The model fully accounts for variations in nuclide production due to changes in latitude, altitude and topographic shielding and allows for spatially variable erosion and sediment transport rates. Model results show that the form of the frequency distribution of 21Nec concentrations in exported sediment is sensitive to the range and spatial distribution of processes operating in the sediment's source areas and that this distribution can be used to infer the range and spatial distribution of erosion rates that characterise the catchment. The results also show that lithology can affect the form of the 21Nec concentration distribution indirectly by exerting control on the spatial pattern of denudation in a catchment. Model results further indicate that the form of the distribution of 21Nec concentrations in the exported sediment can also be affected by the acquisition of 21Nec after detachment from bedrock, in the diffusive (hillslope) and/or advective (fluvial) domains. However, for such post‐detachment nuclide acquisition to be important, this effect needs to at least equal the nuclide acquisition prior to detachment from bedrock. Copyright © 2009 John Wiley and Sons, Ltd.  相似文献   

6.
7.
We performed an interlaboratory comparison study with the aim to determine the accuracy of cosmogenic 21Ne measurements in quartz. CREU-1 is a natural quartz standard prepared from amalgamated vein clasts which were crushed, thoroughly mixed, and sieved into 125–250 μm and 250–500 μm size fractions. 50 aliquots of CREU-1 were analyzed by five laboratories employing six different noble gas mass spectrometers. The released gas contained a mixture of 16–30% atmospheric and 70–84% non-atmospheric (predominantly cosmogenic) 21Ne, defining a linear array on the 22Ne/20Ne-21Ne/20Ne three isotope diagram with a slope of 1.108 ± 0.014. The internal reproducibility of the measurements is in good agreement with the formal analytical precision for all participating labs. The external reproducibility of the 21Ne concentrations between labs, however, is significantly overdispersed with respect to the reported analytical precision. We report an average reference concentration for CREU-1 of 348 ± 10 × 106 at [21Ne]/g[SiO2], and suggest that the 7.1% (2σ) overdispersion of our measurements may be representative of the current accuracy of cosmogenic 21Ne in quartz. CREU-1 was tied to CRONUS-A, which is a second reference material prepared from a sample of Antarctic sandstone. We propose a reference value of 320 ± 11 × 106 at/g for CRONUS-A. The CREU-1 and CRONUS-A intercalibration materials may be used to improve the consistency of cosmogenic 21Ne to the level of the analytical precision.  相似文献   

8.
Precise 40Ar/39Ar age determinations made on basalt groundmass collected from the SP and upper and lower Bar Ten lava flows in the San Francisco and Uinkaret volcanic fields of Arizona, USA, yield ages of 72 ± 4, 97 ± 10, and 123 ± 12 ka (2σ; relative to Renne et al., 2010, 2011, full external precision), respectively. Previous ages of the SP lava flow include a K–Ar age of 70 ± 8 ka and OSL ages of 5.5–6 ka. 40Ar/39Ar age constraints, relative to the optimization model of Renne et al. (2010, 2011), of 81 ± 50 and 118 ± 64 ka (2σ; full external precision) were previously reported for the upper and lower Bar Ten lava flows, respectively. The new 40Ar/39Ar ages are within uncertainty of previous age constraints, and are more robust, accurate, and precise. Preliminary cosmogenic 3He and 21Ne production rates from the Bar Ten flows reported by Fenton et al. (2009) are updated here, to account for the improved quality of the 40Ar/39Ar data. The new 40Ar/39Ar age for the SP flow yields cosmogenic 3He and 21Ne production rates for pyroxene (119 ± 8 and 26.8 ± 1.9 at/g/yr; error-weighted mean, 2σ uncertainty; Dunai (2000) scaling method) that are consistent with production rate values reported throughout the literature. The 40Ar/39Ar and cosmogenic 3He and 21Ne data support field observations indicating the SP flow has undergone negligible erosion. The SP flow contains co-existing phenocrysts of olivine and pyroxene, as well as xenocrysts of quartz in a fine-grained groundmass facilitating cross-calibration of cosmogenic production rates and production-rate (3He, 10Be, 14C, 21Ne, 26Al, and 36Cl). Thus, we propose the SP flow is an excellent location for a cosmogenic nuclide production-rate calibration site (SPICE: the SP Flow Production-Rate Inter-Calibration Site for Cosmogenic-Nuclide Evaluations).  相似文献   

9.
The geochemical characteristics of mildly alkalic basalts (24–25 Ma) erupted in the southeastern Kerguelen Archipelago are considered to represent the best estimate for the composition of the enriched Kerguelen plume end-member. A recent study of picrites and high-MgO basalts from this part of the archipelago highlighted the Pb and Hf isotopic variations and suggested the presence of mantle heterogeneities within the Kerguelen plume itself. We present new helium and neon isotopic compositions for olivines from these picrites and high-MgO basalts (6–17 wt.% MgO) both to constrain the enriched composition of the Kerguelen plume and to determine the origin of isotopic heterogeneities involved in the genesis of Kerguelen plume-related basalts. The olivine phenocrysts have extremely variable 4He / 3He compositions between MORB and primitive values observed in OIB (∼90,000 to 40,000; i.e., R / Ra ∼8 to 18) and they show primitive neon isotopic ratios (average 21Ne / 21Neext ∼0.044). The neon isotopic systematics and the 4He / 3He ratios that are lower than MORB values for the Kerguelen basalts clearly suggest that the Kerguelen hotspot belongs to the family of primitive hotspots, such as Iceland and Hawaii. The rare gas signature for the Kerguelen samples, intermediate between MORB and solar, is apparently inconsistent with mixing of a primitive component with a MORB-like source, but may result from sampling a heterogeneous part of the mantle with solar 3He / 22Ne and with a higher (U, Th) / 3He ratio compared to typically high R / Ra hotspot basalts such as those from Iceland and Hawaii.  相似文献   

10.
The inert gases were measured mass-spectrometrically in 12 fragments and 1 “dust” sample from Luna 16. The fragments were classified petrologically by microscopic inspection. The major petrologic types were breccias and basalts. The former were much richer in trapped gases than the latter, and were apparently formed by the welding of local fines. However, there was no clear-cut difference in gas content of either breccias or basalts between zone A (top) and zone G (bottom). The4He/20Ne ratio of the breccias (average 49) was systematically smaller than that of the basalts (average 78), probably because of He-Ne fractionation during or after the formation of the breccias. We suggest that the4He/20Ne ratios of bulk fines in general may reflect the proportions of basaltic and breccia (plus cindery glasses) fragments in the fines. Substantial variations of4He/3He were found, which could not be explained with the presence of variable proportions of cosmogenic3Hec. Either the solar-wind value has changed in time, or the fragments with the small ratios were exposed to solar flares rich in3He and/or4He. Exposure ages of four fragments are several hundred million years. The40Ar/36Ar slopes of breccias and basalts are identical: 0.65.  相似文献   

11.
Because the intensity and energy spectrum of the cosmic ray flux are affected by atmospheric depth and geomagnetic-field strength, cosmogenic nuclide production rates increase considerably with altitude and to a lesser degree with latitude. The scaling methods used to account for spatial variability in production rates assume that all cosmogenic nuclides have the same altitude dependence. In this study we evaluate whether the production rates of cosmogenic 36Cl, 3He and 21Ne change differently with altitude, which is plausible due to the different threshold energies of their production reactions. If so, nuclide-specific scaling factors would be required.Concentrations of the three cosmogenic nuclides were determined in mafic phenocrysts over an altitude transect between 1000 and 4300 m at Kilimanjaro volcano (3°S). Altitude dependence of relative production rates was assessed in two ways: by determination of concentration ratios and by calculation of apparent exposure age ratios for all nuclide pairs. The latter accounts for characteristics of 36Cl that the stable nuclides 3He and 21Ne do not possess (radioactive decay, high sensitivity to mineral composition and significant contributions from production reactions other than spallation). All ratios overlap within error over the entire transect, and altitudinal variation in relative production rates is not therefore evident. This suggests that nuclide-specific scaling factors are not required for the studied nuclides at this low-latitude location. However, because previous studies have documented anomalous altitude-dependent variations in 3He production at mid-latitude sites, the effect of latitude on cross-calibrations should be further evaluated.We determined cosmogenic 21Ne/3He concentration ratios of 0.1864 ± 0.0085 in pyroxenes and 0.377 ± 0.018 in olivines, agreeing with those reported in previous studies.Despite the absence of independently determined ages for the studied lava surfaces, the consistency in the dataset should enable progress to be made in the determination of the production rates of all three nuclides as soon as the production rate of one of the nuclides has been accurately defined.To our knowledge this is the first time that 36Cl has been measured in pyroxene. The Cl extraction method was validated by measuring 36Cl in co-existing plagioclase phenocrysts in one of the samples.  相似文献   

12.
Cosmogenic neon in sodium-rich oligoclase feldspar from the ordinary chondrites St. Severin and Guaren?a is characterized by an unusually high22Ne/21Ne = 1.50 ± 0.02. This high ratio is due to the cosmogenic22Ne/21Ne production ratio in sodium which is 2.9 ± 0.3, two to three times the production ratio in any other target element. The relative production rate of21Ne per gram sodium is one quarter the production rate per gram magnesium. The striking enrichment of22Ne relative to21Ne in sodium arises from enhanced indirect production from23Na via22Na.The unusual composition of cosmogenic neon in sodium and sodium-rich minerals explains the high22Ne/21Ne ratios observed in inclusions of the Allende carbonaceous chondrite, and observed during low-temperature extraction of neon from ordinary chondrites. The isotopic composition of cosmogenic neon released during the stepwise heating of a trapped gas-rich meteorite containing sodium-rich phases can be expected to vary, and use of a constant cosmogenic neon composition to derive the composition of the trapped gas may not be justified. Preferential loss of this22Ne-enriched cosmogenic neon from meteoritic feldspar can result in a 2–3% drop in the measured cosmogenic22Ne/21Ne ratio in a bulk meteorite sample. This apparent change in composition can lead to overestimation of the minimum pre-atmospheric mass of the meteorite by a factor of two.  相似文献   

13.
Cores and coats of five coated diamonds, one from Botswana and four from Zaire, were separately analyzed for their noble gases. Noble gases in the diamonds are essentially of a trapped origin, including radio- and nucleogenic components such as4He, 40Ar, 21Neexcess and excesses in Xe isotopes (129, 131–136). The fairly precise elemental and isotopic abundances allow us to infer the noble gas state in the ancient mantle. 20Ne/22Ne ratios are fairly constant (11.8 ± 0.4), and very close to that of SEP (solar energetic particle)-Ne, but distinctly different from the atmospheric ratio. 21Ne/22Ne ratios range from 0.028 to 0.06, which is attributed to nucleogenic 21Ne from 18O(α, n)21Ne and 24Mg(n, α)21Ne reactions. The difference in 20Ne/22Ne between atmosphere and mantle can be attributed to the hydrodynamic escape of hydrogen from the primitive atmosphere during the very early stage in the Earth's history. 38Ar/36Ar and Kr isotopic ratios are identical to the atmospheric values within 1%. After correction for 238U- or 244Pu-fission Xe, the 131–136Xe abundance ratios are indistinguishable from atmospheric ratios. Lighter Xe isotopes (124–128Xe) are also likely to be atmospheric, but a final conclusion must wait until better data are obtained.In a 136Xe/130Xe−129Xe/130Xe diagram, diamond data lie on the same line as defined for MORB. The observed identical correlation for both diamonds and MORB's appears to suggest that the progenitor of the excess131–136Xe is 244Pu, but not238U, though the direct Xe isotopic measurements was not precies enough to decide unanimously the progenitor.  相似文献   

14.
A large data base has recently accumulated on the concentrations of helium isotopes in diamonds mined from various regions. It was noted earlier (Ozima et al. (1985) [1]; Lal et al. (1989) [2]) that the frequency distribution of the4He concentrations is a fairly narrow one, whereas that of3He concentrations is a broad one with no pronounced peaks. The ratios 3He/4He, on the other hand show a broad maximum around 2 Ra (Ra equals atmospheric 3He/4He ratio, = 1.40 × 10−6) with a slow decrease over two orders of magnitude on either side. Does this imply that the diamonds sample a wide variety of helium reservoirs having a range of 3He/4He ratios but somehow attain similar4He concentrations? We propose that in a majority of the diamonds studied,4He is primarily due to implantation of radiogenic alpha particles from the host material after emplacement in the crust, usually kimberlite, and that the concentrations of4He in diamonds often get appreciably altered by this process. Thus the4He trapped in the diamond at the time of its crystallization is usually overwhelmed by the implanted helium and the measured 3He/4He ratios do not generally correspond to any “sources” in the mantle. However, the implanted4He resides in the outer 16 μm of the diamond, and the intrinsic4He and 3He/4He ratios in the diamond can be studied if its outer layers are removed.The wider implications of diamond being the “target” material for nuclear reaction products from the host material are discussed. Radiogenic3He produced in the host material is also implanted in the diamond, but this contribution is small on a gross basis. However, since the depth of implantation of3He is greater than that of4He, some of the very high 3He/4He ratios observed in diamonds could be due to the “implantation” of radiogenic3He. The radiogenic reactions in the host material can also contribute to appreciable21Ne in diamonds.  相似文献   

15.
The rare gases He, Ne, Ar, Kr and Xe were measured in bulk samples of Yamato 74123. The 3He and 21Ne exposure ages are found to be 5.50 Ma and 2.83 Ma, respectively. In addition to the cosmogenic component the samples contain primordial rare gases of the fractionated type in amounts typical of ureilites. In a three-isotope plot neon turns out to be a mixture of planetary neon and cosmogenic neon.The elements Na, Mg, Al, Si, P, S, K, Ca, Cr, Mn, Fe, Co, and Ni have been determined by spark source mass spectrometry in Yamato 74123 and for comparison in the ureilites Haveröand Kenna. The chemical composition as well as the noble gas abundance pattern identify Yamato 74123 as an ureilite.  相似文献   

16.
Crustal neon: a striking uniformity   总被引:1,自引:0,他引:1  
By combining data from a diverse suite of crustal fluid samples representing a broad geographical distribution, we have identified a well-defined nucleogenic (crustal) neon component. The neon is produced from (α, n) and (n, α) nuclear interactions involving nuclei of O, Mg, and F [1]. In the limiting case of 20Ne/22Ne = 0, the composition is: 21Ne/22Ne = 0.47 ± 0.01 and 21Ne/4He = (0.46 ± 0.08) × 10−7. A crustal O/F ratio of 110 (atomic) calculated from the 21Ne/22Ne ratio is 4–10 times less than the average crustal O/F ratio. The discrepancy can be accounted for by an enhanced O/F ratio within the 10–40 μm range of the U-Th-generated α-particles.  相似文献   

17.
In-situ cosmogenic 3He exposure ages of pyroxene phenocrysts from basalts from the Upper Neostromboli formation in southwest Stromboli date its eruption at 7.0 ± 0.3 ka (1σ, n = 3, Ginostra site) and 6.8 ± 0.2 ka (1σ, n = 10, Timpone del Fuoco site) respectively. Correlation of our new data to previous K/Ar and palaeomagnetic ages from the northwestern Neostromboli phase suggests that it erupted within a confined period between roughly 6 and 14 ka. The low uncertainty on the 3Hecos ages as well as on individual exposure ages (4.4–8.7%) demonstrates that 3Hecos exposure dating is a viable tool for dating Holocene basalt lavas. The ages compare favourably to uncertainties obtained for radiocarbon dating of similar rocks.  相似文献   

18.
Noble gas isotopes including 3He/4He, 40Ar/36Ar and Xe isotope ratios were determined for coexisting glass and olivine crystals in tholeiitic and alkalic basalts and dunite xenoliths from Loihi Seamount.Glass and coexisting olivine crystals have similar 3He/4He ratios (2.8–3.4) × 10?5, 20 to 24 times the atmospheric ratio (RA), but different 40Ar/36Ar ratios (400–1000). Based on the results of noble gas isotope ratios and microscopic observation, some olivine crystals are xenocrysts. We conclude that He is equilibrated between glass and olivine xenocrysts, but Ar is not.The apparent high 3He/4He ratio (3 × 10?5; = 21 RA) coupled with a relatively high 40Ar/36Ar ratio (4200) for dunite xenoliths (KK 17-5) may be explained by equilibration of He between MORB-type cumulates and the host magma.Except for the dunite xenoliths, noble gas data for these Loihi samples are compatible with a model in which samples from hot spot areas may be explained by mixing between P (plume)-type and M (MORB)-type components with the addition of A (atmosphere)-type component.Excess 129Xe has not been observed due to apparent large mass fractionation among Xe isotopes.  相似文献   

19.
We have measured by accelerator mass spectrometry the26Al contents of 20 and the10Be contents of 14 iron meteorites. The26Al contents are typically 30% or more lower than values obtained by counting techniques; the10Be contents are 10–15% lower. The production rates (P) of these nuclides decrease by more than a factor of two as the4He/21Ne ratio increases with increasing shielding from 200 to 400. For the lighter shielding conditions expected in stony meteorites we estimateP26(Fe) as 3–4 dpm/kg andP10(Fe) as 4–5 dpm/kg. The average P/10P26 activity ratio is close to 1.5. Exposure ages calculated from21Ne/26Al ratios cannot be calibrated so as to agree with both40KK/ ages and ages based on the shorter-lived nuclides39Ar and36Cl. If agreement with the latter is forced, then the disagreement with40KK/ ages may signal a 35% increase in the cosmic-ray intensity during the last 107 a.  相似文献   

20.
The possibility of quantifying surface processes in mafic or volcanic environment using the potentialities offered by the in situ-produced cosmogenic nuclides, and more specifically by the in situ-produced 10Be, is often hampered by the rarity of quartz minerals in the available lithologies. As an alternative to overcome this difficulty, we explore in this work the possibility of relying on feldspar minerals rather that on quartz to perform in situ-produced 10Be measurements in such environments. Our strategy was to cross-calibrate the total production rate of 10Be in feldspar (P10fsp) against the total production rate of 3He in pyroxene (P3px) by measuring 3He and 10Be in cogenetic pyroxene (3Hepx) and feldspar (10Befsp). The samples were collected from eight ignimbritic boulders, exposed from ca 120 to 600 ka at elevations ranging from 800 to 2500 m, along the preserved rock-avalanche deposits of the giant Caquilluco landslide (18°S, 70°W), Southern Peru. Along with data recently published by Blard et al. (2013a) at a close latitude (22°S) but higher elevation (ca. 4000 m), the samples yield a remarkably tight cluster of 3Hepx - 10Befsp total production ratios whose weighted-mean is 35.6 ± 0.5 (1σ). The obtained weighted-mean 3Hepx - 10Befsp total production ratio combined with the local 3Hepy total production rate in the high tropical Andes published by Martin et al. (2017) allows to establish a total SLHL 10Be in situ-production rate in feldspar mineral (P10fsp) of 3.57 ± 0.21 at.g−1.yr−1 (scaled for the LSD scaling scheme, the ERA40 atm model and the VDM of Lifton, 2016).Despite the large elevation range covered by the whole dataset (800–4300 m), no significant variation of the 3Hepx - 10Befsp total production ratios in pyroxene and feldspar was evidenced. As an attempt to investigate the effect of the chemical composition of feldspar on the total 10Be production rate, major and trace element concentrations of the studied feldspar samples were analyzed. Unfortunately, giving the low compositional variability of our dataset, this issue is still pending.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号