首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a literature‐based compilation of the timing and history of salt tectonics in the Southern Permian Basin (Central Europe) is presented. The tectono‐stratigraphic evolution of the Southern Permian Basin is influenced by salt movement and the structural development of various types of salt structures. The compilation presented here was used to characterize the following syndepositional growth stages of the salt structures: (a) “phase of initiation”; (b) phase of fastest growth (“main activity”); and (c) phase of burial’. We have also mapped the spatial pattern of potential mechanisms that triggered the initiation of salt structures over the area studied and summarized them for distinct regions (sub‐basins, platforms, etc.). The data base compiled and the set of maps produced from it provide a detailed overview of the spatial and temporal distribution of salt tectonic activity enabling the correlation of tectonic phases between specific regions of the entire Southern Permian Basin. Accordingly, salt movements were initiated in deeply subsided graben structures and fault zones during the Early and Middle Triassic. In these areas, salt structures reached their phase of main activity already during the Late Triassic or the Jurassic and were mostly buried during the Early Cretaceous. Salt structures in less subsided sub‐basins and platform regions of the Southern Permian Basin mostly started to grow during the Late Triassic. The subsequent phase of main activity of these salt structures took place from the Late Cretaceous to the Cenozoic. The analysis of the trigger mechanisms revealed that most salt structures were initiated by large‐offset normal faults in the sub‐salt basement in the large graben structures and minor normal faulting associated with thin‐skinned extension in the less subsided basin parts.  相似文献   

2.
Cozzi 《Basin Research》2000,12(2):133-146
The extensive shallow-water carbonate platform deposits of the Dolomia Principale Formation (Southern Alps, northern Italy) accumulated during the Late Triassic, a time of plate-scale reorganization and rifting. Synsedimentary tensional features such as fractures, neptunian dykes, normal faults, shatter breccias and laterally discordant intraformational breccias have been studied within a well-preserved platform-to-basin transition in the Monte Pramaggiore area (Carnian Prealps). These tensional features follow three preferential orientations: N–S, E–W and NE–SW. To fully explain these different arrays it is proposed that the study area experienced during the Late Triassic the waning rifting phase connected to the westward propagation of the NeoTethys (N–S extension) and the onset of the rifting phase that led in the Middle Jurassic to the opening of the Central Atlantic (E–W extension), with a contemporaneous reactivation of Early–Middle Triassic NE–SW-orientated faults. This palaeostress analysis reveals the good potential of tensional features as reliable palaeostress indicators.  相似文献   

3.
Tectonic subsidence in rift basins is often characterised by an initial period of slow subsidence (‘rift initiation’) followed by a period of more rapid subsidence (‘rift climax’). Previous work shows that the transition from rift initiation to rift climax can be explained by interactions between the stress fields of growing faults. Despite the prevalence of evaporites throughout the geological record, and the likelihood that the presence of a regionally extensive evaporite layer will introduce an important, sub‐horizontal rheological heterogeneity into the upper crust, there have been few studies that document the impact of salt on the localisation of extensional strain in rift basins. Here, we use well‐calibrated three‐dimensional seismic reflection data to constrain the distribution and timing of fault activity during Early Jurassic–Earliest Cretaceous rifting in the Åsgard area, Halten Terrace, offshore Mid‐Norway. Permo‐Triassic basement rocks are overlain by a thick sequence of interbedded halite, anhydrite and mudstone. Our results show that rift initiation during the Early Jurassic was characterised by distributed deformation along blind faults within the basement, and by localised deformation along the major Smørbukk and Trestakk faults within the cover. Rift climax and the end of rifting showed continued deformation along the Smørbukk and Trestakk faults, together with initiation of new extensional faults oblique to the main basement trends. We propose that these new faults developed in response to salt movement and/or gravity sliding on the evaporite layer above the tilted basement fault blocks. Rapid strain localisation within the post‐salt cover sequence at the onset of rifting is consistent with previous experimental studies that show strain localisation is favoured by the presence of a weak viscous substrate beneath a brittle overburden.  相似文献   

4.
The Oligo-Miocene Most Basin is the largest preserved sedimentary basin within the Eger Graben, the easternmost part of the European Cenozoic Rift System (ECRIS). The basin is interpreted as a part of an incipient rift system that underwent two distinct phases of extension. The first phase, characterised by NNE–SSW- to N–S-oriented horizontal extension between the end of Eocene and early Miocene, was oblique to the rift axis and caused evolution of a fault system characterised by en-échelon-arranged E–W (ENE–WSW) faults. These faults defined a number of small, shallow initial depocentres of very small subsidence rates that gradually merged during the growth and linkage of the normal fault segments. The youngest part of the basin fill indicates accelerated subsidence caused probably by the concentration of displacement at several major bounding faults. Major post-depositional faulting and forced folding were related to a change in the extension vector to an orthogonal position with respect to the rift axis and overprinting of the E–W faults by an NE–SW normal fault system. The origin of the palaeostress field of the earlier, oblique, extensional phase remains controversial and can be attributed either to the effects of the Alpine lithospheric root or (perhaps more likely because of the dominant volcanism at the onset of Eger Graben formation) to doming due to thermal perturbation of the lithosphere. The later, orthogonal, extensional phase is explained by stretching along the crest of a growing regional-scale anticlinal feature, which supports the recent hypothesis of lithospheric folding in the Alpine–Carpathian foreland.  相似文献   

5.
《Basin Research》2018,30(Z1):336-362
The subsidence evolution of the Tethyan Moroccan Atlas Basin, presently inverted as the Central High Atlas, is characterized by an Early Jurassic rifting episode, synchronous with salt diapirism of the Triassic evaporite‐bearing rocks. Two contrasting regions of the rift basin – with and without salt diapirism – are examined to assess the effect of salt tectonics in the evolution of subsidence patterns and stratigraphy. The Djebel Bou Dahar platform to basin system, located in the southern margin of the Atlas Basin, shows a Lower Jurassic record of normal faulting and lacks any evidence of salt diapirism. In contrast, the Tazoult ridge and adjacent Amezraï basin, located in the centre of the Atlas Basin, reveals spectacular Early Jurassic diapirism. In addition, we analyse alternative Central High Atlas post‐Middle Jurassic geohistories based on new thermal and burial models (GENEX® 4.0.3 software), constrained by new vitrinite reflectance data from the Amezraï basin. The comparison of the new subsidence curves from the studied areas with published subsidence curves from the Moroccan Atlas, the Saharan Atlas (Algeria) and Tunisian Atlas show that fast subsidence peaks were diachronous along the strike, being younger towards the east from Early–Middle Jurassic to Late Cretaceous. This analysis also evidences a close relationship between these high subsidence rate episodes and salt diapirism.  相似文献   

6.
After Mesozoic rifting, the Atlantic margin of Morocco has recorded the consequences of the continental collision between Africa and Europe and the relative northward motion of the African plate over the Canary Island hotspot during Cenozoic times. Interpretation of recently acquired 2D seismic reflection data (MIRROR 2011 experiment) presents new insights into the Late Cretaceous to recent geodynamic evolution of this margin. Crustal uplift presumably started during the Late Cretaceous and triggered regional tilting in the deep‐water margin west of Essaouira and the formation of the Base Tertiary Unconformity (BTU). An associated hiatus in sedimentation is interpreted to have started earlier in the north (presumably in the Cenomanian at well location DSDP 416) and propagated to the south (presumably in the Coniacian at well location DSDP 415). The difference in the total duration of this hiatus is postulated to have controlled the extrusion of Late Triassic to Early Jurassic salt during the Late Cretaceous to Early Palaeocene non‐depositional period, resulting in regional differences in the preservation of salt structures: the Agadir Basin in the south of the study area is dominated by salt diapirs, whereas massive canopies characterised the Ras Tafelnay Plateau farther north and salt‐poor canopies and weld structures the northernmost offshore Essaouira and Safi Basins. Accompanied by volcanic intrusions, a presumably Early Palaeogene reactivation of previously existing basement faults is interpreted to have formed a series of deep‐water anticlines with associated gravity deformation of shallow‐seated sediments. The orientation of the fold axes is roughly perpendicular to the present day coast and the extensional fault direction; therefore, not a coast‐line parallel pattern of extensional faults, related to the rifting and break‐up of the margin, but rather a coast‐line perpendicular oceanic fracture zone might have caused the basement faults associated with the deep‐water folds. Both the volcanic intrusions and the formation of the deep‐water anticlines show a comparable age trend which gets progressively younger towards the south. A potential tempo‐spatial relationship of the BTU and the reactivation of basement faults can be explained by the relative northward motion of the African plate over the Canary Island hotspot. Regional uplift producing the BTU could have been the precursor of the approaching hotspot during the Late Cretaceous, followed during the Early Palaeogene by a locally more pronounced uplift above the hotspot centre.  相似文献   

7.
Recent studies of natural, multiphase rifts suggest that the presence of pre‐existing faults may strongly influence fault growth during later rift phases. These findings compare well with predictions from recent scaled analogue experiments that simulate multiphase, non‐coaxial extension. However, in natural rifts we only get to see the final result of multiphase rifting. We therefore do not get the chance to compare the effects of the same rift phase with and without pre‐existing structural heterogeneity, as we may in the controlled environment of a laboratory experiment. Here, we present a case study from the Lofoten Margin that provides a unique opportunity to compare normal fault growth with and without pre‐existing structural heterogeneity. Using seismic reflection and wellbore data, we demonstrate that the Ribban Basin formed during Late Jurassic to Early Cretaceous rifting. We also show that the rift fault network of the Ribban Basin lacks a pre‐existing (Permian‐Triassic) structural grain that underlies the neighbouring North Træna Basin that also formed during the Late Jurassic to Early Cretaceous. Being able to compare adjacent basins with similar histories but contrasting underlying structure allows us to study how pre‐existing normal faults influence rift geometry. We demonstrate that in Lofoten, the absence of pre‐existing normal faults produced collinear fault zones. Conversely, where pre‐existing faults are present, normal fault zones develop strong “zigzag” plan‐view geometries.  相似文献   

8.
The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 11 selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, palaeo‐environment interpretation and palaeo‐water depth estimation are integrated to create 11 composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro‐foreland basin. In contrast, the South Qiangtang was a collisional pro‐foreland basin. During Middle Jurassic‐Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso‐Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9–84.1 Ma) and Paleocene–Eocene (65.4–40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic–Early Cretaceous times (150–130 Ma), involving underthrusting of both the Lhasa and Songpan–Ganze terranes beneath the Qiangtang terrane or the collision of Amdo terrane.  相似文献   

9.
Well‐calibrated seismic interpretation in the Halten Terrace of Mid‐Norway demonstrates the important role that structural feedback between normal fault growth and evaporite mobility has for depocentre development during syn‐rift deposition of the Jurassic–Early Cretaceous Viking and Fangst Groups. While the main rift phase reactivated pre‐existing structural trends, and initiated new extensional structures, a Triassic evaporite interval decouples the supra‐salt cover strata from the underlying basement, causing the development of two separate fault populations, one in the cover and the other confined to the pre‐salt basement. Detailed displacement–length analyses of both cover and basement fault arrays, combined with mapping of the component parts of the syn‐rift interval, have been used to reveal the spatial and temporal evolution of normal fault segments and sediment depocentres within the Halten Terrace area. Significantly, the results highlight important differences with traditional models of normal fault‐controlled subsidence, including those from parts of the North Sea where salt is absent. It can now be shown that evaporite mobility is intimately linked to the along‐strike displacement variations of these cover and basement faults. The evaporites passively move beneath the cover in response to the extension, such that the evaporite thickness becomes greatest adjacent to regions of high fault displacement. The consequent evaporite swells can become large enough to have pronounced palaeobathymetric relief in hangingwall locations, associated with fault displacement maxima– the exact opposite situation to that predicted by traditional models of normal fault growth. Evaporite movement from previous extension also affects the displacement–length relationships of subsequently nucleated or reactivated faults. Evaporite withdrawal, on the other hand, tends to be a later‐stage feature associated with the high stress regions around the propagating tips of normal faults or their coeval hangingwall release faults. The results indicate the important effect of, and structural feedback caused by, syn‐rift evaporite mobility in heavily modifying subsidence patterns produced by normal fault array evolution. Despite their departure from published models, the results provide a new, generic framework within which to interpret extensional fault and depocentre development and evolution in areas in which mobile evaporites exist.  相似文献   

10.
Complex arrays of faults in extensional basins are potentially influenced by pre‐existing zones of weakness in the underlying basement, such as faults, shear zones, foliation, and terrane boundaries. Separating the influence of such basement heterogeneities from far‐field tectonics proves to be challenging, especially when the timing and character of deformation cannot be interpreted from seismic reflection data. Here we aim to determine the influence of basement heterogeneities on fault patterns in overlying cover rocks using interpretations of potential field geophysical data and outcrop‐scale observations. We mapped >1 km to meter scale fractures in the western onshore Gippsland Basin of southeast Australia and its underlying basement. Overprinting relationships between fractures and mafic intrusions are used to determine the sequence of faulting and reactivation, beginning with initial Early Cretaceous rifting. Our interpretations are constrained by a new Early Cretaceous U‐Pb zircon isotope dilution thermal ionization mass spectrometry age (116.04 ± 0.15 Ma) for an outcropping subvertical, NNW‐SSE striking dolerite dike hosted in Lower Cretaceous Strzelecki Group sandstone. NW‐SE to NNW‐SSE striking dikes may have signaled the onset of Early Cretaceous rifting along the East Gondwana margin at ca. 105–100 Ma. Our results show that rift faults can be oblique to their expected orientation when pre‐existing basement heterogeneities are present, and they are orthogonal to the extension direction where basement structures are less influential or absent. NE‐SW to ENE‐WSW trending Early Cretaceous rift‐related normal faults traced on unmanned aerial vehicle orthophotos and digital aerial images of outcrops are strongly oblique to the inferred Early Cretaceous N‐S to NNE‐SSW regional extension direction. However, previously mapped rift‐related faults in the offshore Gippsland Basin (to the east of the study area) trend E‐W to WNW‐ESE, consistent with the inferred regional extension direction. This discrepancy is attributed to the influence of NNE‐SSW trending basement faults underneath the onshore part of the basin, which caused local re‐orientation of the Early Cretaceous far‐field stress above the basement during rifting. Two possible mechanisms for inheritance are discussed—reactivation of pre‐existing basement faults or local re‐orientation of extension vectors. Multiple stages of extension with rotated extension vectors are not required to achieve non‐parallel fault sets observed at the rift basin scale. Our findings demonstrate the importance of (1) using integrated, multi‐scale datasets to map faults and (2) mapping basement geology when investigating the structural evolution of an overlying sedimentary basin.  相似文献   

11.
ABSTRACT The regional thermal history of the north‐eastern Sverdrup Basin, Canadian Arctic Archipelago, has been assessed using apatite fission‐track thermochronology and vitrinite reflectance data. Fission‐track data for 27 samples from six wells through the Mesozoic section on Axel Heiberg and Ellesmere Islands reveal significant Palaeocene cooling associated with basin inversion during the Eurekan Orogeny. Fission‐track data for 29 outcrop samples, ranging in stratigraphic age from Cambrian to Tertiary, also reveal significant Palaeocene cooling. Vitrinite reflectance data from carbonaceous shales and coal seams in well and outcrop samples are consistent with these conclusions. The degree of Palaeocene cooling observed is greatest for well and outcrop samples in the cores of anticlines or the hanging walls of thrust faults, such as the Fosheim anticline, and faults, such as the Lake Hazen fault system, and the East Cape and Vesle Fiord thrust faults. Palaeocene cooling is largely attributed to the denudation of structures during the Eurekan Orogeny. At one locality on north‐western Ellesmere Island, which is on the northern flank of the Sverdrup Basin, the underlying Franklinian basement rocks yield Early Cretaceous fission track ages with relatively long mean track lengths. This indicates that this part of the basin was uplifted at this time and that subsequent sedimentation and subsidence in the Cretaceous and early Tertiary were modest. This locality thus appears to be on the rift shoulder, which developed along the flank of the Amerasia Basin in the Lower Cretaceous. At a locality on western Axel Heiberg Island, which is downflank from the rift shoulder, the Upper Jurassic Awingak sandstone has a Late Cretaceous fission track age. This is best explained by heating above the total annealing temperature for fission‐tracks in apatite by extensive Lower Cretaceous intrusions and subsequent heat dissipation and cooling in the Late Cretaceous followed by further substantial cooling due to Tertiary denudation. These results indicate that maximum burial temperatures occurred in the presently exposed Mesozoic section prior to basin inversion during the Eurekan Orogeny. It can therefore be inferred that peak hydrocarbon generation and primary migration predated the formation of structural traps during the Tertiary at shallow depths within the northern Sverdrup Basin.  相似文献   

12.
Along-strike variability within a Late Cretaceous to early Palaeocene contractional growth structure and associated alluvial fan deposits is documented at the northern margin of the Arc Basin (Provence, SE France). This contribution shows that alluvial fans can be used as high-resolution proxies to reconstruct structural segmentation and palaeo-geomorphological evolution of a source/basin margin system. Facies-based reconstruction allows the spatial and temporal distribution of alluvial fan bodies to be mapped. Relationships between fan area and catchment size from modern alluvial fan systems were used to estimate palaeo-catchment size. Combining alluvial fan morphologies with catchment area, pebble provenance analysis and growth structure reconstruction, we show that: (1) fan distribution and related depositional processes were strongly influenced by intrinsic parameters such as drainage basin evolution, local structural inheritance and lateral facies changes in source area lithologies; (2) Inherited structures trending N100 effectively controlled the first-order location of the fold and thrust structures (Montagne Sainte-Victoire Range) and adjacent depositional areas (Arc Basin); (3) Syn-sedimentary faults trending N010-030 influenced the source/basin margin development and interacted with developing growth structures; (4) Facies changes in Jurassic carbonates controlled fold development and consequently the structural evolution of the source area; and (5) the N010-030 faults and along-strike variability of the source/basin margin system were ultimately controlled by basement structures that controlled where Late Cretaceous deformation nucleated. The overall architecture of the source/basin margin system reflects segmentation and strain partitioning along strike, as demonstrated by diachronous alluvial fan distribution.  相似文献   

13.
“Salt” giants are typically halite‐dominated, although they invariably contain other evaporite (e.g. anhydrite, bittern salts) and non‐evaporite (e.g. carbonate, clastic) rocks. Rheological differences between these rocks mean they impact or respond to rift‐related, upper crustal deformation in different ways. Our understanding of basin‐scale lithology variations in ancient salt giants, what controls this and how this impacts later rift‐related deformation, is poor, principally due to a lack of subsurface datasets of sufficiently regional extent. Here we use 2D seismic reflection and borehole data from offshore Norway to map compositional variations within the Zechstein Supergroup (ZSG) (Lopingian), relating this to the structural styles developed during Middle Jurassic‐to‐Early Cretaceous rifting. Based on the proportion of halite, we identify and map four intrasalt depositional zones (sensu Clark et al., Journal of the Geological Society, 1998, 155, 663) offshore Norway. We show that, at the basin margins, the ZSG is carbonate‐dominated, whereas towards the basin centre, it becomes increasingly halite‐dominated, a trend observed in the UK sector of the North Sea Basin and in other ancient salt giants. However, we also document abrupt, large magnitude compositional and thickness variations adjacent to large, intra‐basin normal faults; for example, thin, carbonate‐dominated successions occur on fault‐bounded footwall highs, whereas thick, halite‐dominated successions occur only a few kilometres away in adjacent depocentres. It is presently unclear if this variability reflects variations in syn‐depositional relief related to flooding of an underfilled presalt (Early Permian) rift or syn‐depositional (Lopingian) rift‐related faulting. Irrespective of the underlying controls, variations in salt composition and thickness influenced the Middle Jurassic‐to‐Early Cretaceous rift structural style, with diapirism characterising hangingwall basins where autochthonous salt was thick and halite‐rich and salt‐detached normal faulting occurring on the basin margins and on intra‐basin structural highs where the salt was too thin and/or halite‐poor to undergo diapirism. This variability is currently not captured by existing tectono‐stratigraphic models largely based on observations from salt‐free rifts and, we argue, mapping of suprasalt structural styles may provide insights into salt composition and thickness in areas where boreholes are lacking or seismic imaging is poor.  相似文献   

14.
Abstract We present an interpretation of the structure and faulting of an industry multichannel line across the Central North Sea Graben. We observe substantial faulting between the mid-Jurassic and mid-Cretaceous and on the base Zechstein (salt) reflector. To estimate the extension from these faults we consider movement along both planar and curved faults. We demonstrate that summing the heave (the horizontal displacement) overestimates the time measure of elongation for planar, ‘domino-type’, faulting. However, for high-angle normal faults and up to 70% extension (β= 1.7) the heave only overestimates the extension by 13%. In the absence of other information, summing the heave provides a useful estimate of extension in the case of domino-type faulting. For curved ‘listric’ faults the heave is only a true measure of the elongation if the antithetic faulting which removes the voids is vertical. Antithetic movement along inclined shear planes implies significantly more extension. We used the two models; of faulting to introduce progressively greater amounts of internal deformation in the crustal rocks and sediments to attempt to reconcile the estimate of extension necessary to give the observed subsidence and that given by analysing the faults visible on the seismic line. Estimates of extension obtained by allowing antithetic faulting along inclined shear planes are consistent with the range of estimates necessary to account for the post-mid-Jurassic subsidence. The estimates for the prior mid-Jurassic faulting are still substantially less than those necessary to explain the subsidence. However, this is not of major concern as there are many reasons as to why analysis of the faulting should underestimate the pre mid-Jurassic extension. Our interpretation of the seismic line implies curved faults bottoming in the lithologically weak Zechstein salt. These faults are decoupled from the region below and, hence, do not reflect the geometry of the faulting in the basement.  相似文献   

15.
The distribution and structure of the Mesozoic and Cenozoic cover within the central part of the North Iberian Margin (Bay of Biscay) is analysed based on a dense set of 2D seismic reflection lines and logs. The integration of well data allows the recognition of seven seismostratigraphic units and the construction of a surface that illustrates the 3D morphology of this area at the time of the Jurassic rifting. The study zone comprises what is known as Le Danois Bank, a basement high, and the Asturian Basin, one of the sedimentary basins originated during the Iberian rifting at the end of the Paleozoic. Its development continued with the oceanisation of the Bay of Biscay as a failed arm of the Atlantic rift; later, during the Cenozoic, a drastic change in tectonic regime induced the partial closure of Biscay and building up the Cantabrian?Pyrenean chain along the northern border of Iberia. This compressional period left its imprint in the Asturian Basin sediments in the form of a mild inversion and general uplift. The geometry of the basin bottom appears as an asymmetric bowl thinning out towards the edges, with a main E‐W depocenter, separated by E‐W striking faults from a secondary one. Those bounding faults show twisted trends in the north, interpreted as a consequence of the compressional period, when a transfer zone in a N‐S direction formed between the two E‐W striking deformation fronts in Biscay. This study shows that the transfer zone extends further to the west, reaching the longitude of Le Danois Bank. The maximum thickness of the filling within the Asturian Basin is estimated in more than 10 km, deeper than assessed in previous studies. The recognition of frequent halokynetic structures at this longitude is another observation worth to remark. Based on this study, it is suggested that the basin formed on top of a distal basement block of stretched crust limiting with the hyperextended rifted domain of Biscay. This location largely conditioned its deformation during the late compression.  相似文献   

16.
Structures rooted in the crystalline basement frequently control the deformation of the host bedrock and the overlying sedimentary sequences. Here, we elucidate the structure of the c. 2-km deep Precambrian granitic basement in the Anadarko Shelf, Oklahoma, and how the propagation of basement faults deformed the sedimentary cover. Although the basin is foreland in origin, the gently dipping shelf sequences experienced transpressional deformation in the Late Palaeozoic. We analyse a 3-D seismic reflection data set and basement penetrating well data in an area of 824 km2. We observe: (a) pervasive deformation of the basement by basement-bounded interconnected mafic sills, and a system of subvertical discontinuity planes (interpreted as faults) of which some penetrate the overlying sedimentary cover; (b) three large (>10 km-long) through-going faults, with relatively small (<100 m) vertical separation (Vsep) of the deformed stratigraphic surfaces; (c) upward propagation of the large faults characterized by faulted-blocks near the basement, and faulted-monoclines in the deeper sedimentary units that transition into open monoclinal flexures up-section; (d) cumulative along-fault deformation of the stratigraphy exhibits systematic trends that varies with offset accrual; (e) two styles of Vsep—Depth distribution which include a unidirectional decrease of Vsep from the basement through the cover rocks (Style-1) and a bidirectional decrease of Vsep from a deep sedimentary unit towards the basement and shallower sequences (Style-2). We find that the basement-driven propagation (Style-1) shows greater efficiency of driving the fault deformation to shallower depths compared to the intrasedimentary-driven fault nucleation and propagation (Style-2). Our study demonstrates an evolution of cumulative Vsep trends with offset accrual on the faults, and the partial inheritance of the heterogeneous intra-basement deformation by the sedimentary cover. This contribution provides important insight into the upward propagation of basement-driven faulting associated with structural inheritance in contractional sedimentary basins.  相似文献   

17.
The Orphan Basin, lying along the Newfoundland rifted continental margin, formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. To investigate the evolution of the Orphan Basin and the factors that governed its formation, we (i) analysed the stratigraphic and crustal architecture documented by seismic data (courtesy of TGS), (ii) quantified the tectonic and thermal subsidence along a constructed geological transect, and (iii) used forward numerical modelling to understand the state of the pre‐rift lithosphere and the distribution of deformation during rifting. Our study shows that the pre‐rift lithosphere was 200‐km thick and rheologically strong (150‐km‐thick elastic plate) prior to rifting. It also indicates that extension in the Orphan Basin occurred in three distinct phases during the Jurassic, the Early Cretaceous and the Late Cretaceous. Each rifting phase is characterized by a specific crustal and subcrustal thinning configuration. Crustal deformation initiated in the eastern part of the basin during the Jurassic and migrated to the west during the Cretaceous. It was coupled with a subcrustal thinning which was reduced underneath the eastern domain and very intense in the western domains of the basin. The spatial and temporal distribution of thinning and the evolution of the lithosphere rheology through time controlled the tectonic, stratigraphic and crustal architecture that we observe today in the Orphan Basin.  相似文献   

18.
Integration of extensive fieldwork, remote sensing mapping and 3D models from high-quality drone photographs relates tectonics and sedimentation to define the Jurassic–early Albian diapiric evolution of the N–S Miravete anticline, the NW-SE Castel de Cabra anticline and the NW-SE Cañada Vellida ridge in the Maestrat Basin (Iberian Ranges, Spain). The pre shortening diapiric structures are defined by well-exposed and unambiguous halokinetic geometries such as hooks and flaps, salt walls and collapse normal faults. These were developed on Triassic salt-bearing deposits, previously misinterpreted because they were hidden and overprinted by the Alpine shortening. The Miravete anticline grew during the Jurassic and Early Cretaceous and was rejuvenated during Cenozoic shortening. Its evolution is separated into four halokinetic stages, including the latest Alpine compression. Regionally, the well-exposed Castel de Cabra salt anticline and Cañada Vellida salt wall confirm the widespread Jurassic and Early Cretaceous diapiric evolution of the Maestrat Basin. The NE flank of the Cañada Vellida salt wall is characterized by hook patterns and by a 500-m-long thin Upper Jurassic carbonates defining an upturned flap, inferred as the roof of the salt wall before NE-directed salt extrusion. A regional E-W cross section through the Ababuj, Miravete and Cañada-Benatanduz anticlines shows typical geometries of salt-related rift basins, partly decoupled from basement faults. These structures could form a broader diapiric region still to be investigated. In this section, the Camarillas and Fortanete minibasins displayed well-developed bowl geometries at the onset of shortening. The most active period of diapiric growth in the Maestrat Basin occurred during the Early Cretaceous, which is also recorded in the Eastern Betics, Asturias and Basque-Cantabrian basins. This period coincides with the peak of eastward drift of the Iberian microplate, with speeds of 20 mm/year. The transtensional regime is interpreted to have played a role in diapiric development.  相似文献   

19.
Baxter  Cooper  Hill  & O'Brien 《Basin Research》1999,11(2):97-111
The Vulcan Sub-basin, located in the Timor Sea, north-west Australia, developed during the Late Jurassic extension which ultimately led to Gondwanan plate breakup and the development of the present-day passive continental margin. This paper describes the evolution of upper crustal extension and the development of Late Jurassic depocentres in this subbasin, via the use of forward modelling techniques. The results suggest that a lateral variation in structural style exists. The south of the basin is characterized by relatively large, discrete normal faults which have generated deep sub-basins, whereas more distributed, small-scale faulting further north reflects a collapse of the early basin margin, with the development of a broader, 'sagged' basin geometry. By combining forward and reverse modelling techniques, the degree of associated lithosphere stretching can be quantified. Upper crustal faulting, which represents up to 10% extension, is not balanced by extension in the deeper, ductile lithosphere; the magnitude of this deeper extension is evidenced by the amount of post-Valanginian thermal subsidence. Reverse modelling shows that the lithosphere stretching
factor has a magnitude of up to β=1.55 in the southern Vulcan Sub-basin, decreasing to β=1.2 in the northern Vulcan Sub-basin. It is proposed that during plate breakup, deformation in the Vulcan Sub-basin consisted of depth-dependent lithosphere extension. This additional component of lower crustal and lithosphere stretching is considered to reflect long-wavelength partitioning of strain associated with continental breakup, which may have extended 300–500 km landward of the continent–ocean boundary.  相似文献   

20.
In this study, we integrate 3D seismic reflection, wireline log, biostratigraphic and core data from the Egersund Basin, Norwegian North Sea to determine the impact of syn‐depositional salt movement and associated growth faulting on the sedimentology and stratigraphic architecture of the Middle‐to‐Upper Jurassic, net‐transgressive, syn‐rift succession. Borehole data indicate that Middle‐to‐Upper Jurassic strata consist of low‐energy, wave‐dominated offshore and shoreface deposits and coal‐bearing coastal‐plain deposits. These deposits are arranged in four parasequences that are aggradationally to retrogradationally stacked to form a net‐transgressive succession that is up to 150‐m thick, at least 20 km in depositional strike (SW‐NE) extent, and >70 km in depositional dip (NW‐SE) extent. In this rift‐margin location, changes in thickness but not facies are noted across active salt structures. Abrupt facies changes, from shoreface sandstones to offshore mudstones, only occur across large displacement, basement‐involved normal faults. Comparisons to other tectonically active salt‐influenced basins suggest that facies changes across syn‐depositional salt structures are observed only where expansion indices are >2. Subsidence between salt walls resulted in local preservation of coastal‐plain deposits that cap shoreface parasequences, which were locally removed by transgressive erosion in adjacent areas of lower subsidence. The depositional dip that characterizes the Egersund Basin is unusual and likely resulted from its marginal location within the evolving North Sea rift and an extra‐basinal sediment supply from the Norwegian mainland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号