首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we have explored the difference of the environmental dependence of u-, g-, r-, i-, and z-band luminosities between galaxies above and below the value of M r*. It turns out that in the luminous volume-limited sample, all the five band luminosities strongly correlate with local environments. Because the u-band luminosity of galaxies still strongly depends on local environments in the faint volumelimited sample, we conclude that M r* is not an important characteristic parameter for the environmental dependence of the u-band luminosity. It is worth noting that for the u-band, the subsample at low density has a higher proportion of luminous galaxies and a lower proportion of faint galaxies than the one at high density, which is opposite to widely accepted conclusion: luminous galaxies exist preferentially in the densest regions of the universe, but faint galaxies are located preferentially in low density regions. Our results show that the environmental dependence of luminosity is not a single trend in different luminosity regions and for different bands.  相似文献   

2.
We have analyzed luminosity profiles of E galaxies studied by Strom and Strom in six clusters of galaxies. We have found a relationship between radius, luminosity, and surface brightness for galaxies in each of the clusters. A dependence of the zero point of the relation with the local projected density of galaxies is likewise found:r e proj –0.14 L 0.445 I e –0.413 . This relationship implies (i) that there is not a universal luminosity profile for elliptical galaxies, (ii) the environmental variation of radius is larger than that produced by mergers of galaxies, (iii) distance to a galaxy can be estimated from apparent magnitude, surface brightness, angular size, and apparent local projected density of galaxies.  相似文献   

3.
Using an apparent-magnitude limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 7(SDSS DR7), we investigate the correlation between morphologies and luminosity for the Main galaxy sample. Our Main galaxy sample is divided into two classes: Main galaxies only with TARGET_GALAXY flag (bestPrimtarget = 64), and ones also with other flags. It is found that for the second class Main galaxies, the early-type proportion monotonously increases with increasing luminosity nearly in the whole luminosity region. But for the first class Main galaxies, the early-type proportion increases with increasing luminosity only within a certain luminosity region (−22.2 < M r  < −19.8). In the high luminosity region (M r  < −22.2), the early-type proportion of the first class Main galaxies even decreases dramatically with increasing luminosity. We also analyze the correlation between morphologies and luminosity of galaxies around the peak of the redshift distribution ( 0.07 ≤ z ≤ 0.08 ). In such a narrow redshift region, we still observe strong correlation between morphologies and luminosity, which shows that this correlation is fundamental.  相似文献   

4.
The apparatus of correlation gamma function (Γ*(r)) is used to analyze volume-limited samples from the DR4 Main Galaxy Sample of the SDSS survey with the aim of determining the characteristic scales of galaxy clustering. Up to 20h ?1 Mpc (H 0 = 65 km s?1 Mpc?1), the distribution of galaxies is described by a power-law density—distance dependence, Γ*(r) ∝ r , with an index γ ≈ 1.0. A change in the state of clustering (a significant deviation from the power law) was found on a scale of (20–25) h ?1 Mpc. The distribution of SDSS galaxies becomes homogeneous (γ ~ 0) from a scale of ~60h ?1 Mpc. The dependence of γ on the luminosity of galaxies in volume-limited samples was obtained. The power-law index γ increases with decreasing absolute magnitude of sample galaxies M abs. At M abs ~ ?21.4, which corresponds to the characteristic value M r * of the SDSS luminosity function, this dependence exhibits a break followed by a more rapid increase in γ.  相似文献   

5.
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters (n≥200) than the large stellar velocity dispersion subsample.  相似文献   

6.
We study the variations of the properties of groups of galaxies with dynamical masses of 1013 M <M 200<1014 M , represented by two samples: one has redshifts of z < 0.027 and is located in the vicinity of the Coma cluster, the other has z > 0.027, and is located in the regions of the following superclusters of galaxies: Hercules, Leo, Bootes, Ursa Major, and Corona Borealis. Using the archived data of the SDSS and 2MASX catalogs, we determined the concentration of galaxies in the systems by measuring it as the inner density of the group within the distance of the fifth closest galaxy from the center brighter than M K = ?23. m 3. We also measured the magnitude gap between the first and the fourth brightest galaxies ΔM 14 located within one half of the selected radius R 200, the fraction of early-type galaxies, and the ratio of bright dwarf galaxies (Mr = [?18. m 5,?16. m 5]) to giant galaxies (M r < ?18. m 5) (DGR) within the radius R 200. The main aim of the investigation is to find among these characteristics the ones that reflect the evolution of groups of galaxies.We determined that the ratio of bright dwarf galaxies to early-type giant galaxies on the red sequence depends only on the x-ray luminosity: the DGR increases with luminosity. The fraction of early-type galaxies in the considered systems is equal, on average, to 0.65 ± 0.01, and varies significantly for galaxies with σ200 < 300 kms?1. Based on the luminosity of the brightest galaxy, the magnitude gap between the first and the fourth brightest galaxies in the groups, and on model computations of these parameters, we selected four fossil group candidates: AWM4, NGC0533, NGC0741, and NGC6098 (where the brightest galaxy is a double).We observe no increase in the number of faint galaxies (the α parameter of the Schechter function is less than 1) in our composite luminosity function (LF) for galaxy systems with z < 0.027 in the M K = [?26m,?21. m 5] range, whereas earlier we obtained α > 1 for the LF of the Hercules and Leo superclusters of galaxies.  相似文献   

7.
We analyze the properties of galaxy clusters in the region of the Leo supercluster using observational data from the SDSS and 2MASS catalogs. We have selected 14 galaxy clusters with a total dynamical mass of 1.77 × 1015 M in the supercluster region 130 by 60 Mpc in the plane of the sky (z ≃ 0.037). The composite luminosity function of the supercluster is described by a Schechter function with parameters that, within the error limits, correspond to field galaxies and does not differ from the luminosity function of the richer Ursa Major (UMa) supercluster for the same luminosity range (the bright end). The luminosity functions of early-type and late-type galaxies in Leo at the faint end are characterized by a sharp decrease (α = −0.60±0.08) and a steep increase (α = −1.44± 0.10) in the number of galaxies, respectively. In the virialized cluster regions, the fraction of early-type galaxies selected by the u-r color, bulge contribution, and concentration index among the galaxies brighter than M K * + 1 is, on average, 62%. This fraction is smaller than that in the UMa supercluster at a 2–3σ level. The near-infrared luminosities of galaxy clusters down to a fixed absolute magnitude correlate with their masses almost in the same way as for other samples of galaxy clusters (L 200,K M 2000.63±0.11)).  相似文献   

8.
Using the method of searching for arbitrary shaped voids in the distribution of volume-limited samples of galaxies from the DR5 SDSS survey, we have identified voids and investigated their characteristics and the change in these characteristics with decreasing M lim (from ?19.7 to ?21.2, H 0 = 100 km s?1 Mpc?1)—the upper limit on the absolute magnitude of the galaxies involved in the construction of voids. The total volume of the 50 largest voids increases with decreasing M lim with a break near M* = ?20.44—the characteristic value of the luminosity function for SDSS galaxies. The mean overdensity in voids increases with decreasing M lim also with a weak break near M*. The exponent of the dependence of the volume of a void on its rank increases significantly with decreasing M lim starting from M lim ~ ?20.4 in the characteristic range of volumes, which reflects the tendency for greater clustering of brighter galaxies. The averaged profile of the galaxy overdensity in voids has a similar pattern almost at all M lim. The galaxies mostly tend to gravitate toward the void boundaries and to avoid the central void regions; the overdensity profile is flat in the intermediate range of distances from the void boundaries. The axial ratios of the ellipsoids equivalent to the voids are, on average, retained with changing M lim and correspond to elongated and nonoblate void shapes, but some of the voids can change their shape significantly. The directions of the greatest void elongations change chaotically and are distributed randomly at a given M lim. The void centers show correlations reflecting the correlations of the galaxy distribution on scales (35–70)h ?1 Mpc. The galaxy distribution in the identified voids is nonrandom—groups and filaments can be identified. We have compared the properties of the galaxies in voids (in our case, the voids are determined by the galaxies with absolute magnitudes M abs < M lim = ?20.44, except for the isolated galaxies) and galaxies in structures identified using the minimum spanning tree. A bimodal color distribution of the galaxies in voids has been obtained. A noticeable difference is observed in the mean color indices and star formation rates per unit stellar mass of the galaxies in dense regions (structures)—as expected, the galaxies in voids are, on average, bluer and have higher log (SFR/M star). These tendencies become stronger toward the central void regions.  相似文献   

9.
With the goal of investigating the degree at which the MIR luminosity in the Wide-field Infrared Survey Explorer (WISE) traces the SFR, we analyse 3.4, 4.6, 12 and 22 ??m data in a sample of ~140,000 star-forming galaxies or star-forming regions covering a wide range in metallicity 7.66 < 12 + log(O/H)<9.46, with redshift z?< 0.4. These star-forming galaxies or star-forming regions are selected by matching the WISE Preliminary Release Catalog with the star-forming galaxy Catalog in SDSS DR8 provided by JHU/MPA1?. We study the relationship between the luminosity at 3.4, 4.6, 12 and 22 ??m from WISE and H?? luminosity in SDSS DR8. From these comparisons, we derive reference SFR indicators for use in our analysis. Linear correlations between SFR and the 3.4, 4.6, 12 and 22 ??m luminosity are found, and calibrations of SFRs based on L(3.4), L(4.6), L(12) and L(22) are proposed. The calibrations hold for galaxies with verified spectral observations. The dispersion in the relation between 3.4, 4.6, 12 and 22 ??m luminosity and SFR relates to the galaxy??s properties, such as 4000 ? break and galaxy color.  相似文献   

10.
We will present first results of ESO-VLT AO-assisted integral-field spectroscopy of a sample of X-ray bright AGN with redshifts of 0.04 < z < 1. We constructed this sample by cross-correlating the SDSS and ROSAT surveys and utilizing typical AO constraints. This sample allows for a detailed study of the NIR properties of the nuclear and host environments with high spectral resolution on the 100 pc scale. These objects can then be compared directly to the local (z < 0.01) galaxy populations (observed without AO) at the same linear scale. As a current example, we will present observations of the z = 0.034 Seyfert 1.8 galaxy Mrk 609 with the new AO-assisted integral-field spectrometer SINFONI at the VLT. The successful observations show, that in the future – while having observed more objects – we will be able to determine the presence, frequency and importance of nuclear bars and/or circum-nuclear star forming rings in these objects and address the question of how these X-ray luminous AGN and their hosts are linked to optically/UV-bright QSOs, low-z QSOs/radio galaxies, or ULIRGs.  相似文献   

11.
In this paper we study the relations between the main characteristics of groups and clusters of galaxies using the archival data of the SDSS and 2MASX catalogs. We have developed and implemented a new method of determining the size of galaxy systems and their effective radius which contains half of the galaxies and not half the luminosity, since the luminosity of the brightest galaxy in a group can account for over 50% of the total luminosity of the group. The derived parameters (log LK, logRe, and log σ200) for 94 systems of galaxies (0.0038 < z < 0.09) determine the Fundamental Plane (FP), which, with a scatter of 0.15, is similar in form to the FP of galaxy clusters obtained by Schaeffer et al. (1993) and D’Onofrio et al. (2013) with other methods and for different bands. We show that the FP in the near-infrared region (NIR) for 94 galaxy systems has the form of LK\(R_e^{0.70 \pm {{0.13}_\sigma }1.34 \pm 0.13}\), whereas in x-rays it has the form of—LX\(R_e^{1.15 \pm {{0.39}_\sigma }2.56 \pm 0.40}\). The form of the FP for groups and clusters is consistent with the FP for early-type galaxies determined in the same way. The form of the FP for galaxy systems deviates from the shape that one would expect from virial predictions. Adding the mass-to-light ratio as a fourth independent parameter has little effect on this deviation, but decreases the scatter of the FP for a sample of rich galaxy clusters by 12%.  相似文献   

12.
For a sample of 8156 emission-line galaxies from the Sloan Digital Sky Survey Data Release 4 (SDSS DR4), we have determined the current star formation rates (SFR) from three parameters: the Hα luminosity of H II regions corrected for the aperture and interstellar extinction (N = 7006 galaxies), the far-infrared luminosity (IRAS data, N = 350), and the monochromatic luminosity in the radio continuum at ν = 1.4 GHz (NVSS data, N = 475). A Salpeter initial mass function with the range of stellar masses 0.1–100 M was assumed in the SFR FIR calculations. In calculating SFR1.4, we assumed that the fraction of the thermal emission in the total radio continuum emission of the galaxy at 1.4 GHz was 10%. An upper limit for the starburst age has been determined for galaxies with known abundances of heavy elements. We compare our results with those of similar studies for isolated and Markarian H II galaxies.  相似文献   

13.
We investigated the properties of galaxy clusters in the region of the Hercules supercluster using observational data from the SDSS and 2MASS catalogs and the NED. We have selected 13 galaxy clusters with a total dynamical mass of 4.82 × 1015 M in a 100 × 45 Mpc supercluster region in the plane of the sky (0.030 < z < 0.041). In addition, our sample includes eight clusters from the immediate neighborhoods of the superclusters and ten field clusters at the same z. The derived properties of the rich Hercules supercluster are shown in comparison with the data for the poor Leo supercluster. The main parameters of the virialized galaxy cluster regions in the near infrared (K s ) for the Hercules supercluster differ from those for the Leo supercluster: the number of galaxies and the total luminosity (to a limiting magnitude of ?21 · m 5) increase with cluster mass (L K,200M 200 0.91±0.07 and N 200M 200 0.94±0.07 ), but the dependences are steeper by 0.28 and 0.22. In the virialized cluster regions, the fraction of early-type galaxies selected by the bulge contribution, concentration index, and u t= r color is, on average, 66% (60% in Leo, 70% in the field) among the galaxies brighter than ?23 · m 3 and 54% (51% in Leo, 61% in the field) among the galaxies brighter than ?22 · m 3. The fraction of early-type galaxies in the superclusters does not change with galaxy cluster mass and luminosity. The composite luminosity function of the rich Hercules supercluster is described by a Schechter function and does not differ from the luminosity function of the poor Leo supercluster for the luminosity interval [?26 m , ?21 · m 5] but differs from the field luminosity function at the same z determined from ten galaxy clusters.  相似文献   

14.
Absorption by gas and dust in circumstellar Hii regions within primeval galaxies could seriously depress the far-ultraviolet continuum radiation emitted by primeval galaxies. This effect might account for the failure of Partridge (1974) and Davis and Wilkinson (1974) to detect the redshifted radiation from primeval galaxies at optical and near-infrared wavelengths. A primeval galaxy becomes very bright only during the final stages of contraction. Provided that dust can form by the time the primeval galaxy reaches peak luminosity, a significant fraction of the stellar far-ultraviolet radiation is converted into far-infrared. Thus an appropriate spectral region to search for the redshifted integrated background from primeval galaxies lies between 350 , where the 2.7 K microwave background radiation becomes important, and 150 , where other extragalactic discrete sources, such as nearby galactic nuclei, may contribute. The expected IR flux is calculated with Kaufman's (1975) model for the star formation rate in the contracting galaxy. Letz p be the redshift andT g the grain temperature when the primeval galaxy becomes very bright. Unlessz p10 orT g is fairly high, the intensity of the far-infrared radiation from primeval galaxies would be dominated by the high frequency tail of the 2.7 K microwave background. On the other hand, if dust is unimportant, we determine the spectral energy distribution of a primeval galaxy emitted in the range 912 Å to 2050 Å; we find that the luminosities are not very sensitive to the dependence of effective temperatures on metal abundance.  相似文献   

15.
It is shown that the Hubble curvem(z) for galaxies and quasars averaged over a large volume of data forms in the first approximation a single continuous curve in the interval of red shifts 10–2.5z4.5, which is satisfactorily described by the dependence .A large deviation of the observed mean dependence from the theoretical one predicted by the standard cosmology is explained by the evolution of the galaxy and especially quasar luminosity. The corresponding mid-statistical function of the absolute luminosity variation for the last 4/5 times of existence in the Universe is equal toM(z)M(z 0)=logz/z 0+2z–0.4z 2.The luminosity of the most far distant from the observed quasars on the average by 5–6 stellar magnitudes high than the luminosity of near galaxies and quasars. It is obtained that even the most far distant quasars atz5 are in the maximum of luminosity, or their extinction has just began, thus the quasar formation should be expected forz>(5–6). The relative rate of the luminosity decrease of galaxies and near quasars is rather accurately amounts in the recent epoch 7% per 109 years. The obtained average Hubble curve of galaxies and quasars is evidently the main cause of their evolution in the Universe.  相似文献   

16.
Using a volume-limited sample of Main Galaxies from SDSS Data Release 5,we investigate the dependence of galaxy properties on local environment.For each galaxy,a local three-dimensional density is calculated.We find that the galaxy morphological type depends strongly on the local environment:galaxies in dense environments have predominantly early type morphologies.Galaxy colors have only a weak dependence on the environment.This puts an important constraint on the process of galaxy formation.  相似文献   

17.
Using two volume‐limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) with the luminosity –20.0 ≤ Mr ≤ –18.5 and –22.40 ≤ Mr ≤–20.16, we have explored the environmental dependence of the fractions of red star‐forming and blue passive galaxies. It is found that the fractions of red star‐forming and blue passive galax‐ies decline mildly with increasing local density in the luminous volume‐limited sample, but in the faint volume‐limited sample these fractions rise slightly with increasing local density except that the fraction of red star‐forming decreases with density in the densest regime. Only according to statistical results of this study, it is difficult to reach the conclusion: there is an environmental dependence for color beyond that for star formation activities or for star formation activities beyond that for color. In this condition, we preferentially believe that star formation activities and color possiblely have equally strong environmental dependence. In the faint volume‐limited sample, we observe that the fraction of star‐forming galaxies‐the density relation has a “critical density” at the projected local density PLD ≈ 1 h–2 Mpc–2: below this density the fraction of star‐forming galaxies is high and nearly constant, while above this density this fraction drops rapidly. Thus, it is possible that in the densest regime of the faint volume‐limited sample, there is an environmental dependence for star formation activities beyond that for color, which leads to the fraction of red star‐forming decreasing with density in the densest regime of the faint volume‐limited sample (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this paper the magnetic superstar model is used to discuss QSO luminosity and density evolution. Our main hypotheses are that (i) mass loss from old stars in massive galaxies cools and then falls into the centre to form a nuclear disc (Bailey, 1980); and (ii) magnetic superstars in galactic nuclei condense out of gaseous material at the centre of a supermassive-magnetised disc (Kundt, 1979). On this generalised model we find that the non-thermal (synchrotron) optical luminosity scales asL opt L 3 t –7/3, whereL is the total blue luminosity of old stars in the galaxy and t is cosmic time. In addition we show that QSO co-moving density follows the lawD(t)exp-(t/t Evol)16/15 with an evolution timescalet Evol = 1.95 × 109 yr. The model as a whole is in good agreement with observations.  相似文献   

19.
The problem of the change in gravitational energy of a colliding galaxy due to tidal effects is considered. The change in the internal energy, the mass of escaping matter and the change in the mean radius of the test galaxy have been estimated for a relative velocity of 1000 km s–1 for three distances of closest approach for the following four cases: (a) both galaxies centrally concentrated, (b) both galaxies homogeneous, (c) test galaxy centrally concentrated, field galaxy homogeneous, and (d) test galaxy homogeneous, field galaxy centrally concentrated. The masses and radii of the two galaxies are taken as 1011 M and 10 kpc respectively. For simplicity, the galaxies are assumed to be spherically symmetric and the distribution of mass within a centrally concentrated galaxy is assumed to be that of a polytrope of indexn=4. The results also provide estimates for the minimum relative velocity a galaxy must have in order that it may not be captured by another to form a double system. It has been found that normally a relative velocity of less than about 500 km s–1 will lead to the formation of a double galaxy by tidal capture. In the case of a head-on collision between two centrally concentrated galaxies even a relative velocity of about 1000 km s–1 is small enough for tidal capture. The changes in the structure of the galaxies for relative velocities equal to velocity of escape are also indicated. These results show that there is no escape of matter from the test galaxy in cases (b) and (c). In the case (a) the escape of matter can be as high as 4% of the total mass. The head-on collision between galaxies are normally not accompanied by any escape of matter. All the gain in the internal energy of galaxies during such collisions results in increase in their dimensions. The fractional increase in the mean radius of the test galaxy in the head-on collision is 1.5 in the case (a), 3.2 in the case (b) and 0.01 in the case (c). In the case (d) the test galaxy will be disrupted by the tidal forces.  相似文献   

20.
We report the results of the study of red-sequence (RS) galaxies in 47 galaxy clusters (0.023 < z < 0.047) located in different environments: in the superclusters Hercules and Leo, and in the field, based on the SDSS catalog data. In the
interval, the number of bright RS dwarf galaxies in galaxy clusters increaseswith the X-ray luminosity of the cluster as logN ∝ log X 0.64 . The dwarf-to-giant ratio (DGR) does not depend on the surroundings, mass, or richness of the cluster. This ratio is seen to increase for galaxy clusters with log L X > 43.5 erg/s or σ > 520 km/s. The compositeDGR of galaxy clusters, determined both from the membership in different structures and the X-ray luminosity along the radius R 200, is minimum in the central regions of the clusters (about 0.6 ± 0.06), reaches a maximum within 0.3–0.9R 200 (about 0.9 ± 0.10), and decreases approximately to 0.7 ± 0.03 upon reaching the radius 1.4 R 200.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号