首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We study the concept of radius-to-frequency mapping using a geometrical method for the estimation of pulsar emission altitudes. The semi-empirical relationship proposed by Kijak &38; Gil is examined over three decades of radio frequency. It is argued that the emission region in a millisecond pulsar occupies the magnetosphere over a distance of up to about 30 per cent of the light-cylinder radius, and that in a normal pulsar occupies up to approximately 10 per cent of the light-cylinder radius.  相似文献   

3.
4.
5.
The viability of polar cap models for high-energy emission from millisecond pulsars is discussed. It is shown that in millisecond pulsars, polar gap acceleration along the last open field lines is radiation-reaction limited, that is, the maximum energy to which particles can be accelerated is determined by balancing the energy-loss rate (due to curvature radiation) with the gap-acceleration rate. The maximum Lorentz factor is limited by curvature radiation and is not sensitive to the specific acceleration model. However, the distance (from the polar cap) at which the Lorentz factor achieves the limit is model dependent, and can be between one-hundredth (for the vacuum gap) and above one-tenth (for the space-charge limited gap) of a stellar radius distant from the polar cap for a pulsar period P =2 ms and a surface magnetic field B =7.5104 T. Because of the radiation reaction constraint and the relatively weak magnetic field, both the expected multiplicity (number of pairs per primary particle) and the Lorentz factor of the outflowing one-dimensional magnetospheric e± plasma from the polar gap are considerably lower than those for normal pulsars. Assuming space-charge limited flow, the location of the pair production front (PPF) is estimated to occur at about one stellar radius above the polar cap, which is significantly higher than that for normal pulsars. If the observed X-ray emission originates in the region near or above the PPF, the wide hollow-cone can reproduce the observed wide double-peaked feature of the light curves without using the aligned rotator assumption.  相似文献   

6.
7.
8.
9.
10.
11.
In the advent of next generation gamma-ray missions, we present general properties of spectral features of high-energy emission above 1 MeV expected for a class of millisecond, low magnetic field (∼109 G) pulsars. We extend polar-cap model calculations of Rudak & Dyks by including inverse Compton scattering events in an ambient field of thermal X-ray photons and by allowing for two models of particle acceleration. In the range between 1 MeV and a few hundred GeV, the main spectral component is the result of curvature radiation of primary particles. The synchrotron component arising from secondary pairs becomes dominant only below 1 MeV. The slope of the curvature radiation spectrum in the energy range from 100 MeV to 10 GeV strongly depends on the model of longitudinal acceleration, whereas below ∼100 MeV all slopes converge to a unique value of 4/3 (in a ν ℱ ν convention). The thermal soft X-ray photons, which come either from the polar cap or from the surface, are Compton upscattered to a very high energy domain and form a separate spectral component peaking at ∼1 TeV. We discuss the observability of millisecond pulsars by future high‐energy instruments and present two rankings relevant for GLAST and MAGIC. We point to the pulsar J0437−4715 as a promising candidate for observations.  相似文献   

12.
13.
14.
15.
We report on multi-epoch, multifrequency observations of 64 pulsars with high spectral and time resolution. Scintillation parameters were obtained for 49 pulsars, including 13 millisecond pulsars. Scintillation speeds were derived for all 49, which doubles the number of pulsars with speeds measured in this way. There is excellent agreement between the scintillation speed and proper motion for the millisecond pulsars in our sample using the simple assumption of a mid-placed scattering screen. This indicates that the scaleheight of scattering electrons is similar to that of the dispersing electrons. In addition, we present observations of the Vela pulsar at 14 and 23 GHz, and show that the scintillation bandwidth scales as ν3.93 over a factor of 100 in observing frequency. We show that for PSR J0742−2822, and perhaps PSR J0837−4135, the Gum nebula is responsible for the high level of turbulence along their lines of sight, contrary to previous indications. There is a significant correlation between the scintillation speeds and the product of the pulsar's period and period derivative for the 'normal' pulsars. However, we believe this to be caused by selection effects both in pulsar detection experiments and in the choice of pulsars used in scintillation studies.  相似文献   

16.
Since the discovery of companions to B1257+12, it has been known that planets can exist around pulsars. Such planets may be formed in discs analogous to those around young stars, so we have searched for dust grain emission towards a sample of nine nearby millisecond pulsars. No emission is detected down to typical 2 σ limits of 5 mJy, at a wavelength of 850 μm. Using a model in which grains are heated by the pulsar spin-down luminosity, these dust flux limits correspond to disc masses of typically 10 Earth masses. The low dust limits show that nearby pulsar planets must already exist, rather than be in the process of forming, but only B1257+12 is known to have such planets. Planetary systems appear to occur around only a few per cent of pulsars and main-sequence stars, and are thus a rare phenomenon irrespective of circumstellar environment.  相似文献   

17.
We present 3 yr of timing observations for PSR J1453+1902, a 5.79-ms pulsar discovered during a 430-MHz drift-scan survey with the Arecibo telescope. Our observations show that PSR J1453+1902 is solitary and has a proper motion of  8 ±  2  mas yr−1. At the nominal distance of 1.2 kpc estimated from the pulsar's dispersion measure, this corresponds to a transverse speed of  46 ± 11   km s−1  , typical of the millisecond pulsar population. We analyse the current sample of 55 millisecond pulsars in the Galactic disc and revisit the question of whether the luminosities of isolated millisecond pulsars are different from their binary counterparts. We demonstrate that the apparent differences in the luminosity distributions seen in samples selected from 430-MHz surveys can be explained by small-number statistics and observational selection biases. An examination of the sample from 1400-MHz surveys shows no differences in the distributions. The simplest conclusion from the current data is that the spin, kinematic, spatial and luminosity distributions of isolated and binary millisecond pulsars are consistent with a single homogeneous population.  相似文献   

18.
19.
20.
Diffuse gamma-rays in the Galactic Centre region have been studied. We propose that there exists a population of millisecond pulsars in the Galactic Centre, which emit GeV gamma-rays through synchrotron-curvature radiation as predicted by outer gap models. These GeV gamma-rays from unresolved millisecond pulsars probably contribute to the diffuse gamma-ray spectrum detected by EGRET which displays a break at a few GeV. We have used a Monte Carlo method to obtain simulated samples of millisecond pulsars in the Galactic Centre region covered by EGRET  (∼ 15)  according to the different period and magnetic field distributions from observed millisecond pulsars in the Galactic field and globular clusters, and superposed their synchrotron-curvature spectra to derive the total GeV flux. Our simulated results suggest that there probably exist about 6000 unresolved millisecond pulsars in the region of angular resolution of EGRET, the emissions of which could contribute significantly to the observed diffuse gamma-rays in the Galactic Centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号