首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of investigations of the surface relief of Mercury with a classical photometric method are reported. A subject of the photometric method is the intensity of light reflected by the surface of the planet. The main data for the photometric study are the high-resolution images of Mercury received from the MESSENGER space station during its first flyby over Mercury. The images of the surface of Mercury were downloaded from the NASA web-site (http://messenger.jhuapl.edu) and converted to a digital form for photometric measurements. The reflectance characteristics of the surface were calculated according to the model of a three-dimensional scattering phase function (Shevchenko, 1979; 2004a; 2006). From the photometric processing of the space-borne images, the reflectance of four morphologic types of the surface structure of Mercury was determined. With the Hapke model of the bidirectional reflectance (Hapke, 2001), the structural inhomogeneity of the regions of the morphologic forms with centimeter-sized rough-ness was estimated.  相似文献   

2.
The main objective of this study is to develop a new photometric correction that is suitable for global Chang’ E-1 (CE-1) Interference Imaging Spectrometer (IIM) data. We considered two improvements in the accuracy of the photometric correction: (1) classifying the whole Moon’s surface into four classes (very bright rays, mature highlands, low FeO basalts, and high FeO basalts) based on the FeO contents; (2) decoupling the combined effects of the solar photometry and the detector responsivity along the cross-track. The results showed that our decoupling method could correct the non-uniformity of detector response but retain the cross-track photometry. Based on these in-flight calibrated data, spectrally continuous photometric functions of the four classes were obtained. By eliminating the contamination from highlands ejecta and low FeO basalts, the opposition surge of the high FeO maria was evident for the first time. The amplitude and width of the opposition surge presents wavelength dependence, which suggests that shadow hiding is the mechanism responsible for the opposition surge. A global lunar reflectance map whose boundaries between adjacent orbits are invisible was generated using the new four-type photometric functions. The quality of the global mosaic and the consistency of the reflectance spectra of the same area obtained in different orbits indicate the effectiveness of our photometric correction method. Although our method was specifically applied to the IIM data, the photometric correction method and the parameter values derived in this study is expected to be suitable for other optical instruments.  相似文献   

3.
Precise pointing and stabilization of the T-170M telescope (World Space Observatory Ultraviolet, WSO-UV project) is provided by the Fine Guidance System (FGS) that uses a guide star catalogue (Master Catalogue). To verify the photometric system of the Master Catalogue we have carried out ground based observations with a CCD-camera in a spectral band, close to that of FGS. We have found, that the photometric quality of the Master Catalogue is sufficient for FGS operations. The mean photometric error in the range of 14–17 mag is ±0.23 mag; its variation over the sky does not exceed the factor of two. 2% of stars from the Master Catalogue have photometric errors higher than 2 mag. We have also found a correlation between large photometric errors and the Master Catalogue flags.  相似文献   

4.
Observations of the Moon obtained by the Moon Mineralogy Mapper (M3) instrument were acquired at various local viewing geometries. To compensate for this, a visible near-infrared photometric correction for the M3 observations of the lunar surface has been derived. Images are corrected to the standard geometry of 30° phase angle with an incidence of 30° and an emission of 0°. The photometric correction is optimized for highland materials but is also a good approximation for mare deposits. The results are compared with ground-based observations of the lunar surface to validate the absolute reflectance of the M3 observations. This photometric model has been used to produce the v1.0 Level 2 delivery of the entire set of M3 data to the Planetary Data System (PDS). The photometric correction uses local topography, in this case derived from an early version of the Lunar Orbiter Laser Altimeter data, to more accurately determine viewing geometry. As desired, this photometric correction removes most of the topography of the M3 measurements. In this paper, two additional improvements of the photometric modeling are discussed: (1) an extrapolated phase function long ward of 2500 nm to avoid possible misinterpretation of spectra in the wavelength region that includes possible OH/H2O absorptions and (2) an empirical correction to remove a residual cross-track gradient in the data that likely is an uncorrected instrumental effect. New files for these two effects have been delivered to PDS and can be applied to the M3 observations.  相似文献   

5.
We describe the construction of MegaZ-LRG, a photometric redshift catalogue of over one million luminous red galaxies (LRGs) in the redshift range  0.4 < z < 0.7  with limiting magnitude   i < 20  . The catalogue is selected from the imaging data of the Sloan Digital Sky Survey (SDSS) Data Release 4. The 2dF-SDSS LRG and Quasar (2SLAQ) spectroscopic redshift catalogue of 13 000 intermediate-redshift LRGs provides a photometric redshift training set, allowing use of ann z, a neural network-based photometric-redshift estimator. The rms photometric redshift accuracy obtained for an evaluation set selected from the 2SLAQ sample is  σ z = 0.049  averaged over all galaxies, and  σ z = 0.040  for a brighter subsample  ( i < 19.0)  . The catalogue is expected to contain ∼5 per cent stellar contamination. The ann z code is used to compute a refined star/galaxy probability based on a range of photometric parameters; this allows the contamination fraction to be reduced to 2 per cent with negligible loss of genuine galaxies. The MegaZ-LRG catalogue is publicly available on the World Wide Web from http://www.2slaq.info .  相似文献   

6.
From the COMBO-17 digital sky survey data, 1,231 faint blue galaxies with photometric redshifts of 0.1 < z < 0.3 in the sky region CDFS (Chandra Deep Field South) are selected as the sample. We have studied the distributions of the photometric redshifts of these sample galaxies, in the conditions that the photometric redshifts are obtained respectively by using only optical data and by using both optical and near-infrared data. The results indicate that there are 183 galaxies whose photometric redshifts derived from both optical and infrared data are greater than 1.2, that the rms error of the derived photometric redshifts is 0.046, and that to increase the photometric SNR is also helpful for discriminating those misjudged low-redshift galaxies by using only the optical data. We have studied as well the typical spectral energy distributions (SEDs) of these galaxies in the reference system at rest. It is found that for the high-redshift galaxies the observed near-infrared flux tends to be greater than the optical flux, while for the low-redshift galaxies the observed near-infrared flux tends to be less than the optical flux.  相似文献   

7.
Ignacio Ferrín 《Icarus》2005,178(2):493-516
We present the secular light curves of eight comets listed in the title. Two plots per comet are needed to study these objects: a reduced magnitude (to Δ=1 AU = geocentric distance) vs time, and a reduced magnitude vs LogR (R=heliocentric distance). A total of over 16 new parameters, are measured from both plots, and give an unprecedented amount of information to characterize these objects: the onset of sublimation (RON), the offset of sublimation (ROFF), the time lag at perihelion (LAG), the absolute magnitude (m(1,1)), the maximum magnitude at perihelion (mMAX(1,LAG)), the nuclear magnitudes (VN), the amplitude of the secular light curve (ASEC), plus several others, and the photometric functions needed to describe the envelope. The most significant findings of this investigation are: (a) The envelope of the observations is the best representation of the secular light curve. (b) The H10 photometric system is unable to explain the curves and a new set of photometric rules and functions is used. (c) Only four comets exhibit power laws in their secular light curves, and only partially: 1P, 19P, 21P, and 81P. All others have to be described by more complex functions. Of the four, three exhibit a break of the power law, requiring two laws pre-perihelion and one post-perihelion. The reason for this behavior is not understood. (d) We predict the existence of a photometric anomaly in the secular light curve of 67P/Churyumov-Gerasimenko, evidenced by a region of diminished activity from −119 to −6 days before perihelion, that might be interpreted as a topographic effect or the turn off of an active region. (e) We define a photometric parameter (P-AGE) that attempts to measure the relative age of a comet through the activity exhibited in the secular light curve. 81P/Wild 2 (a comet that has recently entered the inner Solar System) is confirmed as a young object, while 28P/Neujmin 1 is confirmed as a very old comet. (f) Arranging the comets by P-AGE also classifies them by shape. A preliminary classification is achieved. (g) The old controversy of what is a nuclear magnitude is clearly resolved.  相似文献   

8.
In order to find the physical parameters which determine the accuracy of pho- tometric redshifts, we compare the spectroscopic and photometric redshifts (photo-z's) for a large sample of ~ 80 000 SDSS-2MASS galaxies. Photo-z's in this paper are es- timated by using the artificial neural network photometric redshift method (ANNz). For a subset of~40000 randomly selected galaxies, we find that the photometric redshift recovers the spectroscopic redshifi distribution very well with rms of 0.016. Our main results are as follows: (1) Using magnitudes directly as input parameters produces more accurate photo-z's than using colors; (2) The inclusion of 2MASS (3, H, Ks) bands does not improve photo-z's significantly, which indicates that near infrared data might not be important for the low-redshift sample; (3) Adding the concentration index (essentially the steepness of the galaxy brightness profile) as an extra input can improve the photo-z's estimation up to~10 percent; (4) Dividing the sample into early- and late-type galaxies by using the concentration index, normal and abnormal galaxies by using the emission line flux ratios, and red and blue galaxies by using color index (g - r), we can improve the accuracy of photo-z's significantly; (5) Our analysis shows that the outliers (where there is a big difference between the spectroscopic and photometric redshifts) are mainly correlated with galaxy types, e.g., most outliers are late-type (blue) galaxies.  相似文献   

9.
We present our extensive project of the On‐line database of photometric observations of magnetic chemically peculiar stars to collect published data of photometric observations of magnetic chemically peculiar (mCP) stars in the optical and near IR regions. Now the nascent database contains more than 107 000 photometric measurements of 102 mCP stars and will be continually supplemented with published or new photometric data on these and about 150 additional mCP stars. This report describes the structure and organization of the database. Moreover, for the all included data we estimated the error of measurements and the effective amplitudes of the light curves. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
11.
Results from optical photometric observations of the pre-main sequence star GM Cep are reported in the paper. The star is located in the field of the young open cluster Trumpler 37—a region of active star formation. GM Cep shows a large amplitude rapid variability interpreted as a possible outburst from EXor type in previous studies. Our data from BVRI CCD photometric observations of the star are collected from June 2008 to February 2011 in Rozhen observatory (Bulgaria) and Skinakas observatory (Crete, Greece). A sequence of sixteen comparison stars in the field of GM Cep was calibrated in the BVRI bands. Our photometric data for a 2.5 years period show a high amplitude variations ($\Delta V \sim2\mbox{$\Delta V \sim2\mbox{) and two deep minimums in brightness are observed. The analysis of collected multicolor photometric data shows the typical of UX Ori variables a color reversal during the minimums in brightness. On the other hand, high amplitude rapid variations in brightness typical for the Classical T Tauri stars also present on the light curve of GM Cep. Comparing our results with results published in the literature, we conclude that changes in brightness are caused by superposition of both: (1) magnetically channeled accretion from the circumstellar disk, and (2) occultation from circumstellar clouds of dust or from features of a circumstellar disk.  相似文献   

12.
We present a new approach, namely kernel regression, to determine photometric redshifts for 399 929 galaxies in the Fifth Data Release of the Sloan Digital Sky Survey (SDSS). Kernel regression is a weighted average of spectral redshifts of the neighbours for a query point, and higher weights are associated with points that are closer to the query point. One important design decision when using kernel regression is the choice of bandwidth. We apply 10-fold cross-validation to choose the optimal bandwidth, which is obtained as the cross-validation error approaches its minimum. The results show that the optimal bandwidth is different for different input patterns: the lowest rms error of photometric redshift estimation arrives at 0.019 using colour+eClass as the inputs, the lowest rms errors comes to 0.020 using ugriz +eClass as the inputs. Where eClass is a galaxy spectral type, and 0.021 using colour+ r as the inputs. Thus, in addition to parameters such as magnitude and colour, eClass is a valid parameter with which to predict photometric redshifts. Moreover, the results suggest that the accuracy of estimating photometric redshifts is improved when the sample is divided into early-type and late-type galaxies; in particular, for early-type galaxies, the rms scatter is 0.016 with colour+eClass as the inputs. In addition, kernel regression achieves high accuracy when predicting the photometric eClass  (σrms= 0.034)  using colour+ r as the input pattern. For kernel regression, the accuracy of the photometric redshifts does not always increase with the number of parameters considered, but is satisfactory only when appropriate parameters are chosen. Kernel regression is a comprehensible and accurate regression method. Experiments reveal the superiority of kernel regression over other empirical training approaches.  相似文献   

13.
In 2006, a complete database of the international campaign on photometric observations of the Galilean satellites of Jupiter in the 1997 epoch of mutual occultations and eclipses was published. Only two thirds of the observations were considered by other authors beforehand. In this study, we have processed the whole observational database with an original technique in order to obtain the astrometric data. We determined 301 relative positions of the satellites from photometric observations performed at 50 observatories around the world. The results are put into a common database of all observations of the natural planetary satellites called the Natural Satellites Data Center (NSDC) available on the Internet site http://www.sai.msu.ru/neb/nss/index.htm. The influence of random and systematic errors on the accuracy of determining the coordinates of satellites has been analyzed. It has been shown that the largest systematic errors are caused by inaccurate elimination of the background of the photometric measurements and by the erroneous data on the albedo of satellites. The actual accuracy of astrometric results is 0.05″ and 0.07″ in right ascension and declination, respectively. New recommendations for photometric observations of satellites during the considered phenomena have been developed in order to avoid the systematic errors.  相似文献   

14.
The determination for asteroids’ spin parameters is very important for the physical study of asteroids and their evolution. Sometimes, the low amplitude of light curves and kinds of systematic errors in photometric data prevent the determination of the asteroids’ spin period. To solve such a problem, we introduced the de-correlation methods developed in searching for exoplanetary transit signal into the asteroid’s data reduction in this paper. By applying the principle of Collier Cameron (MNRAS 373:799–810, 2006) and Tamuz et al. (MNRAS 356:1466–1470, 2005)’s, we simulated the systematic effects in photometric data of asteroid, and removed those simulated errors from photometric data. Therefore the S/N of intrinsic signals of three selected asteroids are enhanced significantly. As results, we derived the new spin periods of 18.821 ± 0.011 h, 28.202 ± +0.071 h for (431) and (521) respectively, and refined the spin period of (524) as 14.172 ± 0.016 h.  相似文献   

15.
We present a comparison between the published optical, infrared (IR) and CO spectroscopic redshifts of 15 (sub)mm galaxies and their photometric redshifts as derived from long-wavelength (radio–mm–far-IR) photometric data. The redshift accuracy measured for 12 submillimetre (submm) galaxies with at least one robustly determined colour in the radio–mm–far-IR regime is  δ z ≈ 0.30 (rms)  . Despite the wide range of spectral energy distributions in the local galaxies that are used in an unbiased manner as templates, this analysis demonstrates that photometric redshifts can be efficiently derived for submm galaxies with a precision of  δ z < 0.5  using only the rest-frame far-IR to radio wavelength data.  相似文献   

16.
In Lima et al. we presented a new method for estimating the redshift distribution,   N ( z )  , of a photometric galaxy sample, using photometric observables and weighted sampling from a spectroscopic subsample of the data. In this paper, we extend this method and explore various applications of it, using both simulations and real data from the Sloan Digital Sky Survey (SDSS). In addition to estimating the redshift distribution for an entire sample, the weighting method enables accurate estimates of the redshift probability distribution,   p ( z )  , for each galaxy in a photometric sample. Use of   p ( z )  in cosmological analyses can substantially reduce biases associated with traditional photometric redshifts, in which a single redshift estimate is associated with each galaxy. The weighting procedure also naturally indicates which galaxies in the photometric sample are expected to have accurate redshift estimates, namely those that lie in regions of photometric-observable space that are well sampled by the spectroscopic subsample. In addition to providing a method that has some advantages over standard photo- z estimates, the weights method can also be used in conjunction with photo- z estimates e.g. by providing improved estimation of   N ( z )  via deconvolution of   N ( z phot)  and improved estimates of photo- z scatter and bias. We present a publicly available   p ( z )  catalogue for ∼78 million SDSS DR7 galaxies.  相似文献   

17.
The lunar photometric function, which describes the dependency of the observed radiance on the observation geometry, is used for photometric correction of lunar visible/near-infrared data. A precise photometric correction parameter set is crucial for many applications including mineral identification and reflectance map mosaics. We present, for the first time, spectrally continuous photometric correction parameters for both sides of the Moon for wavelengths in the range 0.5-1.6 μm and solar phase angles between 5° and 85°, derived from Kaguya (SELENE) Spectral Profiler (SP) data. Since the measured radiance also depends on the surface albedo, we developed a statistical method for selecting areas with relatively uniform albedos from a nearly 7000-orbit SP data set. Using the selected data set, we obtained empirical photometric correction parameter sets for three albedo groups (high, medium, and low). We did this because the photometric function depends on the albedo, especially at phase angles below about 20° for which the shadow hiding opposition effect is appreciable. We determined the parameters in 160 bands and discovered a small variation in the opposition effect due to the albedo variation of mafic mineral absorption. The consistency of the photometric correction was checked by comparing observations made at different times of the same area on the lunar surface. Variations in the spectra obtained were lower than 2%, except for the large phase angle data in mare. Lastly, we developed a correction method for low solar elevation data, which is required for high latitude regions. By investigating low solar elevation data, we introduced an additional correction method. We used the new photometric correction to generate a 1° mesh global lunar reflectance map cube in a wavelength range of 0.5-1.6 μm. Surprisingly, these maps reveal that high latitude (?75°) regions in both the north and south have much lower spectral continuum slopes (color ratio r1547.7nm/r752.8nm ? 1.8) than the low and medium latitude regions, which implies lower degrees of space weathering.  相似文献   

18.
We present a new catalogue, the Imperial IRAS -FSC Redshift Catalogue (IIFSCz), of 60 303 galaxies selected at 60 μm from the IRAS Faint Source Catalogue (FSC). The IIFSCz consists of accurate position, optical, near-infrared and/or radio identifications, spectroscopic redshift (if available) or photometric redshift (if possible), predicted far-infrared (FIR) and submillimetre (submm) fluxes ranging from 12 to 1380 μm based upon the best-fitting infrared template. About 55 per cent of the galaxies in the IIFSCz have spectroscopic redshifts, and a further 20 per cent have photometric redshifts obtained through either the training set or the template-fitting method. For S(60) > 0.36 Jy, the 90 per cent completeness limit of the FSC, 90 per cent of the sources have either spectroscopic or photometric redshifts. Scientific applications of the IIFSCz include validation of current and forthcoming infrared and submm/mm surveys such as AKARI , Planck and Herschel , follow-up studies of rare source populations, large-scale structure and galaxy bias, local multiwavelength luminosity functions and source counts. The catalogue is publicly available at http://astro.imperial.ac.uk/~mrr/fss/ .  相似文献   

19.
Astrometric observations at different zenith distances have been performed in Dresden in an area centered atNGC 6791 where there are some stars with reliable color information (widely dispersed spectral types in the MK systemand color indices BTVT) as well as with accurate positions from Tycho‐2 catalog. The results are used to estimate how significant improvements in stellar positions may be when accurate corrections for color refraction are taken into account. We have treated two cases for refraction calculations: (1) a photometric case for color indices and (2) a spectral case for spectral types and luminosity classes. To calculate refraction we use Stone's modified computer code (Malyuto & Meinel 2000). To treat the photometric case we have calculated the synthetic color indices for the spectral energy distributions of Sviderskiene (1988). The positional improvements due to including color refraction corrections are significant and slightly larger in the spectral case. An improvement of about 15% is reached at a zenith distance of 65°. Our basic conclusion is that color refraction should be taken into account for obtaining accurate stellar positions from ground based observations at larger zenith distances. Reliable refraction corrections may be calculated from spectral and/or photometric data.  相似文献   

20.
Summary. This review is primarily directed to the question whether photometric solar analogues remain such when subjected to detailed spectroscopic analyses and interpreted with the help of internal stucture models. In other words, whether the physical parameters: mass, chemical composition, age (determining effective temperature and luminosity), chromospheric activity, equatorial rotation, lithium abundance, velocity fields etc., we derive from the spectral analysis of a photometric solar analogue, are really close to those of the Sun. We start from 109 photometric solar analogues extracted from different authors. The stars selected had to satisfy three conditions: i) their colour index must be contained in the interval: –0.69, ii) they must possess a trigonometric parallax, iii) they must have undergone a high resolution detailed spectroscopic analysis. First, this review presents photometric and spectrophotometric researches on solar analogues and recalls the pionneering work on these stars by the late Johannes Hardorp. After a brief discussion on low and high resolution spectroscopic researches, a comparison is made between effective temperatures as obtained, directly, from detailed spectral analyses and those obtained, indirectly, from different photometric relations. An interesting point in this review is the discussion on the tantalilizing value of the of the Sun, and the presentation of a new reliable value of this index. A short restatement of the kinematic properties of the sample of solar analogues is also made. And, finally, the observational diagram, obtained with 99 of the initially presented 109 analogues, is compared to a theoretical diagram. This latter has been constructed with a grid of internal structure models for which, (very important for this investigation), the Sun was used as gauge. In analysing the position, with respect to the Sun, of each star we hoped to find a certain number of stars tightly neighbouring the Sun in mass, chemical composition and state of evolution. The surprising result is that the stars occupy in this HR Diagram a rather extended region around the Sun, many of them seem more evolved and older than the Sun, and only 4 of the evolved stars seem younger. The age of some stars in the sample is also discussed in terms of chromospheric activity and Li-content. Our conclusion is much the same as that contained in previous papers we have written on the subject: in spite of a much larger number of stars, we have not been able to nominate a single star of the sample for a “perfect good solar twin”. Another aim in beginning, 25 years ago, this search for solar analogues, was to have ready a bunch of stars resembling the Sun and analysed spectroscopically in detail, in order that, when planets hunters of solar type stars, finally would have found such a specimen, we would have been able to immediately compare the physical parameters of this star to those of the Sun. We have been lucky enough: one of the good solar analogues we present herewith, is 51 Pegasi (HD 217014) which, according to the very recent observations by Mayor and Queloz (1995), has a planet orbiting around it. And what is more: two other stars possessing planets: 47 Ursae Majoris (HD 95128) and 70 Virginis (HD 117176), have just been discovered by Marcy and Butler (187 Meeting of the AAS, January 1996). One of them, 47 Ursae Majoris, is also included in the list of photometric solar analogues. The other star, 70 Virginis, has only been included after the “Planets News”, because the colour index of this star is slightly higher than the prescribted limit of the selection, (, instead, 0.69). It would have been a pity to leave the third ” planet star out of the competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号