首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to evaluate the geological record of climatic change in neritic carbonates, we studied Late Miocene rock outcrops in southern Spain. Six episodes of reef growth are documented (Burdigalian to Messinian) in Neogene basins of the Betic Cordillera, which were located close to the margin of the global reef belt. The reefs are characterized by various zooxanthellate corals which decrease in diversity with time, andHalimeda; the youngest reefs of the latest Messinian are characterized by the dominance of the genusPorites. Late Miocene coral reefs and reef-rimmed platforms alternate over time with non-reefal carbonate ramps characterized by skeletal calcirudites or with gypsum such as that formed during the Messinian salinity crisis. The calcirudites lack reef corals, calcified green algae and extensive marine cement, but exhibit skeletal components described from both modern and fossil nontropical carbonates. These include bryozoans, mollusks, foraminifers, echinoderms and minor balanids, as well as coralline algae of a bryomol association. The presence of some larger foraminifers indicates high temperatures, close to the lower temperature threshold of the reef assemblage. Sea level lowstands and highstands are documented by wedges of bryomol carbonate and chlorozoan patch reefs or prograding platforms. Thus, temperate climate depositional modes correspond to relatively low sea levels, and warm-water modes to high sea levels. The Neogene infill of the Agua Amarga and Sorbas basins documents two of these cycles. Other climate/sea-level cycles (including Messinian gypsum in the cool water depositional mode) are well established in adjacent Neogene basins in southern Spain. This type of composite sequence seems to occur only along the margin of the global reef belt and indicates an oscillatory latitudinal movement of the margin, which is associated with global climatic change. The analysis of turnover in neritic depositional carbonate systems may therefore be considered a sensitive tool for reconstructing climatic change from the fossil record. However, warm-water modes and temperate-water modes of carbonate sedimentation and diagenesis differ significantly. For this reason the interpretation of composite system sequences by sequence stratigraphy requires an extended concept. The particular type of mixed bryomolchlorozoan depositional sequence also bears some potential for drowning, because sea level rise may be faster than the net production rate of temperate carbonate systems.  相似文献   

2.
杨振  张光学  张莉 《地球科学》2016,41(8):1349-1360
生物礁及碳酸盐台地是南海南部重要的油气储层之一,但目前对万安盆地生物礁的识别及碳酸盐台地沉积相带的划分尚不够深入.基于钻井和地震数据对该区的生物礁及碳酸盐台地进行了精细刻画,万安盆地中生物礁及碳酸盐台地的发育可分为4个演化阶段:早中新世时期,碳酸盐台地初始发育,台地规模小、数量少,零星分布于盆地中部;中中新世台地发育进入繁盛阶段,主要分布于北部隆起、中部隆起及隆起周缘的斜坡之上,横向上呈东、西带状展布,此时期的生物礁以台地边缘礁和块状礁为主;至晚中新世时期,碳酸盐台地开始衰退,而生物礁类型全、数量多,包括台地边缘礁、块状礁、塔礁、点礁等;上新世以来,生物礁及碳酸盐台地全面被淹没,盆地内部不再有生物礁及碳酸盐台地的发育.构造作用和相对海平面变化控制了碳酸盐台地的发育演化过程,古近纪基底断裂产生的地形控制了生物礁及碳酸盐台地初始发育位置及后期发育的空间分布,晚中新世以来的快速沉降和相对海平面变化控制了台地的衰退及淹没过程.   相似文献   

3.
The mixed carbonate-siliciclastic Weißenegg (Allo-) Formation records three depositional sequences corresponding approximately to the TB 2.3, TB 2.4 and TB 2.5 global cycles. Sea-level fluctuations were of the order of at least 30 m. Siliciclastic lowstand systems tracts comprise lignite deposits, reworked basement and tidal siltstones (above a tectonically enhanced sequence boundary) as well as coastal sand bars. Coastal sands of the transgressive systems tract contain distinct layers of well cemented nodules. They are interpreted as the first stage in hardground formation and record superimposed minor sea-level fluctuations. Coral patch reefs and rhodolith platforms developed during transgressive phases and were subsequently drowned and/or suffocated by siliciclastics during early highstand. Shallowing upwards siliciclastic parasequences, each terminated by a bank of rhodolith limestone, form the (late) highstand systems tract. The limestone beds record superimposed fourth-order transgressive pulses. Occasionally a carbonate highstand wedge developed. Lowstand carbonate shedding occurred where the top of a platform which suffered incipient drowning during highstand was near sealevel again during the following lowstand. Late highstand delta progradation is common.  相似文献   

4.
R. Graziano 《地学学报》1999,11(6):245-250
Drowning successions which cap carbonate platforms and flanks bear palaeoenvironmental information which is useful for genetic stratigraphy; they constitute predictive key-markers in regional to global correlations. An Early Cretaceous platform-to-basin transition has been investigated in Apulia (southern Italy) and two drowning unconformities, dated as early Valanginian and late early Aptian, have been documented. They occur at the base of thick pelagic tongues wedging toward the platform and mark the base of two depositional sequences showing distinct transgressive–regressive cycles. Timing of drowning processes, based on biostratigraphy and dynamic stratigraphy, allows the correlation of unconformities with global-scale palae- oceanographic events marked, among others, by positive spikes of well-established δ13C curves. Drowning signatures in the Apulia carbonates fit the stratigraphic, palaeoecological and possibly geochemical evidence found in global records at the same stratigraphic levels. Moreover, it is proposed that the observed drowning events were caused by palaeoceanographic crises affecting factory productivity.  相似文献   

5.
Newly-acquired seismic data reveal widespread carbonate deposits covering a large part of the northwestern South China Sea margin.Three carbonate platforms are identified to have developed on the topographic highs inherited from tectonic deformation and volcanic accretion.Across the carbonate platforms,the Miocene strata are characterized by high-amplitude seismic reflections and distinct platform architecture that overlaps older strata.The Guangle and Xisha carbonate platforms grew on faulted blocks due to South China Sea continental rifting,while the Zhongjian carbonate platform developed on a structural high induced by early Miocene volcanism.During the late Miocene,partial drowning resulted in the inhibition of platform growth,eventual platform drowning and termination of most carbonate deposition.The drowning of the Guangle and Zhongjian carbonate platforms is shown by the supply of siliciclastic sediments during the late Miocene and seems to be closely linked to late Neogene volcanic activity,whilst the drowning of the Xisha carbonate platform is primarily related to relative eustatic changes.Our results imply that tectonic activity,volcanism and eustasy are the dominant controls on the evolution of carbonate platforms on the northwestern margin of the South China Sea.  相似文献   

6.
This study investigates the controls on three-dimensional stratigraphic geometries and facies of shallow-water carbonate depositional sequences. A 15 km2 area of well-exposed Mid to Late Miocene carbonates on the margin of the Níjar Basin of SE Spain was mapped in detail. An attached carbonate platform and atoll developed from a steeply sloping basin margin over a basal topographic unconformity and an offshore dacite dome (Late Miocene). The older strata comprise prograding bioclastic (mollusc and coralline algae) dominated sediments and later Messinian Porites reefs form prograding and downstepping geometries (falling stage systems tract). Seven depositional sequences, their systems tracts and facies have been mapped and dated (using Sr isotopes) to define their morphology, stratigraphic geometries, and palaeo-environments. A relative sea-level curve and isochore maps were constructed for the three Messinian depositional sequences that precede the late Messinian evaporative drawdown of the Mediterranean. The main 3D controls on these depositional sequences are interpreted as being: (i) local, tectonically driven relative sea-level changes; (ii) the morphology of the underlying sequence boundary; (iii) the type of carbonate producers [bioclastic coralline algal and mollusc-dominated sequences accumulated in lows and on slopes of < 14° whereas the Porites reef-dominated sequence accumulated on steep slopes (up to 25°) and shallow-water highs]. Further controls were: (iv) the inherited palaeo-valleys and point-sourced clastics; (v) the amount of clastic sediments; and (vi) erosion during the following sequence boundary development. The stratigraphy is compared with that of adjacent Miocene basins in the western Mediterranean to differentiate local (tectonics, clastic supply, erosion history, carbonate-producing communities) versus regional (climatic, tectonic, palaeogeographic, sea-level) controls.  相似文献   

7.
During Serravallian through Messinian time, marine carbonates flanked topographic highs that rimmed Neogene basins in the Western Mediterranean. Middle to upper Miocene carbonate strata in the Las Negras and Nijar areas (southeastern Spain) are 50-150 m thick and display 50-200 m of shelf-to-basin relief over 1-2 km. Detailed studies in those areas document the effects of relative sea-level change on sedimentation, biotic composition, and reef development. We identify three previously unrecognized, regionally correlatable depositional sequences (DS1, DS2, DS3) that occur between the underlying basement and the overlying Terminal Carbonate Complex. The lower depositional sequences (DS1, DS2) are mostly normal marine shelf (ramp) carbonates deposited on the flanks of basement highs. The basal part of DS2 locally contains some megabreccia reef blocks composed of Tarbellastraea and Porites. These blocks are the first evidence of reef growth in the area and represent a previously unrecognized period of reef development prior to the fringing reef development. The reef blocks probably formed as upslope patch reefs that were eroded and transported to distal slope locations. The upper sequence (DS3) is characterized by clinoform strata of a Porites-dominated fringing reef complex that prograded basinward in a downstepping style with successively younger reefs forming in a topographically lower and more basinward position as a result of a net sea-level drop. Regional correlation of Miocene shallow-marine strata between basins in Spain and elsewhere in the western Mediterranean is complicated because basins were semi-isolated from adjacent basins making physical correlation impossible. In addition, age-definitive biostratigraphic markers are poorly preserved in most of the Miocene shallow-water strata; basinal sediments that are more easily dated by microfossils do not typically interfinger with the shallow-marine strata in outcrop. Even where datable microfossils are found, resolution of dating is poor. Our studies in the Las Negras and Nijar areas illustrate the usefulness of integrating sedimentological, geometric and biotic data with locally derived relative sea-level (accommodation space) curves for correlation. The relative sea-level curves for each area show remarkable similarities in shape and magnitude of sea-level changes. These curves indicate several relative sea-level fluctuations during Miocene carbonate deposition prior to the major sea-level drop at the end of DS3 deposition that culminated in the exposure of the basin margin deposits and the deposition of evaporites in basinal areas during the Messinian. The depositional sequences in the Las Negras and Nijar areas may correlate with depositional sequences of similar age throughout the southern Cabo de Gata area, in Mallorca some 600 km to the northeast, and possibly in other Mediterranean locations. The widespread occurrence and possible correlation of the depositional sequences suggest regional processes such as eustacy or tectonism for their formation. The integration of sedimentological, palaeontological and sequence stratigraphic studies, and the construction of relative sea-level (accommodation space) curves may help in the interpretation of depositional histories of shallow-marine carbonate complexes and correlation of these strata between isolated areas. Other dating methods, in addition to microfossil dating, may allow for better age determination of the sequences and aid in identifying the importance of eustacy and tectonism in sequence development.  相似文献   

8.
The Upper Cretaceous (Cenomanian-Maastrichtian) of the south-central Pyrenees shows five carbonate platform sequences where the major parameters are tectonism, relative sea-level fluctuations and inherited depositional profile. Depositional geometries and basin analysis permit an understanding of the depositional history.Five depositional sequences have been recognized: (1) The Santa Fe sequence (Middle-Upper Cenomanian), a ramp to a skeletal rimmed shelf with an escarpment bypass margin. The lower boundary is an angular unconformity and the upper one records a sea-level drop. The platform location of the margin was determined by a listric normal fault. (2) An abrupt sea-level rise drowned the former platform. The Congost sequence (Turonian-Lower Coniacian), a distally steepened ramp with erosional distal deep slope. The depositional model was largely controlled by pre-existing basin morphology. Cessation of platform development was due to a relative sea-level drop. (3) The Sant Corneli sequence (Upper Coniacian-Lower Santonian), a mixed terrigenous-skeletal homoclinal ramp with upright margin, deep slope and dysaerobic basin. The slope results from the backstepping by 24 km of the previous margin and gentle basin tilting. The platform margin remained more or less at the same position, and relief between platform and slope increased indicating continuous relative sea-level rise. The upper boundary is an angular unconformity at the platform margin produced by an abrupt sea-level rise and platform drowning, and by listric normal faulting. (4) The Vallcarga sequence (Upper Santonian-Campanian), a distal-steepened skeletal homoclinal ramp, erosional escarpment and turbidite basin, which corresponds to the Mesozoic maximum marine expansion. A listric normal fault created two depositional areas: a more or less flat footwall block with a north-northwest prograding carbonate ramp.  相似文献   

9.
The Middle Triassic–Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short period of rising sea-level with a relative increase in clastic supply. The Middle-Upper Jurassic sequence is represented by cycles of cross-bedded sandstone topped with thin mudstone that accumulated by northerly flowing braided-streams accompanying regional uplift of the Arabo–Nubian shield. It is succeeded by another regressive fluvial sequence of Early Cretaceous age due to a major eustatic sea-level fall. The Lower Cretaceous sequence is dominated by sandy braided-river deposits with minor overbank fines and basal debris flow conglomerate.  相似文献   

10.
Sediment production and accumulation on shallow carbonate platforms are controlled by allogenic, externally controlled processes (such as sea level, climate, and/or platform-wide subsidence patterns) as well as by autogenic factors that are inherent to the sedimentary system (such as lateral migration of sediment bodies). The challenge is to determine how and in which proportion these processes interacted to create the observed sedimentary record. Here, a case study of Middle Berriasian, shallow-marine carbonates of the Swiss and French Jura Mountains is presented. Based on vertical facies evolution and bedding surfaces, different orders of depositional sequences (elementary, small-scale, medium-scale) have been identified in the studied sections. The hierarchical stacking pattern of these sequences and the time span represented by the investigated interval imply that eustatic sea-level fluctuations in the Milankovitch frequency band were an important controlling factor. The small-scale and medium-scale sequences relate to the 100 and 400-kyr orbital eccentricity cycles, respectively. The elementary sequences are attributed to the 20-kyr precession cycle. Differential subsidence additionally produced accommodation changes. The present study focuses on one specific small-scale sequence situated at the base of the transgressive systems tract of large-scale sequence Be4, which is identified also in other European basins. This small-scale sequence has been logged in detail at eight different outcrops in the Jura Mountains. Detailed facies analysis reveals that different depositional environments (tidal flats, internal lagoons, open lagoons, carbonate sand shoals) were juxtaposed and evolved through time, often shifting position on the platform. The boundaries of the small-scale (100-kyr) sequence can be followed over the entire study area and thus must have formed through predominantly allogenic processes (eustatic sea-level fall, the effect of which was locally modified by differential subsidence). In two sections, five well-developed elementary sequences constitute the small-scale sequence. In the other sections, the identification of elementary sequences often is difficult because sedimentation was dominated by autogenic processes that overruled the influence of sea-level fluctuations. In low-energy, tidal-flat and internal-lagoonal settings, orbitally induced sea-level changes were recorded more faithfully, while high-energy shoals were mainly submitted to autogenic processes and the allogenic signal is masked. Consequently, the studied Jura platform experienced a combination of auto- and allogenic processes, which created a complex facies mosaic and a complex stacking of depositional sequences. Nevertheless, the 100-kyr orbital signal was strong enough to create correlatable sequence boundaries. Within a 100-kyr sequence, however, the unambiguous definition of sequences related to the 20-kyr orbital cycle is often difficult and the prediction of their lateral or vertical facies evolution impossible.  相似文献   

11.
Analyses of high resolution, seismic reflection profiles and surface sediment samples indicate that the Cat Island shelf is presently in an incipiently drowned state. This small carbonate bank is characterized by a thin (<4 m), coarse-grained, relict sediment cover, along with limited reef development, and a relatively deep (20–30 m) margin indicating that it has been unable to ‘keep-up’ with Holocene sea-level rise. Early flooding at relatively high rates of sea-level rise (4 m kyr-1, 5–8 × 103 yr BP) in conjunction with small bank size and relatively low elevation, led to a reduced rate of carbonate accumulation and incipient drowning. The shelf edge currently lies beneath the zone of maximum carbonate production and exposes the interior shelf to open marine conditions which may result in permanent drowning if it is unable to ‘catch-up’ with continued sea-level rise. Sediment facies patterns are largely oriented perpendicular or oblique to the shelf edge and appear to be controlled by shelf circulation patterns focused by bank-margin reentrants. In comparison with most of the northern Bahamas, the Cat Island shelf was flooded earlier and at relatively higher rates of Holocene sea-level rise which led to selective drowning, implying that carbonate platforms need not drown synchronously over widespread areas as commonly thought. The potential rock record of this incipient drowning event would be a thin, open-marine sand sheet of highly degraded cryptocrystalline and aggregate grains associated with poorly developed reefs.  相似文献   

12.
We describe the sequence stratigraphic organization and the associated sedimentological characteristics of Cretaceous to Eocene slope and base-of-slope carbonate successions. The study area is located in the Gargano Promontory which belongs to the stable foreland of southern Italy. The succession consists of three superimposed depositional sequences separated by major unconformities. The upper two sequences are clear examples of sequence stratigraphic organization; in fact, they both start with huge megabreccia wedges (LST) followed upward by thin pelagic units (TST) and a thick package of calciturbidites and debrites that alternate with pelagic mudstone (HST). The Cretaceous highstand systems tract is clearly arranged in a number of coarsening-upward cycles while the Eocene one which also comprises a toplap shallow water unit, is not. The Gargano stratigraphic palimpsest and the entire margin of the Apulia Platform show remarkable similarities with present-day carbonate platform margins and slopes where irregular, convex-bankward embayments suggest large-scale failures. It is clear that classic sequence stratigraphic organization can result from simple platform dismantling, having no or little time relation with global sea-level fluctuations. In fact, as the margin failure (LST) interrupts the carbonate production, a period of starvation (TST) along the entire slope and base-of-slope follows necessarily. Finally, when the margin once again becomes active and productive, sediment exportation starts again and the system begins to prograde (HST).  相似文献   

13.
The reality of the global‐scale sedimentation breaks remains controversial. A compilation of data on the Jurassic–Cretaceous unconformities in a number of regions with different tectonic settings and character of sedimentation, where new or updated stratigraphic frameworks are established, permits their correlation. Unconformities from three large reference regions, including North America, the Gulf of Mexico, and Western Europe, were also considered. The unconformities, which encompass the Jurassic‐Cretaceous, the Lower–Upper Cretaceous and the Cretaceous–Palaeogene transitions are of global extent. Other remarkable unconformities traced within many regions at the base of the Jurassic and at the Santonian–Campanian transition are not known from reference regions. A correlation of the Jurassic–Cretaceous global‐scale sedimentation breaks and eustatic curves is quite uncertain. Therefore, definition of global sequences will not be possible until eustatic changes are clarified. Activity of mantle plumes is among the likely causes of the documented unconformities.  相似文献   

14.
Miocene carbonate platforms cover a large part of the Central Vietnamese South China Sea margin. Early carbonate deposition took place on two regional platforms separated by a narrow depression developed along the trace of the East Vietnam Boundary Fault Zone. West of the East Vietnam Boundary Fault Zone, the Tuy Hoa Carbonate Platform fringes the continental margin between Da Nang and Nha Trang. Here, platform growth initiated during the Early Miocene and continued until Middle Miocene time when regional uplift led to subaerial exposure, termination of platform growth and karstification. East of the fault zone, the Triton Carbonate Platform was also initiated during the Early Miocene. Carbonate growth thrived during Early and part of Middle Miocene time and a thick, clean Lower and Middle Miocene carbonate succession cover the Triton Horst and the Qui Nhon Ridge. During the Middle Miocene, partial drowning resulted in the split-up of the Triton Carbonate Platform. Repeated partial drowning events throughout the Middle and Late Miocene resulted in westwards retreat of platform growth and eventual platform drowning and termination of carbonate deposition. Modern carbonate growth continues on isolated platforms hosting the Paracel Islands farther seawards. The onset of widespread carbonate deposition largely reflects the Early Miocene transgression of the area linked with early post-rift subsidence and the opening of the South China Sea. The mid-Neogene shift in carbonate deposition is interpreted as a consequence of regional uplift and denudation of central and south Indochina starting during Middle Miocene time when the Tuy Hoa Carbonate Platform became subaerially exposed. Stressed carbonate growth conditions on the Triton Carbonate Platform probably resulted from increased inorganic nutrient input derived from the uplifted mainland, possibly enhanced by deteriorated climatic conditions and rapid sea-level fluctuations promoting platform drowning.  相似文献   

15.
《Sedimentary Geology》2005,173(1-4):187-232
This study describes the coeval development of the depositional environments in three areas across the Mut Basin (Southern Turkey) throughout the Late Burdigalian (early Miocene). Antecedent topography and rapid high-amplitude sea-level change are the main controlling factors on stratigraphic architecture and sediment type. Stratigraphic evidence is observed for two high-amplitude (100–150 m) sea-level cycles in the Late Burdigalian to Langhian. These cycles are interpreted to be eustatic in nature and driven by the long-term 400-Ka orbital eccentricity-cycle-changing ice volumes in the nascent Antarctic icecap. We propose that the Mut Basin is an exemplary case study area for guiding lithostratigraphic predictions in early Miocene shallow-marine carbonate and mixed environments elsewhere in the world.The Late Burdigalian in the Mut Basin was a time of relative tectonic quiescence, during which a complex relict basin topography was flooded by a rapid marine transgression. This area was chosen for study because it presents extraordinary large-scale 3D outcrops and a large diversity of depositional environments throughout the basin. Three study transects were constructed by combining stratal geometries and facies observations into a high-resolution sequence stratigraphic framework. 3346 m of section were logged, 400 thin sections were studied, and 145 biostratigraphic samples were analysed for nannoplankton dates (Bassant, P., 1999. The high-resolution stratigraphic architecture and evolution of the Burdigalian carbonate-siliciclastic sedimentary systems of the Mut Basin, Turkey. PhD Thesis. GeoFocus 3. University of Fribourg, 277 p.).The first transect (Alahan) is on the northwestern basin margin. Here, the siliciclastic input is high due to the presence of a river system. The siliciclastic depocentre migrates landwards during transgressions, creating an ecological window allowing carbonates to develop in the distal part of the delta. Carbonate production shuts down during the regression when siliciclastics return. The second transect (Pirinç) is also situated on the northern basin margin 12 km to the east of the Alahan section. It shows a complete platform-to-basin transition. An isolated carbonate platform complex develops during the initial flooding, which is drowned during a time of rapid sea-level rise and environmental stress, associated with prograding siliciclastics. The shelf margin then retrogrades forming large-scale clinoform geometries and progrades before a major sea-level fall provokes slumping collapse, followed by rebuilding of the shelf margin as sea level rises again. The third transect (Silifke) has a steep asymmetric Pre-Miocene valley-topography, forming a narrow strait, linking the Mut Basin to the Mediterranean. Strong tidal currents are generated in this strait area. Siliciclastic input is low and localised. Eighty metres of cross-bedded bioclastic sands are deposited in a tidal regime at the base. Subsequently, carbonate platforms backstep against the shallow-dipping northern flank, while platforms only develop on the steep southern flank when a firm wide shallow-marine substrate is provided by a bench on the footwall block. The energy of the environment decreases with increased flooding of the strait area.Third-order sequences and higher-order parasequences have been identified in each transect and correlated between transects. Correlations were made using biostratigraphic data and high-resolution sequence stratigraphy in combination with the construction of the relative sea-level curve for each site. The third-order highstands are stacked in a proximal position and separated by exposure surfaces, while the lowstands, deposited in a distal setting, are separated by deep-marine (offshore or subphotic) deposits. The parasequences produce dominantly aggradational and progradational geometries with transgressive ravinement surfaces and exposure surfaces developing at times. Reconstruction of the depositional profile shows that the third-order sequences are driven by relative sea-level oscillations of 100–150 m, and that these may be attributed to 400-Ka orbital eccentricity cycles. The parasequences are driven by eustatic 20–30 m sea-level oscillations, which may be attributed to the 100-Ka orbital eccentricity cycles.The isolated carbonate build-ups in the Pirinç and Alahan transects develop at the same time as bioclastic tidal deposits in the Silifke area during the transgression of sequence 1. This is caused by a difference in hydrodynamic regime: a direct result of basin morphology funneling tidal currents in the Silifke area. We also demonstrate how during the highstands a siliciclastic delta system progrades in the Alahan area, while only 12 km to the east, a fringing carbonate platform develops, showing how siliciclastic input can have a very localised effect on carbonate environments.The exceptional quality of the outcrops with its variety of environments and its location at the Tethyan margin make this site a good candidate for a reference model for Burdigalian reef and platform architectures.  相似文献   

16.
On rimmed shelves of Bahamian-type, characterized by chlorozoan associations and typical of tropical seas, carbonate production keeps pace with normal sea-level rise except when rapid rise or drastic environmental changes occurs. On the other hand, open temperate carbonate shelves are characterized by low carbonate production of the foramol association (molluscs, benthic foraminifera, bryozoans, coralline algae, etc.) and generally show seaward relict sediments, because carbonate production cannot keep pace with normal rate of sea-level change.

Several examples of recent drowning foramol carbonate platforms (e.g., large areas of the Mediterranean Sea, eastern-northeastern Yucatan Shelf) as well as analogous ancient drowned foramol-type carbonate platforms (e.g., early to middle Miocene of the Southern Apennines; Miami Terrace) may support the idea that the drowning of many ancient carbonate platforms has been favoured by their biogenic (foramol sensu lato) constitution. Because of their typically low rate of growth, foramol carbonate platforms are fated to be drowned even if the sea-level rise is one with which the normal growth of chlorozoan platforms can keep pace. Similar conditions may also occur in tropical areas where variations in environmental conditions, such as the presence of cold waters, changes in salinity and increased nutrients, preclude the development of chlorozoan associations.  相似文献   


17.
A Lower Cretaceous carbonate platform depositional system with a rimmed margin and an adjacent oversteepened slope was analysed in order to determine its depositional architecture and major depositional controls. The platform is made up of coral, rudist, orbitolinid and algal limestones and, in a 12-km dip transect, there is a gradation from lagoon to platform margin, slope and basin environments, each characterized by distinctive sedimentological features and facies associations. The rimmed platform is an aggradational system developed during approximately 4·2 million years of fluctuating relative sea-level rise, and it is bounded by unconformities at its base and top. Internal cyclicity in the construction of the system is evident, mainly in platform interior and slope settings. The seven recognized sequences average 0·6 million years in duration and are related to minor relative sea-level changes. Carbonate deposition occurred in shallow- and deep-water settings during periods of high relative sea level. Reduced rates of sea-level rise led to the development of shallowing upward sequences and, eventually, to the exposure of the shallowest parts of the platform during relative sea-level falls. During low relative sea level, erosion surfaces developed on the slope, and gravitational resedimentation occurred at the toe of slope. Basinwards, resedimented units pinch out over distances of a few hundred metres. Active faults controlled sedimentation at the platform margin, promoting the development of steep slopes (up to 35°) and preventing progradation of the shallow-water platform, despite high sediment production rates. The development of sequences is interpreted to be related to tectonic activity.  相似文献   

18.
An integrated sequence stratigraphic study based on outcrop, core and wireline log data documents the combined impact of Cretaceous eustacy and oceanic anoxic events on carbonate shelf morphology and facies distributions in the northern Gulf of Mexico. The diverse facies and abundant data of the Comanche platform serve as a nearly complete global reference section and provide a sensitive record of external processes affecting Cretaceous platform development. Regional cross‐sections across the shoreline to shelf‐margin profile provide a detailed record of mixed carbonate–siliciclastic strata for the Hauterivian to lower Campanian stages (ca 136 to 80 Ma). The study window on the slowly subsiding passive margin allows the stratigraphic response to external forcing mechanisms to be isolated from regional structural processes. Three second‐order supersequences comprised of eight composite sequences are recognized in the Valanginian–Barremian, the Aptian–Albian and the Cenomanian–Campanian. The Valanginian–Barremian supersequence transitioned from a siliciclastic ramp to carbonate rimmed shelf and is a product of glacial ice accumulation and melting, as well as variable rates of mid‐ocean ridge volcanism. The Aptian–Albian supersequence chronicles the drowning and recovery of the platform surrounding oceanic anoxic events 1a and 1b. The Cenomanian–Campanian supersequence similarly documents shelf drowning following oceanic anoxic event 1d, after which the platform evolved to a deep‐subtidal system consisting of anoxic/dysoxic shale and chalk in the time surrounding oceanic anoxic event 2. Each period of oceanic anoxia is associated with composite sequence maximum flooding, termination of carbonate shelf sedimentation and deposition of condensed shale units in distally steepened ramp profiles. Composite sequences unaffected by oceanic anoxic events consist of aggradational to progradational shelves with an abundance of grain‐dominated facies and shallow‐subtidal to intertidal environments. Because they are products of eustacy and global oceanographic processes, the three supersequences and most composite sequences defined in the south Texas passive margin are recognizable in other carbonate platforms and published eustatic sea‐level curves.  相似文献   

19.
Cenomanian–Turonian strata of the south‐central Pyrenees in northern Spain contain three prograding carbonate sequences that record interactions among tectonics, sea level, environment and sediment fabric in controlling sequence development. Sequence UK‐1 (Lower to Upper Cenomanian) contains distinct lagoonal, back‐margin, margin, slope and basin facies, and was deposited on a broad, flat shelf adjacent to a deep basin. The lack of reef‐constructing organisms resulted in a gently dipping ramp morphology for the margin and slope. Sequence UK‐2 (Upper Cenomanian) contains similar shallow‐water facies belts, but syndepositional tectonic modification of the margin resulted in a steep slope and deposition of carbonate megabreccias. Sequence UK‐3 (Lower to Middle Turonian) records a shift from benthic to pelagic deposition, as the shallow platform was drowned in response to a eustatic sea‐level rise, coupled with increased organic productivity. Sequences UK‐1 to UK‐3 are subdivided into lowstand, transgressive and highstand systems tracts based on stratal geometries and facies distribution patterns. The same lithologies (e.g. megabreccias) commonly occur in more than one systems tract, indicating that: (1) the depositional system responded to more than just sea‐level fluctuations; and (2) similar processes occurred during different times throughout sequence development. These sequences illustrate the complexity of carbonate platform dynamics that influence sequence architecture. Rift tectonics and flexural subsidence played a major role in controlling the location of the platform margin, maintaining a steep slope gradient through syndepositional faulting, enhancing slope instability and erosion, and influencing depositional processes, stratal relationships and lithofacies distribution on the slope. Sea‐level variations (eustatic and relative) strongly influenced the timing of sequence and parasequence boundary formation, controlled changes in accommodation and promoted platform drowning (in conjunction with other factors). Physico‐chemical and climatic conditions were responsible for reducing carbonate production rates and inducing platform drowning. Finally, a mud‐rich sediment fabric affected platform morphology, growth geometries (aggradation vs. progradation) and facies distribution patterns.  相似文献   

20.
喜马拉雅地区的碳酸盐台地产生、发展和消亡与特提斯造山带形成的动力演化息息相关。三叠纪时,碳酸盐台地较稳定地在聂拉木陆架边缘发展起来,主要受陆源碎屑强烈干扰,碳酸盐台地在其生长面附近发育。早、中侏罗世,碳酸盐台地受构造沉降和海平面变化强烈影响,从潮下低能带向高能变浅的镶边台地旋回性发展。在台地边缘斜坡—盆地中发育一套特殊的碳酸盐“喷溢流”沉积。晚侏罗世,碳酸盐台地受被动大陆边缘初期快速热沉降影响,被黑色页岩覆盖,台地被淹没死亡。早白垩世,陆架边缘台地可能以孤立台地为特征,相当多的碳酸盐台地碎裂或崩塌,靠大陆一侧则主要为末端变陡缓坡。晚白垩世开始,碳酸盐台地主要在岗巴一带发育,发育向上变深的沉积序列,为受前陆挠曲影响产物。第三纪初,碳酸盐台地主要为缓坡,属于前陆盆地远离造山带一侧的碳酸盐台地沉积。喜马拉雅碳酸盐台地的最终消亡是由于造山抬升暴露。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号