首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary ?Silicates intergrown with diamonds from 10 diamondites (polycrystalline diamonds, framesites) have been analysed for trace element contents by laser ablation ICP-MS. The diamondites are fine- (< 100 μm) to coarse-grained (> 1 mm) rocks with abundant pores and cavities. The walls of the open cavities are covered by euhedral diamond crystals. Silicates (commonly garnets) are mostly interstitial or occupy the space in cavities and often contain inclusions of euhedral diamonds. Four diamondites contain lilac “peridotitic” garnets with low CaO contents (3.6–5.7 wt%), high Mg-numbers (0.83–0.84) and high Cr2O3 contents (3.9–6.4 wt%). Occasionally, they are accompanied by Cr-diopside. “Peridotitic” garnets have heavy rare earth element-enriched and light rare earth element-depleted chondrite-normalised patterns, occasionally with a small hump at Eu and Sm. The remaining six diamondites contain orange coloured “eclogitic” garnets with low Cr2O3 contents (< 1 wt%). “Eclogitic” garnets can be divided into two subgroups: E-I garnets have high Mg-numbers (0.84–0.85, as high as those of the “peridotitic” garnets) and higher Cr2O3 and TiO2 and lower heavy rare earth element contents than the E-II garnets. The chondrite-normalised trace element patterns of the two subgroups of “eclogitic” garnets are similar to each other, all are depleted in light rare earth elements with respect to the heavy rare earth elements and show significant positive anomalies of Zr and Hf. “Eclogitic” garnets are more depleted in highly incompatible elements (light rare earth elements, Nb and Ta) than the “peridotitic” garnets. Diamondites and their silicates very likely crystallised from a fluid phase. The trace element contents of the hypothetical fluids in equilibrium with the “peridotitic” garnets are similar to the trace element contents of kimberlitic and carbonatitic liquids. Thus, crystallisation of these diamondites from a highly alkaline liquid in the presence of carbonates can be suggested. Hypothetical melts in equilibrium with “eclogitic” garnets are highly magnesian but depleted in light rare earth elements and other highly incompatible elements relative to the typical kimberlitic, lamproitic or carbonatitic liquids. This is an unexpected result because eclogites are richer in trace elements than peridotites and fluids in equilibrium with these rocks should reflect this. The different trace element contents of fluids which precipitated, beside diamonds, “peridotitic” and “eclogitic” garnets, respectively, therefore, must be the result of differences in the properties of these fluids rather then of different source rocks, as was already suspected by Kurat and Dobosi (2000). Received October 27, 2000; revised version accepted December 29, 2001  相似文献   

2.
Summary ?Detailed petrographic, electron microprobe and ion probe studies of Archaean hydromagmatic amphiboles from the Abitibi greenstone belt, Canada, yield new insights into the origin of Al-undepleted komatiitic and Al-depleted tholeiitic and ferropicritic melts. The amphiboles are present in peridotite layers and basal chill zones of thick differentiated basic and ultrabasic sills and flows, and are titanian pargasite–hastingsite in composition. They can be grouped into two petrographic types: (1) amphibole in the groundmass; and (2) amphibole-bearing melt inclusions. The groundmass amphiboles are oikocrysts, rims and interstitial grains, present in minor to major amounts. The oikocrysts host cumulus olivines (Fo83–84) that are rounded in shape, embayed, and smaller in size. The amphibole-bearing melt inclusions are hosted in cumulus olivines (Fo83–84 in komatiitic rocks and Fo79 in tholeiitic rocks), spherical to ovoid in shape, 50–500 μm in size, and dominated modally by amphibole. The melt inclusions also contain euhedral chromite and aluminous spinel and micrometric clinopyroxene and glass, and sub-micrometric iron–nickel sulphide, chloro-apatite and ilmenite. In-situ ion probe analyses indicate the amphibole is: (1) enriched in Nb, LREE and Zr and depleted in Sr and HREE relative to primitive mantle; (2) contains up to 1–3 wt% H2O; and (3) overall displays δD values from 50‰ to −140‰, including many values in the accepted magmatic range of −60‰ to −90‰. The petrographic relationships and geochemical compositions, and comparisons to experimental systems, indicate amphibole formation by subsolidus reaction of residual hydrous silicate melt with olivine and clinopyroxene. Some of the hydrous melt intruded and was entrapped as secondary melt inclusions within relict olivine. Rapid crystallization of the hydrous melt inclusions formed amphibole+clinopyroxene±glass±spinel or solely glass. Bulk compositions of the melt inclusions, comparisons to experimental phase equilibria, and presence of magmatic water suggest amphibole crystallisation from olivine → pyroxene residual melts with at least 2–3 wt% H2O during rapid solidification of the host units. Adjustment for anhydrous phase crystallization (mainly olivine) suggests the initial melts contained 1–2 wt% H2O. Such high H2O contents and the magmatic δD compositions are consistent with the participation of H2O in melt petrogenesis. However, most Abitibi komatiites and tholeiites lack hydromagmatic minerals, making it difficult to attribute all basic and ultrabasic melts to melting in hydrous Archaean mantle. The favoured model is that some Abitibi basic and ultrabasic melts were wet and some were dry, as well as Al-depleted or Al-undepleted. Received July 24, 2001; revised version accepted January 9, 2002  相似文献   

3.
Summary Garavellite, FeSbBiS4, was found in a sample of the mineralogical collection of the Natural History Museum of the University of Florence. The sample is from the Cu–Fe deposit of Caspari, Saverland, North Rhine-Westphalia, Germany. Garavellite occurs as very rare, elongated prismatic crystals up to 100 μm in length, spatially associated with large berthierite crystals, bismuthinite, chalcopyrite, and siderite. It does not contain inclusions of or intergrowths with other minerals. Macroscopically garavellite is grey in colour and shows a grey-black streak. The Vickers hardness (VHN50) is 206 kg/mm2. In plane-polarized incident light garavellite is grey in colour, with distinct bireflectance. Reflectance percentages for Rmin and Rmax are 33.8, 41.8 (471.1 nm), 33.3, 40.9 (548.3 nm), 32.7, 39.5 (586.6 nm), and 32.4, 38.8 (652.3 nm), respectively. Garavellite is orthorhombic, space group Pnam, with the following unit-cell parameters: a = 11.413(1) ?, b = 14.164(1) ?, c = 3.759(1) ?, V = 607.7(2) ?3, and Z = 4. Electron microprobe analyses give the chemical formula Fe0.94Cu0.01As0.01Sb1.02Bi0.99S4.03. The crystal structure has been solved and refined to R = 2.38%. It consists of FeS6 octahedra forming edge-sharing chains parallel to [001] with the Sb3+ and Bi3+ cations inserted between the chains. The crystal-chemical relationships with berthierite as well as the different lone-pair stereochemical activities of antimony and bismuth in the two structures are discussed.  相似文献   

4.
Summary ?This work examines the luminescence of zircon studied by laser-induced time-resolved methods. This method allows the differentiation between luminescence centers of similar emission wavelengths, but different decay times. Samples include a suite of natural zircons, nominally pure synthetic ZrSiO4, and ZrSiO4 artificially doped by Mn, Fe, Cr, Ni, Co, Pb, Sb, Ti, Ta, V, Sc, U, U-P, and Th-P. In addition, pure ZrSiO4 samples irradiated by thermal neutrons have been studied. We have clarified the nature of several luminescence bands reported previously from time independent studies, and suggest the following as the causes of luminescence in zircon systems: 1) the yellow band with peak wavelength (λmax) = 575 nm, peak half-width (Δ) = 120–130 nm, and decay time (τ) = 30–35 μs is connected with neutron and alpha irradiation, 2) the green band with λmax = 505 nm and vibrational structure is linked to the presence of the uranyl ion, but it is only observed in artificial samples with co-doping by U and P, 3) the red band with λmax = 750 nm, Δ = 110–120 nm and τ = 3–5 ms is connected with Fe3+. We have also identified new luminescence bands, obscured by stronger emissions. These are: emission a) with λmax = 480 nm, Δ = 70–80 nm and τ = 300–325 μs, emission b) with λmax = 515 nm, Δ = 90–100 nm and τ = 500–520 μs, emission c) with λmax = 605 nm, Δ = 110–125 nm and τ = 8–10 μs. These emissions have not been detected in synthetic doped zircons and their interpretation remains the subject of further investigation. Received November 16, 2001; revised version accepted March 15, 2002  相似文献   

5.
Summary The coexistence of a colourless and a yellow garnet was observed in eclogite-facies manganese concentrations of the Mesozoic ophiolitic Zermatt-Saas Unit, at the Praborna mine near Saint-Marcel, Val d’Aoste, Italy, and in the upper Maurienne Valley, France. They occur both in oxidised metachert with hematite and braunite (+ minor Mn-pyroxenoid and tirodite, rare tiragalloite; with ardennite or piemontite in distinct layers), and in more reduced, carbonate-rich boudins included in it. The co-occurrence takes a variety of textural aspects, from coexisting euhedral garnets (10–100 μm in size for the calderite to mm-size for spessartine) to sharp overgrowths of yellow calderitic garnet on colourless spessartine, to yellow cauliflower-like masses (a few hundreds of μm in size) overgrowing colourless spessartine and showing evidence of oscillatory zoning, resorption stages and resumed growth. Sector zoning and anisotropy are common, although not consistent features. Compositions can be expressed to 95% in the quadrilateral system (Ca, Mn2+)3 (Al, Fe3+)2 Si3O12, with less than 1.0 wt% MgO and 0.8 wt% TiO2 in colourless spessartine, and less than 0.2 wt% MgO and 1.6 wt% TiO2 in yellow garnet. Calcium partitions into the ferric garnet. Coexisting pairs define two compositional gaps, bounded by values of the Fe3+/(Al + Fe3+) ratio of 10 and 15% for the first one, of 40 and 65% for the other. The optically obvious discontinuity (colour change and Becke’s line) corresponds to the narrower gap, between colourless spessartine and yellow spessartine, whereas the broad compositional gap occurs within yellow garnet, between yellow spessartine and yellow calderite, and is only revealed by back-scattered electron images. Only the latter can be a candidate for a miscibility gap, if any. Present address: Centre de Géochimie de la Surface – EOST, 1 rue Blessig, 67083 Strasbourg Cedex, France  相似文献   

6.
Summary We have undertaken a detailed study of platinum group element (PGE) mineralogy and geochemistry of disseminated sulfides associated with the marginal zone of the Chineisky layered mafic intrusion. Towards an intrusive contact the marginal zone reveals a gradual progression from gabbro-gabbronorites towards monzodiorite. Sulfides occur in all the rocks of the marginal zone including exocontact sandstone. They occur mainly as pyrrhotite, chalcopyrite, and pentlandite and show progressive enrichment in Cu towards the intrusive contact. In the same direction, PGE mineralogy reveals the following systematic changes: (1) size of PGE mineral grains decreases from 50 μm up to 1 μm; (2) the association of Pd minerals with Ni and Co arsenide and sulfarsenides becomes stronger; and (3) the composition of PGE minerals changes for palladium: Pd-Sn → Pd-As → Pd-Sb → Pd-Te → Pd-Bi; for platinum: Pt-Fe + PtAs2 → PtS + PtAs2 → PtAs2. This zoning pattern is interpreted as the result of fractional crystallization of an immiscible sulfide melt, with the residual liquid, enriched in Cu, PGE, and volatile elements, being expelled towards the periphery of the intrusive body. PGE minerals also decompose in an oxidation zone. The most stable of them are paolovite and sperrylite, which both accumulated in placers derived from the massif. Pd is removed from the decomposed minerals, and then absorbed by brown iron and goethite in the oxidation zone. Author’s address: Nadezhda Tolstykh, Institute of Geology and Mineralogy SB RUS, pr. Ak. Koptyga 3, Novosibirsk 630090, Russia  相似文献   

7.
Summary Podiform chromitite bodies occur in serpentinites at Tehuitzingo (Acatlán complex, southern Mexico). Serpentinite and chromitite are believed to represent a fragment of Paleozoic ophiolitic mantle formed in a supra-subduction zone setting. The ophiolitic mantle sequence is associated with eclogitic rocks, enclosed in a metasedimentary sequence. This association suggests that serpentinites, chromitites and eclogitic rocks underwent a common metamorphic evolution, starting from high pressure (eclogite facies) followed by retrogression (epidote-amphibolite and greenschist facies). The chromitites are strongly altered so that chromite grains are transformed to ferrian chromite; no primary silicates (i.e. of magmatic origin) have been preserved. The chromitites are Al-rich, and contain up to 303 ppb platinum group elements (PGE), with a marked predominance of Os + Ir + Ru over Rh + Pd + Pt, resulting in a characteristic negative-slope of the chondrite-normalized PGE pattern. Consistent with the geochemical data the platinum group minerals (PGM) assemblage is dominated by Ru–Os–Ir minerals, occurring both as single-phase or as composite grains generally less than 10 μm in size. The PGM mineralogy includes laurite, osmium, irarsite and Ru–Fe oxide or hydroxide. Based on textural relations, paragenesis and composition, it was possible to establish that Os-rich laurite and irarsite were early liquidus phases, which now occur as inclusions in unaltered chromite. However, most of the PGM are found in the alteration assemblages of the chromitites in close association with ferrian chromite, chlorite, and heazlewoodite. Laurite from the secondary assemblage is Os-poor and commonly shows overgrowths of Os–Ir alloys. Internal zoning of some laurite grains indicates that Os-poor laurite formed from a Os-rich laurite by release of Os and some Ir, that are readily incorporated in the Os–Ir alloys. Such process requires a decrease of sulfur fugacity with decreasing temperature; this is not consistent with the fS2-T trend in magmatic systems. It is proposed, therefore, that the magmatic PGM assemblage underwent mineralogical reworking starting from relatively high temperature during metamorphism. Temperatures, estimated from chlorite geothermometry (399–210 °C), possibly reflect effects of low-grade metamorphism. After that the PGM and the associated sulfides started to be oxidized. Although it is difficult to determine the extent of PGE mobilization on the basis of mineralogical observations, our data suggest that the metamorphism affecting the Tehuitzingo chromitites caused only re-distribution of PGE on a small scale. Thus, we conclude that metamorphism modified the primary PGM assemblage without having changed the whole-rock PGE concentration.  相似文献   

8.
The molar volumes of 19 hydrous albitic liquids (1.9 to 6.1 wt% H2Ototal) were determined at one bar and 505–765 K. These volume data were derived from density measurements on hydrous glasses at 298 K, followed by measurements of the thermal expansion of each glass from 298 K to its respective glass transition temperature. The technique exploits the fact that the volume of a glass is equal to that of the corresponding liquid at the limiting fictive temperature (T f′), and that T f′ can be approximated as the temperature near the onset of the rapid increase in thermal expansion that occurs in the glass transition interval. The volume data of this study were combined with available volume data for anhydrous, Na2O-Al2O3-SiO2 liquids to derive the partial molar volume (±1) of the H2O component in an albitic melt at ∼565 K and one bar. To extend the determination of to higher temperatures and pressures, the molar volumes of the hydrous albitic liquids determined in this study were combined with those measured by previous authors at 1023–1223 K and 480–840 MPa, leading to the following fitted values (±1) at 1673 K and one bar: (±0.46)×10−3 cm−3/mol-K, and dVˉ H 2 O total /dP=−3.82 (±0.36)×10−4 cm3/mol-bar. The measured molar volumes of this study and those of previous authors can be recovered with a standard deviation of 0.5%, which is within the respective experimental errors. There is a significant difference between the values for derived in this study as a function of temperature and pressure and those obtained from an existing polynomial, primarily caused by the previous absence of accurate density measurements on anhydrous silicate liquids. The coefficients of thermal expansion (=4.72×10−4/K) and isothermal compressibility ( T =1.66×10−5/bar) for the H2O component at 1273 K and 100 MPa, indicate that H2Ototal is the single most expansive and compressible component in silicate liquids. For example, at 1473 K and 70 MPa (conditions of a mid-ocean ridge crustal magma chamber), the presence of just 0.4 wt% H2O will decrease the density of a basaltic liquid by more than one percent. An equivalent decrease in melt density could be achieved by increasing the temperature by 175 degrees or the decreasing pressure by 230 MPa. Therefore, even minor quantities of dissolved water will have a marked effect on the dynamic properties of silicate liquids in the crustal environment. Received: 20 August 1996 / Accepted: 15 March 1997  相似文献   

9.
A revised model for the volume and thermal expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids, which can be applied at crustal magmatic temperatures, has been derived from new low temperature (701–1092 K) density measurements on sixteen supercooled liquids, for which high temperature (1421–1896 K) liquid density data are available. These data were combined with similar measurements previously performed by the present author on eight sodium aluminosilicate samples, for which high temperature density measurements are also available. Compositions (in mol%) range from 37 to 75% SiO2, 0 to 27% Al2O3, 0 to 38% MgO, 0 to 43% CaO, 0 to 33% Na2O and 0 to 29% K2O. The strategy employed for the low temperature density measurements is based on the assumption that the volume of a glass is equal to that of the liquid at the limiting fictive temperature, T f . The volume of the glass and liquid at T f was obtained from the glass density at 298 K and the glass thermal expansion coefficient from 298 K to T f . The low temperature volume data were combined with the existing high temperature measurements to derive a constant thermal expansivity of each liquid over a wide temperature interval (767–1127 degrees) with a fitted 1 error of 0.5 to 5.7%. Calibration of a linear model equation leads to fitted values of i ±1 (cc/mol) at 1373 K for SiO2 (26.86 ± 0.03), Al2O3 (37.42±0.09), MgO (10.71±0.08), CaO (15.41±0.06), Na2O (26.57±0.06), K2O (42.45 ± 0.09), and fitted values of d i /dT (10−3 cc/mol-K) for MgO (3.27±0.17), CaO (3.74±0.12), Na2O (7.68±0.10) and K2O (12.08±0.20). The results indicate that neither SiO2 nor Al2O3 contribute to the thermal expansivity of the liquids, and that dV/dT liq is independent of temperature between 701 and 1896 K over a wide range of composition. Between 59 and 78% of the thermal expansivity of the experimental liquids is derived from configurational (vs vibrational) contributions. Measured volumes and thermal expansivities can be recovered with this model with a standard deviation of 0.25% and 5.7%, respectively. Received: 2 August 1996 / Accepted: 12 June 1997  相似文献   

10.
Olivine in spinel peridotite xenoliths from the Bismarck Archipelago northeast of Papua New Guinea, which were transported to the surface by Quaternary basalts, shows spinel inclusions up to 25 μm long and 200 nm wide. These inclusions mainly occur as inhomogeneously distributed needles and subordinately as octahedral grains in olivine of veined metasomatic peridotites as well as peridotites without obvious metasomatism. The needles very often occur in swarms with irregular spacing in between them. Similar spinel inclusions in olivine have only previously been reported from ultramafites of meteoritic origin. Composition and orientation of the spinel inclusions were determined by transmission electron microscopy (TEM) and analytical electron microscopy (AEM). Both the needles and the grains display a uniform crystallographic orientation in the host olivine with [001]O1//[1ˉ10]Spl and (100)Ol// (111)Spl. The needles eare elongated parallel [010] in olivine, which is the same in all olivine grains. As these needles have no relation to the metasomatic sections in the peridotite, it is concluded that they are primary features of the rock. Although the composition of the spinel needles is often very similar to the large chromian spinel octahedra in the matrix, the small octahedral spinel inclusions in olivine are in part Mg-rich aluminous spinel and sometimes almost pure magnetite. The spinel needles are suggested to have formed by exsolution processes during cooling of Al- and Cr-rich, high-temperature olivine during the initial formation of the lithospheric mantle at the mid-ocean ridge. The Al-rich spinel octahedra probably formed by the breakdown of an Al-rich phase such as phlogopite or by metasomatism, whereas the magnetite was generated by oxidizing fluids. These oxidizing fluids may either have been set free by dehydration of the underlying, subducted plate or by the Quaternary magmatism responsible for the transport of the xenoliths to the seafloor. Received: 25 May 2000 / Accepted: 12 July 2000  相似文献   

11.
A statistical study of motions of images of distant extragalactic sources, such as quasars on the celestial sphere, due to the action of weak gravitational microlensing is presented. It was assumed that the parallax of the lens was 10 milliarcseconds (mas), the mass of the lens was 1 M , and the proper motion was μ = 30 mas. The initial point for the motion of the lens (a star in our Galaxy) was taken to be the boundary of a region with a radius of ϑ = 100 mas and its center coincident with the distant source. The simulations for each trajectory were carried out in steps, with the time step being 0.1 year. The number of sources “launched” over the computational period was 5000. The appearance of the trajectories for the source images is presented; 57% of the total number of sources that participated in the simulations showed motions of 0.7–1.0 mas. Original Russian Text ? T.A. Kalinina, M.S. Pshirkov, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 6, pp. 483–488.  相似文献   

12.
Summary ?In cathodoluminescence (CL) images of synthetic low-quartz samples after He+ implantation at 4 MeV with a dose density over 1.14 × 10−4 C cm−2, bright CL halos of about 14 μm in width from the implantation surface are recognized. These widths are consistent with the theoretical range. This confirms experimentally that the CL halos in low-quartz found in geological samples are formed by alpha radiation. It also shows that CL colour continuously changes with dose density, demonstrating that it is possible to use the CL halo as a new dosimeter that is useful for dating and analysis of radionuclide migration in natural geological media. Received December 3, 2001; revised version accepted February 27, 2002  相似文献   

13.
Taking account of the Cˉ1/Iˉ1 (Al/Si order/disorder) transformation at high temperatures in the albite-anorthite solid solution leads to a simple model for the mixing properties of the high structural state plagioclase feldspars. The disordered (Cˉ1) solid solution can be treated as ideal (constant activity coefficient) and, for anorthite-rich compositions, deviations from ideality can be ascribed to cation ordering. Values of the activity coefficient for anorthite in the Cˉ1 solid solution (γ An Cˉ1 ) are then controlled by the free energy difference between Cˉ1 and Iˉ1 anorthite at the temperature (T) of interest according to the relation: ΔˉG ord Iˉ1 ⇌Cˉ1 =RT ln γ An Cˉ1 . If the Iˉ1⇌Cˉ1 transformation in pure anorthite is treated, to a first approximation, as first order and the enthalpy and entropy of ordering are taken as 3.7±0.6 kcal/mole (extrapolated from calorimetric data) and 1.4–2.2 cal/mole (using an equilibrium order/disorder temperature for An100 of 2,000–2,250 K), a crude estimate of γ An Cˉ1 for all temperatures can be made. The activity coefficient of albite in the Cˉ1 solid solution (γ Ab Cˉ1 ) can be taken as 1.0. The possible importance of this model lies in its identification of the principal constraints on the mixing properties rather than in the actual values of γ An Cˉ1 and γ Ab Cˉ1 obtained. In particular it is recognised that γ An Cˉ1 depends critically on ordering in anorthite as well as, at lower temperatures, any ordering in the Cˉ1 solid solution. A brief review of activity-composition data, from published experiments involving ranges of plagioclase compositions and from the combined heats of mixing plus Al-avoidance entropy model (Newton et al. 1980), reveals some inconsistencies. The values of γ An Cˉ1 calculated using the approach of Newton et al. (1980), although consistent with Orville's (1972) ion exchange data, are slightly lower than values derived from experiments by Windom and Boettcher (1976) and Goldsmith (1982) or from ion-exchange experiments of Kotel'nikov et al. (1981). Based on the Cˉ1/Iˉ1 transformation model, values of γ An Cˉ1 <1.0 are unlikely. Discrepancies between the experimental data sets are attributed to incomplete (non-equilibrium) Al/Si order attained during the experiments. It is suggested that the choice of activity coefficients remains somewhat subjective. The development of accurate mixing models would be greatly assisted by better thermodynamic data for ordering in pure anorthite and by more thorough characterisation of the state of order in plagioclase crystals used for phase equilibrium experiments.  相似文献   

14.
Results of a detailed spectroscopic and photometric study of the four Shakhbazian compact galaxy groups ShCG 254, ShCG 257, ShCG 351, and ShCG 371 are reported. The redishifts of the member galaxies and radial velocity dispersions in these groups have been determined. The R surface brightness distributions of the member galaxies have been studied. The morphological types of the galaxies have been determined based on the profiles of the surface brightness, μ, as functions of the semimajor axis α1/4 or α. Some members of the groups are in the process of interacting. Curves of isophotal twisting and the Fourier parameter α4 have been plotted. The physical parameters of the groups (radial velocity dispersions, virial radii and masses, luminosities, mass-to-luminosity ratios, and crossing times) have also been derived. Original Russian Text ? H.M. Tovmassian, H. Tiersch, V.O. Chavushyan, G.H. Tovmassian, S.I. Neizvestnyĭ J.P. Torres-Papaqui, G.M. Rudnitskii. 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 11, pp. 963–975.  相似文献   

15.
Summary Dolomitic marbles from the Organi and Pandrosos areas of the ultrahigh-pressure (UHP) metamorphic Kimi complex in East Rhodope, N.E. Greece have the mineral assemblage: Cal + Dol + Ol + Phl ± Di ± Hbl ± Spl ± Ti–Chu + retrograde Srp and Chl. Several generations of calcite and dolomite with variable composition and texture represent different stages of the PT evolution: The first stage is represented by matrix dolomite ( = 0.48) and relic domains of homogenous composition in matrix calcite ( = 0.11–0.13); the second stage is evident from precipitation of lath-shaped and vermicular dolomite in matrix calcite. The third stage is represented by veinlets of almost pure CaCO3 and domainal replacement of prior calcite by nearly pure CaCO3 + Ca-rich dolomite ( = 0.34–0.43). Matrix dolomite adjacent to CaCO3 veinlets also becomes Ca-rich ( = 0.42). In fact, Ca-rich dolomites with in the range of 0.40–0.34 are reported for the first time from metamorphic marbles. Coexisting Ca-rich dolomite and Mg-poor calcite cannot be explained by the calcite-dolomite miscibility gap. This assemblage rather suggests that Mg-poor calcite was aragonite originally, which formed together with Ca-rich dolomite according to the reaction Mg–Cal → Arg + Dol (1) at ultrahigh pressures and temperatures above at least 850 °C, when dolomite becomes disordered and incorporates more Ca than coexisting aragonite does in terms of Mg. The simplest explanation of these observations probably is to suggest two metamorphic events: The first one represented by relic matrix carbonates at relatively low to moderate pressures and temperatures of ca. 750 °C, and the second one limited by the minimum temperatures for dolomite disorder (ca. 850 °C) and in the aragonite + dolomite stability field, i.e. at a minimum pressure of 3 GPa and, if the presence of diamond-bearing metapelites nearby is considered, at conditions of at least 850 °C and 4.3 GPa in the diamond stability field. As there is hardly any back-reaction of Ca-rich dolomite + Mg-poor calcite to Mg-rich calcite, peak temperatures remained below the reaction (1) and the exhumation path probably crossed the aragonite-calcite transition at much lower than peak temperature. Cooling and decompression must have both occurred extremely fast in order for the μm-sized Ca-rich dolomite textures to be preserved. An alternative explanation of the formation of “UHP”-textures and compositions is by a fluid influx that not only caused serpentinisation and chloritisation of silicates but also Mg-leaching from carbonates, particularly from Mg-rich calcite and its fine grained dolomite-precipitates, thus transforming them into Mg-poor calcite + Ca-rich dolomite.  相似文献   

16.
Summary We document a rare case of micron-sized gold inclusions in Ir–Os alloy and overgrowth rims on Pt–Fe alloy from an alluvial Au-PGE placer derived from an Uralian/Alaskan type intrusion in Primorye, Russia. The gold inclusions occasionally form complex aggregates with cooperite [PtS] or tolovkite [IrSbS], and replace magmatic inclusions of Ir-rich Pt–Fe alloy which exsolved from the Ir–Os–Pt matrix. Gold has a relatively constant composition (>90 wt.% Au, a few wt.% Ag, and up to 8 wt.% Pt). The gold rims form superfine (3–5 μm) discontinuous films on the Pt–Fe alloy crystals often followed by cooperite overgrowth. Both gold textures suggest an electrochemical control of gold precipitation via selective Pt–Fe leaching during low-temperature overprint and/or weathering of PGE alloy.  相似文献   

17.
We present the results of JHKLM photometry of the oxygen Mira variable V2108 Oph acquired in 2000–2004. The period of brightness variations is refined (570 ± 3 days), and light and color curves in the near-IR are presented. The mean fluxes, color temperatures, and sizes for two blackbodies representing the combined radiation of the star and dust shell at minimum and maximum brightness are estimated. Additional IRAS data were used to compute a model with a spherically symmetric dust shell of silicate grains; the best-fit model has a radius for its inner boundary of 2.4 × 1014 cm, a dust temperature at this boundary of 1150 K, an optical depth of the shell at 0.55 μm of 16.8, and implies a distance to the star of 980 pc. We estimate the mass-loss rate for V2108 Oph to be 1.2 × 10−5 M /yr. Original Russian Text ? M.B. Bogdanov, O.G. Taranova, V.I. Shenavrin, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 5, pp. 437–442.  相似文献   

18.
The elucidation of thermal histories by geochronological and isotopic means is based fundamentally on solid-state diffusion and the concept of closure temperatures. Because diffusion is thermally activated, an analytical solution of the closure temperature (T c *) can only be obtained if the diffusion coefficient D of the diffusion process is measured at two or more different temperatures. If the diffusion coefficient is known at only one temperature, however, the true closure temperature (T c *) cannot be calculated analytically because there exist an infinite number of possible (apparent) closure temperatures ( c ) which can be generated by this single datum. By introducing further empirical constraints to limit the range of possible closure temperatures, however, mathematical analysis of a modified form of the closure temperature equation shows that it is possible to make both qualitative and quantitative estimates of T c * given knowledge of only one diffusion coefficient D M measured at one temperature T M . Qualitative constraints of the true closure temperature T c * are obtained from the shapes of curves on a graph of the apparent T c ( c ) vs. activation energy E, in which each curve is based on a single diffusion coefficient measurement D M at temperature T M . Using a realistic range of E, the concavity of the curve shows whether T M is less than, approximately equal to, or greater than T c *. Quantitative estimates are obtained by considering two dimensionless parameters [ln êRT^ c vs. T c */T M ] derived from these curves. When these parameters are plotted for known argon diffusion data and for a given diffusion size and cooling rate, it is found that the resultant curves are almost identical for all of the commonly dated K–Ar minerals – biotite, phlogopite, muscovite, hornblende and orthoclase – in spite of differences in their diffusion parameters. A common curve for Ar diffusion can be derived by least-squares fitting of all the Ar diffusion data and provides a way of predicting a “model” closure temperature T cm from a single diffusion coefficient D M at temperature T M . Preliminary diffusion data for a labradorite lead to a T cm of 507 ± 17 °C and a corresponding activation energy of about 65 kcal/mol, given a grain size of 200 μm and a cooling rate of 5 °C/Ma. Curves for He diffusion in silicates (augite, quartz and sanidine) also overlap to a significant degree, both among themselves and with the Ar model curve, suggesting that a single model curve may be a good representation of noble gas closure temperatures in silicates. An analogous model curve for a selection of 18O data can also be constructed, but this curve differs from the Ar model curve. A single model curve for cationic species does not appear to exist, however, suggesting that chemical bonding relationships between the ionic size/charge and crystal structure may influence the closure temperatures of diffusing cations. An indication of the degree of overlap among the various curves for Ar, He, 18O and cations is also obtained by considering the dimensionless parameter E/RT c *; for the noble gases and 18O, E/RT c * values for the respective minerals are very similar, whereas for cations, there is significant dispersion. Given these constraints, this may be a potential method of estimating closure temperatures for certain diffusing species when there are limited diffusion data. Received: 1 July 1999 / Accepted: 24 March 2000  相似文献   

19.
Stratabound epigenetic dolomite occurs in carbonate facies of the Barrandian basin (Silurian and Devonian), Czech Republic. The most intense dolomitization is developed in bioclastic calcarenites within the transition between micritic limestone and shaledominated Přídolí and Lochkov formations deposited on a carbonate slope. Medium-crystalline (100–400 μm), inclusion-rich, xenotopic matrix dolomite (δ 18O=−4.64 to −3.40‰ PDB;δ 13C=+1.05 to +1.85‰ PDB) which selectively replaced most of the bioclastic precursor is volumetrically the most important dolomite type. Coarse crystalline saddle dolomite (δ 18O=−8.04 to −5.14‰ PDB;δ 18C=+0.49 to +1.49 PDB) which precipitated in fractures and vugs within the matrix dolomite represents a later diagenetic dolomitization event. In some vugs, saddle dolomite coprecipitated with petroleum inclusion-rich authigenic quartz crystals and minor sulfides which, in turn, were post-dated by semisolid asphaltic bitumen. The interpretation of the dolomitization remains equivocal. Massive xenotopic dolomite, although generally characteristic of a deeper burial setting, may have been formed by a recrystallization of an earlier, possibly shallow burial dolomite. Deeper burial recrystallization by reactive basinal pore fluids that presumably migrated through the more permeable upper portion of the Přídolí sequence appears as a viable explanation for this dolomitization overprint. Saddle dolomite cement of the matrix dolomite is interpreted as the last dolomitization event that occurred during deep burial at the depth of the oil window zone. The presence of saddle dolomite, the fluid inclusion composition of associated quartz crystals, and vitrinite paleogeothermometry of adjacent sediments imply diagenetic burial temperatures as high as 160°C. Although high geothermal gradients in the past or the involvement of hydrothermally influenced basinal fluids can account for these elevated temperatures, burial heating beneath approximately 3-km-thick sedimentary overburden of presumably post-Givetian strata, no longer preserved in the basin, appears to be the most likely interpretation. This interpretaion may imply that the magnitude of post-Variscan erosion in the Barrandian area was substantially greater than previously thought.  相似文献   

20.
北大别灰色片麻岩的岩石化学特征及大地构造背景   总被引:19,自引:7,他引:12  
The principle component of the north Dabie metamorphic complex (NDC) is a suite of gray gneisses, which is compositionally comparable to the tonalite-trondjemite-granodiorite association. Gray gneisses, including amphibolite gneiss, amphibolite-plagioclase gneiss, quartzo-feldspar gneiss, have the SiO2 contents ranging from 50% to 75% or more. On the SiO2 variation diagram most of major oxide display a smooth trend from tonalitic gneiss to trondhjemitic or granitic rocks, implying a magmatic differentiation model for the origin of the gray gneisses. The differentiation was probably controlled by hornblende and plagioclase fractionation. The gray gneisses have lower ΣREE content with low grade fractionation of light REE/ heavy REE. On primary mantle-normalized REE fractional diagrams, the subparallel patterns indicate a cogenetic relation for all samples. All rocks are enriched in large ion lithophile (LIL) elements and depleted in high field strength (HFS) elements, as well as Nb at the level of primary mantle. The increasing of Nb depletion, the decreasing of Sr enrichment, and the transitional metal element Ti becoming greatly depleted with the increase of the SiO2 in the rocks imply the fraction of mafic minerals and plagioclase. The granitoids have lower FeO, MgO, CaO contents, low FeO*/ (FeO*+MgO) ratios, and Nb and Y depletion. On Hf/3-Th-Ta (Nb) diagram, all plots set near the Hf-Th join and cumulate to Th corner, providing a calc-alkaline series of arc setting. All of these imply that the gray gneiss is of the calc-alkaline association formed in a volcanic arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号