首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
地磁暴的行星际源研究是了解及预报地磁暴的关键因素之一.本文研究了2007-2012年间的所有Dstmin ≤-50 nT的中等以上地磁暴,建立了这些地磁暴及其行星际源的列表.在这6年中,共发生了51次Dstmin≤-50 nT的中等以上地磁暴,其中9次为Dstmin≤-100 nT的强地磁暴事件.对比上一活动周相同时间段发现,在这段太阳活动极低的时间,地磁暴的数目显著减少.对这些地磁暴行星际源的分析表明,65%的中等以上地磁暴由与日冕物质抛射相关的行星际结构引起,31%的地磁暴由共转相互作用区引起,这与以前的结果一致.特别的,在这个太阳活动极低时期内,共转相互作用区没有引起Dstmin≤-100 nT的强地磁暴,同时,日冕物质抛射相关结构也没有引起Dstmin≤-200 nT的超强地磁暴.以上结果表明极低太阳活动同时导致了共转相互作用区和日冕物质抛射地磁效应的减弱.进一步,分析不同太阳活动期间地磁暴的行星际源发现:在太阳活动低年(2007-2009年),共转相互作用区是引起地磁暴的主要原因; 而在太阳活动上升期和高年(2010-2013年),大部分(75%,30/40)的中等以上地磁暴均由日冕物质抛射相关结构引起.  相似文献   

2.
行星际日冕物质抛射(ICME),作为影响地球空间天气的重要源头之一,根据其磁场结构特点可分为磁云(MC)和非磁云ICME两个子集.本文对第23周的磁云和非磁云ICME结构及其地磁效应进行对比统计研究.第23周ICME事件总数为317个,其中磁云占ICME比例为33.75%,非磁云ICME占66.25%.统计结果表明,非磁云ICME数与太阳黑子数呈现出非常好的正相关性,而磁云与太阳黑子数的这种相关性并不明显.相反,磁云占ICME的比率与太阳黑子数呈现出一定的反相关性.对磁云与非磁云ICME引起的地磁暴的比较研究表明:磁云及其鞘区引发的地磁暴平均水平要高于非磁云ICME及其鞘区.磁云和非磁云ICME的磁场强度、南向磁场强度和传播速度整体上都随地磁暴水平提升而增加.对磁云与非磁云ICME参数的进一步对比分析表明,磁云及其鞘区的平均磁场强度和南向磁场分量平均值都明显要比非磁云ICME的大;而二者的等离子体温度、密度和速度平均值相差并不明显.  相似文献   

3.
本文根据搭载于Cluster卫星的CIS/CODIF和RAPID仪器的观测数据,统计研究了等离子体片中的H+、O+离子在磁暴期间的时间变化特性,及其对太阳风条件的响应.观测结果表明:(1) 磁暴开始前,O+离子(0~40 keV)数密度保持在较低水平.随着磁暴的发展,O+数密度缓慢上升,其峰值出现在Dst极小值附近;H+离子(0~40 keV)数密度在磁暴开始之前的较短时间迅速增加并达到峰值,在磁暴开始之后迅速降低,并在整个主相和恢复相期间保持在相对较低水平.更高能量的离子则在磁暴开始后迅速增多,并在低能O+离子达到峰值之前达到峰值.因此我们推测磁暴初期从等离子体片注入环电流的主要是H+离子,主相后期O+离子可能扮演更为重要的角色.(2)在地磁活动时期,太阳风密度和动压强与等离子体片中的H+、O+数密度存在一定相关性.等离子体片中的H+离子对北向IMF Bz较为敏感,而IMF Bz南向条件下更有利于太阳风参数对等离子体片中O+数密度的影响.在地磁活动平静期,太阳风条件对等离子体片中的离子没有明显影响.  相似文献   

4.
作为太阳风引起的地磁扰动的系统辨识一文的姊妹篇,本文利用参数系统辨识方法,对太阳风-磁层耦合系统做了进一步的探讨.根据地磁扰动机制的理论研究,地磁扰动被认为是太阳风能量耦合进入磁层以及由此引起的一系列磁层内能量的输运和耗散的结果.在此基础上,对太阳风-磁层系统的非线性情况进行了讨论,建立了Dst指数与太阳风参量的非线性函数关系,给出了由此得到的地磁扰动计算结果.同时还利用1967年2月3-12日和1980年12月16-23日的两次事件,对已得到的函数关系进行了验证和讨论.验证结果不仅对模型的合理性、普适性做了很好的说明,也表明这种非线性函数关系作为定量的地磁预报模型,具有一定的可信度和实用性.  相似文献   

5.
作为太阳风引起的地磁扰动的系统辨识一文的姊妹篇,本文利用参数系统辨识方法,对太阳风-磁层耦合系统做了进一步的探讨.根据地磁扰动机制的理论研究,地磁扰动被认为是太阳风能量耦合进入磁层以及由此引起的一系列磁层内能量的输运和耗散的结果.在此基础上,对太阳风-磁层系统的非线性情况进行了讨论,建立了Dst指数与太阳风参量的非线性函数关系,给出了由此得到的地磁扰动计算结果.同时还利用1967年2月3—12日和1980年12月16—23日的两次事件,对已得到的函数关系进行了验证和讨论.验证结果不仅对模型的合理性、普适性做了很好的说明,也表明这种非线性函数关系作为定量的地磁预报模型,具有一定的可信度和实用性.  相似文献   

6.
1997年1月6日爆发的日冕物质抛射(CME)到达地球时引起了强烈的地球物理效应,CME在行 星际空间传播时,广州的多方向μ介子望远镜观测到银河宇宙线强度的变化. 本文采用 小波分析方法分析了磁暴前后广州台宇宙线强度的频谱变化特征,结果表明,在磁暴前 宇宙线周期为16~32h的信号发生了较明显的变化,其中周期为24~32h的周期特征过去没有 被报道过. 广州台垂直方向宇宙线强度的谱在磁暴发生前48h就出现明显的变化,比各向异 性分析方法得到的时间提前量更大. 同时还分析了几个方向宇宙线强度的最强信号以及达到 最大值的时间,并进行了简要的分析与讨论.  相似文献   

7.
特大地磁暴的一种行星际源:多重磁云   总被引:1,自引:0,他引:1       下载免费PDF全文
2001年3月31日观测到的大的多重磁云(Multi MC)事件造成了第23周太阳峰年(2000~2001)最大的地磁暴(Dst=-387nT). 通过分析ACE飞船的观测数据, 描述了这个多重磁云在1AU处的磁场和等离子体特征. 并且根据SOHO和GOES卫星的观测资料, 认证了它的太阳源. 在这次事件中, 由于多重磁云内部异常增强的南向磁场, 使之地磁效应变得更强, 它大大的延长了地磁暴的持续时间. 观测结果与理论分析表明, 多重磁云中子磁云的相互挤压使磁云内的磁场强度及其南向分量增强数倍, 从而加强了地磁效应. 因此, 研究认为多重磁云中子磁云之间的相互压缩是造成特大地磁暴的一种机制. 此外, 研究发现形成多重磁云的日冕物质抛射(CMEs)并不一定要来自同一太阳活动区.  相似文献   

8.
日冕物质抛射—空间天气的扰动源   总被引:5,自引:0,他引:5  
日冕物质抛射是引起空间天气扰动的重要起因_本文对日冕物质抛射的一般参量和形态、它与其它太阳活动现象的关系、它在行星际空间的表现以及它导致的地球空间环境扰动的研究进展作了介绍和讨论  相似文献   

9.
1980年4月14日SMM卫星曾经观测到了爆发在两冕流结构之间开放磁场中的CME独特的传播特征以及冕流结构的畸变和偏转。本文采用了2.5维MHD方程,用数值模拟方法研究了CME和冕流结构之间复杂的相互作用过程.模拟结果不但展现了SMM卫星所观测到的CME的独特的传播特征和冕流结构的畸变和偏转,而且还发现了在冕流结构和CME的相互作用中,冕流结构内部轴向磁场分量的反转效应.模拟结果对磁云和磁暴活动的研究也具有一定的意义.  相似文献   

10.
为了研究地磁活动指数Dst受太阳风参数影响,包括行星际磁场(IMF)南向分量Bst、太阳风速度V?和太阳风-磁层发电机电动势U调制的机制,应用太阳风-磁层-电离层输入-输出[I(t)-O(t)]电网络模型,对磁层亚暴与磁层暴过程中,Bz(t)-Dst、V-a(t)-Dst和U(t)-Dst的激励-响应特性进行模拟。研究表明,Bz是形成亚暴与磁层暴的前提条件,Vst是形成亚暴与磁层暴的充分条件,二者统一于电动势Ust研究结果与观测结果一致。  相似文献   

11.

利用FAST卫星ESA仪器第23太阳活动周上升相(1997-1998年)的观测数据,选取20个磁暴期间能量为4~300 eV的离子上行事件,研究不同磁暴相位电离层上行离子的能通量与太阳风、地磁活动以及电子沉降的统计关系.结果表明:(1)在磁暴初相、主相和恢复相离子上行平均能通量为6.08×107eV/(cm2·s·sr·eV)、5.75×107eV/(cm2·s·sr·eV)和3.91×107eV/(cm2·s·sr·eV),初相期间上行离子能通量最大;(2)上行离子能通量与太阳风动压、行星际磁场BZ分量存在相关关系,相关系数分别为0.47和-0.38;(3)在磁暴初相、主相和恢复相上行离子能通量与Sym-H的相关系数分别为0.74、-0.77和-0.54,与Kp的相关系数分别为0.53、0.75和0.65,整体上离子上行与Sym-H指数的相关性好于Kp指数;(4)在磁暴初相、主相和恢复相上行离子能通量和电子数通量的相关系数分别为0.74、0.52和0.32,表明磁暴期间软电子(< 1 keV)沉降可以显著提高电离层离子温度;F区的等离子体摩擦加热和双极电场是离子上行的重要获能机制.本文构建的上行离子能通量与Sym-H和电子数通量的经验关系显著,可用于磁流体模拟研究.

  相似文献   

12.
This note points out a problem with the way in which extreme value distributions have been fit to the intensities of the largest geomagnetic storms per solar cycle. An alternative method is described. This method is applied to observations of the three largest geomagnetic storms in solar cycles 11–22.  相似文献   

13.
An analysis is made of the long-period geomagnetic pulsations as recorded at seven Norilsk meridian stations ( = 162°, latitudinal range: 61°–71°N) following abrupt magnetospheric expansion during the storm of 22 March 1979 caused by a rapid decrease in solar wind density. As with the time interval following an abrupt contraction at the time of sudden storm commencement, there exist two types of pulsations in the pulsation spectra: latitude-independent (T>400 s) and latitude-dependent (T<200 s) pulsations. The first pulsation type is interpreted in terms of forced pulsations associated with magnetopause oscillations. The oscillation period is determined by plasma density in the boundary layer and by the radius of the magnetosphere (T 1/2R4). The latitudinal dependence of the period, amplitude and polarization of the second-type pulsations is in agreement with the resonance mechanism of their origin.  相似文献   

14.
This study aims at looking for the characteristic patterns of mesospheric wind over the geomagnetic storm times. For this purpose, the geomagnetic storms preceded by a sudden commencement (SSC) have been selected from January 1995 to April 1999. By using the onset of SSC as the timing mark, a superposed epoch analysis has been performed on the available neutral wind data measured with medium frequency (MF) radars at Yamagawa (31.2°N, 130.6°E) and Wakkanai (45.4°N, 141.7°E). In doing so, the length of time chosen for the superposed analysis is from 7 days before the SSC onset to 21 days after the onset; subsets of wind data are superimposed for summer and winter months, respectively. Then with harmonic analysis on the superposed winds the mean winds in both summer and winter months have been obtained. Concerning mean wind characteristics, some interesting details are the reversal heights of the summer zonal winds, which is 79–80 km at Yamagawa and 84 km at Wakkanai. Strong wavy structures with 2–4 days period are observed at both Yamagawa and Wakkanai in both summer and winter. As for storm effects, significant enhancement of eastward wind is found 5 days after SSC onset at both Yamagawa and Wakkanai in winter. Moreover, the northward wind turns southward at Wakkanai 2 days after the onset of SSC, and the southward wind lasts for several days thereafter. In summer months, the post-storm enhancement tends to be small and mainly in the eastward wind at both Yamagawa and Wakkanai.  相似文献   

15.
Extended periods of very low geomagnetic activity as described by very quiet intervals (VQI's) occur only at those times when the solar wind velocityV has a generally decreasing trend, i.e., they mainly occur either after the velocity peak of a high speed solar stream has passed the Earth, or at times when the Earth is immersed in a low speed solar plasma provided that the daily mean value ofdV/dt is negative. The VQI's most frequently start whendV/dt<0 anddB Z/dt>0 (B Z is the geocentric solar magnetrospheric-GSMZ-component of the IMF) and end most likely whendV/dt>0 anddB Z/dt<0. The temporal trends of the solar wind (SW) velocity affect the variation of thea p index only when the level of geomagnetic activity is generally low.It is suggested that a gradual expansion or contraction of the magnetosphere, associated with a slow variation of the SW pressure, plays a role in the modification of the reconnection-driven magnetohydrodynamic (MHD) fluctuations in the magnetosphere.  相似文献   

16.
Yearly averages of geomagnetic activity indices Ap for the years 1967–1984 are compared to the respective averages of v2 · Bs, where v is the solar wind velocity and Bs is the southward interplanetary magnetic field (IMF) component. The correlation of both quantities is known to be rather good. Comparing the averages of Ap with v2 and Bs separately we find that, during the declining phase of the solar cycle, v2 and during the ascending phase Bs have more influence on Ap. According to this observation (using Fourier spectral analysis) the semiannual and 27 days, Ap variations for the years 1932–1993 were analysed separately for years before and after sunspot minima. Only those time-intervals before sunspot minima with a significant 27-day recurrent period of the IMF sector structure and those intervals after sunspot minima with a significant 28–28.5-day recurrent period of the sector structure were used. The averaged spectra of the two Ap data sets clearly show a period of 27 days before and a period of 28–29 days after sunspot minimum. Moreover, the phase of the average semiannual wave of Ap is significantly different for the two groups of data: the Ap variation maximizes near the equinoxes during the declining phase of the sunspot cycle and near the beginning of April and October during the ascending phase of the sunspot cycle, as predicted by the Russell-McPherron (R-M) mechanism. Analysing the daily variation of ap in an analogue manner, the same equinoctial and R-M mechanisms are seen, suggesting that during phases of the solar cycle, when ap depends more on the IMF-Bs component, the R-M mechanism is predominant, whereas during phases when ap increases as v increases the equinoctial mechanism is more likely to be effective.  相似文献   

17.
本文对磁宁静时的123个动压变化事件(不包含激波事件)进行了统计研究.研究表明,在白天侧(9~15MLT)同步轨道磁场z分量对太阳风动压增大、减小事件具有较强的正响应,而在夜侧(21~3MLT)响应明显减弱,响应幅度具有明显的磁地方时分布.对动压增大事件的平均响应幅度在午前最大,而对动压减小事件的平均响应幅度在午后达到最大.在白天侧,同步轨道磁场z分量响应幅度与太阳风动压上下游均方差有较好的线性正相关,两者比值随磁地方时具有明显的分布变化;对于同样的动压变化白天侧响应明显强于夜侧.地磁指数SYM-H响应幅度对太阳风动压上下游均方差具有明显的依赖关系,统计结果显示磁层压缩较强时,两者相关性较好.在白天侧,地磁指数响应幅度与同步轨道磁场z分量响应幅度具有明显的线性相关,晨昏侧相关性减弱,夜侧无明显相关.  相似文献   

18.
磁暴期间热层大气密度变化   总被引:2,自引:0,他引:2       下载免费PDF全文
基于CHAMP卫星资料,分析了2002—2008年267个磁暴期间400 km高度大气密度变化对季节、地方时与区域的依赖以及时延的统计学特征,得到暴时大气密度变化的一些新特点,主要结论如下: 1)两半球大气密度绝对变化(δρa)结果在不同强度磁暴、不同地方时不同.受较强的焦耳加热和背景中性风共同作用,在北半球夏季,中等磁暴过程中夜侧和大磁暴中,夏半球的δρa强于冬半球;由于夏季半球盛行风环流造成的扰动传播速度快,北半球夏季日侧30°附近大气,北(夏)半球到达峰值的时间早于南(冬)半球.而可能受半球不对称背景磁场强度所导致的热层能量输送率影响,北半球夏季强磁暴和中磁暴个例的日侧,南半球δρa强于北半球;春秋季个例中日侧30°附近大气,北半球先于南半球1~2 h达到峰值. 2)受叠加在背景环流上的暴时经向环流影响,春秋季暴时赤道大气密度达到峰值的时间最短,日/夜侧大气分别在Dstmin后1 h和2 h达到峰值.至点附近夜侧赤道大气达到峰值时间一致,为Dstmin后3 h;不同季节日侧结果不同,在北半球冬季时赤道地区经过更长的时间达到峰值. 3)日侧赤道峰值时间距离高纬度峰值时间不受季节影响,为3 h左右.在春秋季和北半球冬季夜侧,赤道大气密度先于高纬度达到峰值,且不同纬度大气密度的峰值几乎无差别,表明此时低纬度存在其他加热源起着重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号