首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We continue the study undertaken in Efroimsky [Celest. Mech. Dyn. Astron. 91, 75–108 (2005a)] where we explored the influence of spin-axis variations of an oblate planet on satellite orbits. Near-equatorial satellites had long been believed to keep up with the oblate primary’s equator in the cause of its spin-axis variations. As demonstrated by Efroimsky and Goldreich [Astron. Astrophys. 415, 1187–1199 (2004)], this opinion had stemmed from an inexact interpretation of a correct result by Goldreich [Astron. J. 70, 5–9 (1965)]. Although Goldreich [Astron. J. 70, 5–9 (1965)] mentioned that his result (preservation of the initial inclination, up to small oscillations about the moving equatorial plane) was obtained for non-osculating inclination, his admonition had been persistently ignored for forty years. It was explained in Efroimsky and Goldreich [Astron. Astrophys. 415, 1187–1199 (2004)] that the equator precession influences the osculating inclination of a satellite orbit already in the first order over the perturbation caused by a transition from an inertial to an equatorial coordinate system. It was later shown in Efroimsky [Celest. Mech. Dyn. Astron. 91, 75–108 (2005a)] that the secular part of the inclination is affected only in the second order. This fact, anticipated by Goldreich [Astron. J. 70, 5–9 (1965)], remains valid for a constant rate of the precession. It turns out that non-uniform variations of the planetary spin state generate changes in the osculating elements, that are linear in , where is the planetary equator’s total precession rate that includes the equinoctial precession, nutation, the Chandler wobble, and the polar wander. We work out a formalism which will help us to determine if these factors cause a drift of a satellite orbit away from the evolving planetary equator.By “precession,” in its most general sense, we mean any change of the direction of the spin axis of the planet—from its long-term variations down to nutations down to the Chandler wobble and polar wander.  相似文献   

2.
It was believed until very recently that a near-equatorial satellite would always keep up with the planet’s equator (with oscillations in inclination, but without a secular drift). As explained in Efroimsky and Goldreich [Astronomy & Astrophysics (2004) Vol. 415, pp. 1187–1199], this misconception originated from a wrong interpretation of a (mathematically correct) result obtained in terms of non-osculating orbital elements. A similar analysis carried out in the language of osculating elements will endow the planetary equations with some extra terms caused by the planet’s obliquity change. Some of these terms will be non-trivial, in that they will not be amendments to the disturbing function. Due to the extra terms, the variations of a planet’s obliquity may cause a secular drift of its satellite orbit inclination. In this article we set out the analytical formalism for our study of this drift. We demonstrate that, in the case of uniform precession, the drift will be extremely slow, because the first-order terms responsible for the drift will be short-period and, thus, will have vanishing orbital averages (as anticipated 40 years ago by Peter Goldreich), while the secular terms will be of the second order only. However, it turns out that variations of the planetary precession make the first-order terms secular. For example, the planetary nutations will resonate with the satellite’s orbital frequency and, thereby, may instigate a secular drift. A detailed study of this process will be offered in a subsequent publication, while here we work out the required mathematical formalism and point out the key aspects of the dynamics. In this article, as well as in (Efroimsky 2004), we use the word ‘‘precession’’ in its most general sense which embraces the entire spectrum of changes of the spin-axis orientation -- from the long-term variations down to the Chandler Wobble down to nutations and to the polar wonder.  相似文献   

3.
Recent Viking results indicate the Martian satellites are composed of carbonaceous chondritic material, suggesting that Phobos and Deimos were once asteroids captured by Mars. On the other hand, the low eccentricities and inclinations of their orbits on the equator of Mars argue against that hypothesis. This paper presents detailed calculations of the tidal evolution of Phobos and Deimos, considering dissipation in both Mars and its satellites simultaneously and using a new method applicable for any value of the eccentricity. In particular, including precession of the satellites' orbits indicates that they have always remained close to their Laplacian plane, so that the orbital planes of Phobos and Deimos switched from near the Martian orbital plane to the Martian equator once the perturbations due to the planetary oblateness dominated the solar perturbations, as they do presently. The results show that Deimos has been little affected by tides, but several billion (109) years ago, Phobos was in a highly eccentric orbit lying near the common plane of the solar system. This outcome is obtained for very reasonable values of dissipation inside Mars and inside Phobos. Implications for the origin of the Martian satellites are discussed.  相似文献   

4.
A Hamiltonian model is constructed for the spin axis of a planet perturbed by a nearby planet with both planets in orbit about a star. We expand the planet–planet gravitational potential perturbation to first order in orbital inclinations and eccentricities, finding terms describing spin resonances involving the spin precession rate and the two planetary mean motions. Convergent planetary migration allows the spinning planet to be captured into spin resonance. With initial obliquity near zero, the spin resonance can lift the planet’s obliquity to near 90\(^\circ \) or 180\(^\circ \) depending upon whether the spin resonance is first or zeroth order in inclination. Past capture of Uranus into such a spin resonance could give an alternative non-collisional scenario accounting for Uranus’s high obliquity. However, we find that the time spent in spin resonance must be so long that this scenario cannot be responsible for Uranus’s high obliquity. Our model can be used to study spin resonance in satellite systems. Our Hamiltonian model explains how Styx and Nix can be tilted to high obliquity via outward migration of Charon, a phenomenon previously seen in numerical simulations.  相似文献   

5.
6.
Keiko Atobe  Shigeru Ida 《Icarus》2004,168(2):223-236
We have investigated obliquity variations of possible terrestrial planets in habitable zones (HZs) perturbed by a giant planet(s) in extrasolar planetary systems. All the extrasolar planets so far discovered are inferred to be jovian-type gas giants. However, terrestrial planets could also exist in extrasolar planetary systems. In order for life, in particular for land-based life, to evolve and survive on a possible terrestrial planet in an HZ, small obliquity variations of the planet may be required in addition to its orbital stability, because large obliquity variations would cause significant climate change. It is known that large obliquity variations are caused by spin-orbit resonances where the precession frequency of the planet's spin nearly coincides with one of the precession frequencies of the ascending node of the planet's orbit. Using analytical expressions, we evaluated the obliquity variations of terrestrial planets with prograde spins in HZs. We found that the obliquity of terrestrial planets suffers large variations when the giant planet's orbit is separated by several Hill radii from an edge of the HZ, in which the orbits of the terrestrial planets in the HZ are marginally stable. Applying these results to the known extrasolar planetary systems, we found that about half of these systems can have terrestrial planets with small obliquity variations (smaller than 10°) over their entire HZs. However, the systems with both small obliquity variations and stable orbits in their HZs are only 1/5 of known systems. Most such systems are comprised of short-period giant planets. If additional planets are found in the known planetary systems, they generally tend to enhance the obliquity variations. On the other hand, if a large/close satellite exists, it significantly enhances the precession rate of the spin axis of a terrestrial planet and is likely to reduce the obliquity variations of the planet. Moreover, if a terrestrial planet is in a retrograde spin state, the spin-orbit resonance does not occur. Retrograde spin, or a large/close satellite might be essential for land-based life to survive on a terrestrial planet in an HZ.  相似文献   

7.
Peter Thomas 《Icarus》1979,40(2):223-243
Viking Orbiter images have provided nearly complete coverage of the two satellites of Mars and have been used to construct maps of the surface features of Phobos and Deimos. The satellites have radically different appearances although nearly all features on both objects were formed directly or indirectly by impact cratering. Phobos has an extensive network of linear depressions (grooves) that probably were formed indirectly by the largest impact recorded on Phobos. Deimos lacks grooves as well as the large number of ridges that occur on Phobos. Craters on Deimos have substantial sediment fill; those on Phobos have none. Evidence of downslope movement of debris is prominent on Deimos but is rare on Phobos. Many of the differences between Phobos and Deimos may be caused by modest differences in mechanical properties. However, the lack of a very large crater on Deimos may be responsible for its lack of grooves.  相似文献   

8.
Robert A. Craddock 《Icarus》2011,211(2):1150-1161
Despite many efforts an adequate theory describing the origin of Phobos and Deimos has not been realized. In recent years a number of separate observations suggest the possibility that the martian satellites may have been the result of giant impact. Similar to the Earth–Moon system, Mars has too much angular momentum. A planetesimal with 0.02 Mars masses must have collided with that planet early in its history in order for Mars to spin at its current rate (Dones, L., Tremaine, S. [1993]. Science 259, 350–354). Although subject to considerable error, current crater-scaling laws and an analysis of the largest known impact basins on the martian surface suggest that this planetesimal could have formed either the proposed 10,600 by 8500-km-diameter Borealis basin, the 4970-km-diameter Elysium basin, the 4500-km-diameter Daedalia basin or, alternatively, some other basin that is no longer identifiable. It is also probable that this object impacted Mars at a velocity great enough to vaporize rock (>7 km/s), which is necessary to place large amounts of material into orbit. If material vaporized from the collision with the Mars-spinning planetesimal were placed into orbit, an accretion disk would have resulted. It is possible that as material condensed and dissipated beyond the Roche limit forming small, low-mass satellites due to gravity instabilities within the disk. Once the accretion disk dissipated, tidal forces and libration would have pulled these satellites back down toward the martian surface. In this scenario, Phobos and Deimos would have been among the first two satellites to form, and Deimos the only satellite formed—and preserved—beyond synchronous rotation. The low mass of Phobos and Deimos is explained by the possibility that they are composed of loosely aggregated material from the accretion disk, which also implies that they do not contain any volatile elements. Their orbital eccentricity and inclination, which are the most difficult parameters to explain easily with the various capture scenarios, are the natural result of accretion from a circum-planetary disk.  相似文献   

9.
We derive a formula for the nodal precession frequency and the Keplerian period of a particle at an arbitrary orbital inclination (with a minimum latitudinal angle reached at the orbit) in the post-Newtonian approximation in the external field of an oblate rotating neutron star (NS). We also derive formulas for the nodal precession and periastron rotation frequencies of slightly inclined low-eccentricity orbits in the field of a rapidly rotating NS in the form of asymptotic expansions whose first terms are given by the Okazaki-Kato formulas. The NS gravitational field is described by the exact solution of the Einstein equation that includes the NS quadrupole moment induced by rapid rotation. Convenient asymptotic formulas are given for the metric coefficients of the corresponding space-time in the form of Kerr metric perturbations in Boyer-Lindquist coordinates.  相似文献   

10.
The unusual dynamical behavior of Phobos, its strange appearance, and its mysterious network of grooves all make it an intriguing object. Geophysical studies, though, have been hampered by the lack of suitable theories applicable to nonspherical bodies. In this paper the Martian satellites are modeled as homogeneous, elastic triaxial ellipsoids subject to tidal, rotational, and self-gravitational stresses. A novel semianalytical treatment then gives the stress and strain fields throughout their interiors. Yield phenomena and their possible surface expressions are also investigated. The results indicate that Phobos and Deimos have always been stable with respect to tidal fracture or disruption, but that Phobos will probably break up before colliding with Mars. Applications of the new formulation to other nonspherical bodies in the solar system are also discussed.  相似文献   

11.
By using the method of separating rapid and slow subsystem, we obtain an analytical solution for a stable three-dimensional motion of a circumbinary planet around a binary star. We show that the motion of the planet is more complicated than it was obtained for this situation analytically by Farago and Laskar (2010). Namely, in addition to the precession of the orbital plane of the planet around the angular momentum of the binary (found by Farago and Laskar (2010)), there is simultaneously the precession of the orbital plane of the planet within the orbital plane. We show that the frequency of this additional precession is different from the frequency of the precession of the orbital plane around the angular momentum of the binary. We demonstrate that this problem is mathematically equivalent both to the problem of the motion of a satellite around an oblate planet and to the problem of a hydrogen Rydberg atom in the field of a high-frequency linearly-polarized laser radiation, thus discovering yet another connection between astrophysics and atomic physics. We point out that all of the above physical systems have a higher than geometrical symmetry, which is a counterintuitive result. In particular, it is manifested by the fact that, while the elliptical orbit of the circumbinary planet (around a binary star) or of the satellite (around an oblate planet) or of the Rydberg electron (in the laser field) undergoes simultaneously two types of the precession, the shape of the orbit does not change. The fact that a system, consisting of a circumbinary planet around a binary star, possesses the hidden symmetry should be of a general physical interest. Our analytical results could be used for benchmarking future simulations.  相似文献   

12.
The inclination of low-eccentricity orbits is shown to significantly affect orbital parameters, in particular, the Keplerian, nodal precession, and periastron rotation frequencies, which are interpreted in terms of observable quantities. For the nodal precession and periastron rotation frequencies of low-eccentricity orbits in a Kerr field, we derive a Taylor expansion in terms of the Kerr parameter at arbitrary orbital inclinations to the black-hole spin axis and at arbitrary radial coordinates. The particle radius, energy, and angular momentum in the marginally stable circular orbits are calculated as functions of the Kerr parameter j and parameter s in the form of Taylor expansions in terms of j to within O[j 6]. By analyzing our numerical results, we give compact approximation formulas for the nodal precession frequency of the marginally stable circular orbits at various s in the entire range of the Kerr parameter.  相似文献   

13.
This paper deals with dynamics of impact ejecta from Phobos and Deimos initially on near-circular equatorial orbits around Mars. For particles emitted in a wide size regime of 1 micron and greater, and taking into account the typical particle lifetimes to be less than 100 years, the motion is governed by two perturbing forces: solar radiation pressure and influence of Mars' oblateness. The equations of motion of particles in Lagrangian non-singular elements are deduced and solved, both analytically and numerically, for different-sized ejecta. We state that the coupled effect of both forces above is essential so that on no account can the oblateness of Mars are be neglected. The dynamics of grains prove to be quite different for the ejecta of Phobos and Deimos. For Deimos, the qualitative results are relatively simple and imply oscillations of eccentricity and long-term variations of orbital inclination, with amplitudes and periods both depending on grain size. For Phobos, the dynamics are shown to be much more complicated, and we discuss it in detail. We have found an intriguous peculiar behavior of debris near 300 µm in size. Another finding is that almost all the Phobos ejecta with radii less than 30 µm (against the values of 5 to 20 µm adopted earlier by many authors) should be rapidly lost by collisions with martian surface. The results of the paper may be the base for constructing an improved model of dust belts that presumably exist around Mars.  相似文献   

14.
M. Noland  J. Veverka 《Icarus》1976,28(3):401-403
Using Mariner 9 results on the shapes, rotation periods and photometric functions of Phobos and Deimos we calculate approximate orbital lightcurves for the two Martian satellites. The prediction is that both Phobos and Deimos should show orbital brightness fluctuations detectable from Earth. For Phobos the detectable amplitude is predicted to be about 0.1 mag; for Deimos, 0.2 mag.  相似文献   

15.
In this Letter, recent results on the nodal precession of accretion discs in close binaries are applied to the discs in some X-ray binary systems. The ratio between the tidally forced precession period and the binary orbital period is given, as well as the condition required for the rigid precession of gaseous Keplerian discs. Hence the minimum precessional period that may be supported by a fluid Keplerian disc is determined. It is concluded that near-rigid body precession of tilted accretion discs can occur and generally reproduce observationally inferred precession periods, for reasonable system parameters. In particular, long periods in SS 433, Her X-1, LMC X-4 and SMC X-1 can be fitted by the tidal model. It is also found that the precession period that has been tentatively put forward for Cyg X-2 cannot be accommodated by a tidally precessing disc model for any realistic choice of system parameters.  相似文献   

16.
Calculations of the daily solar radiation incident at the top of the atmospheres of Jupiter, Saturn, Uranus, and Neptune, with and without the effect of the oblateness, are presented in a series of figures illustrating the seasonal and latitudinal variation of the ratio of both insolations. It is shown that for parts of the summer, the daily insolation of an oblate planet is increased, the zone of enhanced solar radiation being strongly dependent upon the obliquity, whereas the rate of increase is fixed by both the flattening and the obliquity. In winter, the oblateness effect results in a more extensive polar region, the daily solar radiation of an oblate planet always being reduced when compared to a spherical planet. In addition, we also numerically studied the mean daily solar radiation. As previously stated by A.W. Brinkman and J. McGregor (1979, Icarus, 38, 479–482), it is found that in summer the horizon plane is tilted toward the Sun for latitudes less than the subsolar point, but is titled away from the Sun beyond this latitude. It follows that the mean summer daily insolation is increased between the equator and the subsolar point, but decreased poleward of the above-mentioned limit. In winter, however, the horizon plane is always tilted away from the Sun, causing the mean winter daily insolation to be reduced. The partial gain of the mean summertime insolation being much smaller than the loss during winter season evidently yields a mean annual daily insolation which is decreased at all latitudes.  相似文献   

17.
In publications presenting analytical results on the non-coplanar motion of a circumbinary planet it was shown that the unperturbed elliptical orbit of the planet undergoes simultaneously two kinds of the precession: the precession of the orbital plane and the precession of the orbit in its own plane. It is also well-known that there is also the relativistic precession of the planetary orbit in its own plane. In the present paper we study a combined effect of the all of the above precessions. For the general case, where the planetary orbit is not coplanar with the stars orbits, we analyzed the dependence of the critical inclination angle ic, at which the precession of the planetary orbit in its own plane vanishes, on the angular momentum L of the planet. We showed that the larger the angular momentum, the smaller the critical inclination angle becomes. We presented the analytical result for ic(L) and calculated the value of L, for which the critical inclination value becomes zero. For the particular case, where the planetary orbit is not coplanar with the stars orbits, we demonstrated analytically that at a certain value of the angular momentum of the planet, the elliptical orbit of the planet would become stationary: no precession. In other words, at this value of the angular momentum, the relativistic precession of the planetary orbit and its precession, caused by the fact that the planet revolves around a binary (rather than single) star, cancel each other out. This is a counterintuitive result.  相似文献   

18.
Due to the tides, the orbits of Phobos and Triton are contracting. While their semi major axes are decreasing, several possibilities of secular resonances involving node, argument of the pericenter and mean motion of the Sun will take place. In the case of Mars, if the obliquity (ε), during the passage through some resonances, is not so small, very significant variations of the inclination will appear. In one case, capture is almost certain provided that ε?20°. For Triton there are also similar situations, but capture seems to be not possible, mainly because in S1 state, Triton's orbit is sufficiently inclined (far) with respect to the Neptune's equator. Following Chyba et al. (Astron. Astrophys. 219 (1989) 123), a simplified equation that gives the evolution of the inclination versus the semi major axis, is derived. The time needed for Triton crash onto Neptune is longer than that one obtained by these authors, but the main difference is due to the new data used here. In general, even in the case of non-capture passages, some significant jumps in inclination and in eccentricities are possible.  相似文献   

19.
We have observed the leading and trailing hemispheres of Phobos from 1.65 to 3.5 μm and Deimos from 1.65 to 3.12 μm near opposition. We find the trailing hemisphere of Phobos to be brighter than its leading hemisphere by 0.24±0.06 magnitude at 1.65 μm and brighter than Deimos by 0.98±0.07 magnitude at 1.65 μm. We see no difference larger than observational uncertainties in spectral slope between the leading and trailing hemispheres when the spectra are normalized to 1.65 μm. We find no 3-μm absorption feature due to hydrated minerals on either hemisphere to a level of ∼5-10% on Phobos and ∼20% on Deimos. When the infrared data are joined to visible and near-IR data obtained by previous workers, our data suggest the leading (Stickney-dominated) side of Phobos is best matched by T-class asteroids. The spectral slope of the trailing side of Phobos and leading side of Deimos are bracketed by the D-class asteroids. The best laboratory spectral matches to these parts of Phobos are mature lunar soils and heated carbonaceous chondrites. The lack of 3-μm absorption features on either side of Phobos argues against the presence of a large interior reservoir of water ice according to current models of Phobos' interior (F. P. Fanale and J. R. Salvail 1989, Geophys. Res. Lett.16, 287-290; Icarus88, 380-395).  相似文献   

20.
S. Fred Singer 《Icarus》1975,25(3):484-488
Uranus exhibits an unusually large obliquity compared to other planets of the solar system; its equator is inclined by 98° to the plane of its orbit. However its five satellites are remarkably regular, with eccentricities and inclinations very nearly zero, but of course with orbit planes that are tilted by ~98° to the plane of the ecliptic. This circumstance is used here to relate the formation of satellites to planet formation. Six different cases are discussed, of which two can be ruled out and two others are highly improbable. In the analysis, use is made of the fact that satellites in near-equatorial orbits could not follow a rapid (“non-adiabatic”) change of the planet's obliquity. We assume, also, that the observed obliquity is the result of the last stages of planet accumulation. We can therefore exclude contemporaneous formation of planet and satellites, and conclude instead that the satellites were formed or acquired after the planet's axis had been tilted. A plausible scenario involves the tidal capture of a body having 5% to 10% of the planet's mass—sufficient to account for the tilt—followed by its accretion. However, tidal forces break up the body into chunks, slow the accretion, and allow ~1% of the chunks to form the satellites through interaction with a temporary dense atmosphere. The same reasoning may apply also for Saturn and Jupiter. It should be noted that the synchronous orbit it well within the Roche limit for all three planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号