首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paleosecular variation (PSV) and polarity transitions are two major features of the Earth’s magnetic field. Both PSV and reversal studies are limited when age of studied units is poorly constrained. This is a case of Central and western Mexico volcanics. Although many studies have been devoted to these crucial problems and more than 200 paleomagnetic directions are available for the last 5 Ma, only few sites were dated directly. This paper presents new paleomagnetic results from seventeen independent cooling units in the Michoacán-Guanajuato Volcanic Field (MGVF) in western Mexico. Twelve sites are directly dated by 40Ar/39Ar or K-Ar methods and span from 2.78 to 0.56 Ma. The characteristic paleodirections are successfully isolated for 15 lava flows. The mean paleodirection (inclination I and declination D) obtained in this study is I = 28.8°, D = 354.9°, and Fisherian statistical parameters are k = 28, α95 = 7.3°, N=15, which corresponds to the mean paleomagnetic pole position Plat = 83.9°, Plong = 321.6°, K = 34, A95 = 6.6°. The paleodirections obtained in present study compiled with those, previously reported from the MGVF, are practically undistinguishable from the expected Plio-Quaternary paleodirections. The paleosecular variation is estimated through the study of the scatter of the virtual geomagnetic poles giving SF = 15.9 with SU =21.0 and SL = 12.7 (upper and lower limits respectively). These values agree reasonably well with the recent statistical Models. The oldest sites analyzed (the Santa Teresa and Cerro Alto) yield normal polarity magnetizations as expected for the cooling units belonging to the Gauss geomagnetic Chron. The interesting feature of the record comes from lava flows dated at about 2.35 Ma with clearly defined normal directions. This may point out the possible existence of a normal polarity magnetization in the Matuyama reversed Chron older than the Reunion and may be correlated to Halawa event interpreted as the Cryptochron C2r.2r-1. Another important feature of the geomagnetic record obtained from the MGVF is the evidence of fully reversed geomagnetic field within Bruhnes Chron, at about 0.56 Ma corresponding to the relative paleointensity minimum of global extent found in marine sediments at about 590 ka.  相似文献   

2.
The Early Cretaceous may be considered a key period for understanding the evolution of the Earth’s magnetic field. Some still unsolved problems are related to the mode of paleosecular variation (PSV) of the Earth’s magnetic field before and during the Cretaceous Normal Superchron. We report here a detailed rock-magnetic, paleomagnetic and paleointensity investigation from 28 lava flows (331 standard paleomagnetic cores) collected in the Argentinean part of the Parana Flood Basalts (Formation Posadas) in order to contribute to the study of PSV during the early Cretaceous and to obtain precise Cretaceous paleomagnetic pole positions for stable South America. The average paleofield direction is precisely determined from 26 sites, which show small within-site dispersion and high directional stability. Five sites show evidences for the self-reversal of thermoremanent magnetization. 23 sites yielded normal polarity magnetization and only 3 are reversely magnetized. Moving windows averages were used to analyze the sequential variation of virtual geomagnetic pole’s (VGP) axial positions. Interestingly, the axial average VGP path traces an almost complete cycle around the geographical pole and passes near the location of all previously published Paraná Magmatic Province poles. Both paleomagnetic poles and average VGP paths are significantly different from the pole position suggested by fixed hotspot reconstructions, which may be due to true polar wander or the hotspot motion itself. Only 15 samples from 5 individual basaltic lava flows, yielded acceptable paleointensity estimates. The site mean paleointensities range from 25.2 ± 2.2 to 44.0 ± 2.2 μT. The virtual dipole moments (VDMs) range from 4.8 to 9.9 × 1022 Am2. This correspond to a mean value of 7.7 ± 2.1 × 1022 Am2 which is 96% of the present day geomagnetic field strength. These intensities agree with the relatively high values already reported for Early Cretaceous, which are consistent with some inferences from computer simulations previously published.  相似文献   

3.
We report detailed rock-magnetic and paleomagnetic directional data from 35 lava flows (302 standard paleomagnetic cores) sampled in the Central-Northern region of Uruguay in order to contribute to the study of the paleosecular variation of the Earth’s magnetic field during early Cretaceous and to obtain precise Cretaceous paleomagnetic pole positions for stable South America. The average unit direction is rather precisely determined from 29 out of 35 sites. All A95 confidence angles are less than 8°, which points to small within-site dispersion and high directional stability. Normal polarity magnetizations are revealed for 19 sites and 10 are reversely magnetized. Two other sites yield well defined intermediate polarities. The mean direction, supported by a positive reversal test is in reasonably good agreement with the expected paleodirection for Early Cretaceous stable South America and in disagreement with a 10° clockwise rotation found in the previous studies. On the other hand, paleomagnetic poles are significantly different from the pole position suggested by hotspot reconstructions, which may be due to true polar wander or the hotspot motion. Our data suggest a different style of secular variation during (and just before) the Cretaceous Normal Superchron and the last 5 Ma, supporting a link between paleosecular variation and reversal frequency.  相似文献   

4.
拉萨地块林周盆地白垩系红层的古地磁数据一直都有较大争议.过去认为磁倾角变浅可能是造成这些分歧的主要原因.我们在林周盆地设兴组背斜两翼进行了系统的古地磁采样,15个采样点的特征剩磁分量在倾斜校正和倾伏褶皱校正后平均方向为D=339.3°,I=22.9°(α_(95)=5.1°).特征剩磁分量在大约69%展开时获得最大集中,表明其为同褶皱重磁化;此时平均方向为D=339.1°,I=27.3°(α_(95)=4.1°),对应的古地磁极为65.4°N,327.5°E(A_(95)=3.5°),参考点29.3°N/88.5°E的古纬度为15.0°N±3.5°.薄片镜下分析显示赤铁矿为次生矿物,岩石磁组构(AMS)也表现为过渡型构造变形组构.样品的特征剩磁方向应为重磁化的结果,E/I(elongation vs inclination)校正法显示特征剩磁方向并没有发生倾角变浅.根据区域构造,重磁化时代约为72.4±1.8 Ma到64.4±0.6 Ma.综合考虑拉萨地块东西部的古地磁数据以及地震层析成像资料后我们认为,碰撞前拉萨地块大约呈NW-SE向准线性分布,并处于~10°N-15.0°N;自~70 Ma以来,拉萨地块与稳定欧亚大陆之间至少存在1200±400 km(11.1°±3.5°)的南北向构造缩短量;印度大陆与欧亚大陆的碰撞不应晚于55 Ma.  相似文献   

5.
Over 500 oriented samples of felsic rocks of Cretaceous to Middle Miocene age were collected along the Go¯River in the central part of Southwest Japan, in an attempt to detect the process of tectonic rotation of Southwest Japan from the paleomagnetic view point. Thermal demagnetization was successful in isolating characteristic directions from the remanent magnetization of samples. Reliability of the paleomagnetic direction is ascertained through the agreement of directions from different kinds of rocks as well as the presence of both normal and reversed polarities. The paleomagnetic results establish that Southwest Japan began to rotate clockwise through58 ± 14° later than 28 Ma and ceased its motion by about 12 Ma. Southwest Japan has undergone no detectable north-south translation since 28 Ma. These results imply that southwest Japan was rotated about the pivot around 34°N, 129°E between 28 Ma and 12 Ma in association with the opening of the Japan Sea.  相似文献   

6.
We present new 40Ar/39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K–Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0–0.1 Ma) and up to 0.78 Myr (0–0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78–0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.  相似文献   

7.
An updated analysis of the global paleomagnetic database shows that the frequency distributions of paleomagnetic inclinations for the Cenozoic and Mesozoic eras (younger than 250 Ma) are compatible with a random geographical sampling of a time-averaged geomagnetic field that closely resembles that of a geocentric axial dipole. In contrast, the frequency distributions of paleomagnetic inclinations for the Paleozoic and Precambrian eras (prior to 250 Ma) are over-represented by shallow inclinations. After discounting obvious secondary causes for the bias, such as from data averaging, sedimentary inclination error, inhomogeneous lithological distributions, and tropical remagnetization, we show that the anomalous inclination distributions for the Paleozoic and Precambrian can be explained by a geomagnetic field source model which includes a relatively modest (25%) contribution to the axial dipole from a zonal octupole field and an arbitrary zonal quadrupolar contribution. The apparent change by around 250 Ma to a much more axial dipolar field geometry might be due to the stabilization of the geodynamo from growth of the inner core to some critical threshold size, a gross speculation which would imply that either the threshold size was rather large or the inner core nucleated rather late in Earth history. Alternatively, if a geocentric axial dipole model is assumed or can eventually be demonstrated independently, the anomalous inclination distributions for the Paleozoic and Precambrian may reflect a tendency of continental lithosphere to be cycled into the equatorial belt, perhaps because geoid highs associated with long-term continental aggregates influence true polar wander.  相似文献   

8.
Abstract We carried out paleomagnetic measurements and K–Ar dating on Neogene andesitic lavas and sills of the Shigarami Formation in North Fossa Magna, central Japan. The Shigarami Formation is distributed in the axial part of the Komiji Syncline in the folding zone of the southwestern North Fossa Magna. Results of the present study indicate that the Komiji Syncline was formed shortly after 4.42 ± 0.12 Ma during the Pliocene. The sedimentary rocks of the Shigarami Formation consist of shallow marine and fluvial deposits. Intrusions of andesitic sills are found in the shallow marine deposits and two andesitic lava flows are present in the fluvial deposits. Oriented samples were taken from the sills at four sites and from the lavas at three sites. The samples produced stable remanent magnetization through stepwise alternating field and thermal demagnetizations. Results of a positive fold test indicate that the stable remanent magnetizations concentrate around a mean reversed polarity of declination = 169.0°, inclination = ?58.5° and 95% confidence limit = 9.0° after corrections have been made according to the direction of the bedding of the sedimentary rocks. Four fresh samples were selected for K–Ar dating from the samples used for paleomagnetic measurements. The groundmass of three samples taken from the sills yield ages of 4.42 ± 0.12, 4.49 ± 0.22 and 4.69 ± 0.13 Ma, whereas the one taken from the lower lava has an age of 5.91 ± 0.26 Ma. We believe that the Komiji Syncline was formed after the emplacement of lavas and sills in the area, because the descending Miocene strata were folded concordantly with the Shigarami Formation. The Pliocene and Pleistocene strata rest unconformably on the folded strata. The deformation might have progressed during the Pliocene, then slowed down in the Early Pleistocene. Our results suggest that the northwestward motion of the Philippine Sea Plate and the collision of the Tanzawa Block affected not only the South Fossa Magna, but also the North Fossa Magna.  相似文献   

9.
The results of detailed paleomagnetic studies in seven Upper Permian and Lower Triassic reference sections of East Europe (Middle Volga and Orenburg region) and Central Germany are presented. For each section, the coefficient of inclination shallowing f (King, 1955) is estimated by the Elongation–Inclination (E–I) method (Tauxe and Kent, 2004) and is found to vary from 0.4 to 0.9. The paleomagnetic directions, corrected for the inclination shallowing, are used to calculate the new Late Permian–Early Triassic paleomagnetic pole for the East European Platform (N = 7, PLat = 52.1°, PLong = 155.8°, A95 = 6.6°). Based on this pole, the geocentric axial dipole hypothesis close to the Paleozoic/Mesozoic boundary is tested by the single plate method. The absence of the statistically significant distinction between the obtained pole and the average Permian–Triassic (P–Tr) paleomagnetic pole of the Siberian Platform and the coeval pole of the North American Platform corrected for the opening of the Atlantic (Shatsillo et al., 2006) is interpreted by us as evidence that ~250 Ma the configuration of the magnetic field of the Earth was predominantly dipolar; i.e., the contribution of nondipole components was at most 10% of the main magnetic field. In our opinion, the hypothesis of the nondipolity of the geomagnetic field at the P–Tr boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), resulted from disregarding the effect of inclination shallowing in the paleomagnetic determinations from sedimentary rocks of “stable” Europe (the East European platform and West European plate).  相似文献   

10.
Mio-Pliocene hypabyssal rocks of the Combia event in the Amagá basin (NW Andes-Colombia), contain a deformational record of the activity of the Cauca-Romeral fault system, and the interaction of terranes within the Choco and northern Andean blocks. Previous paleomagnetic studies interpreted coherent counterclockwise rotations and noncoherent modes of rotation about horizontal axes for the Combia intrusives. However, rotations were determined from in-situ paleomagnetic directions and the existing data set is small. In order to better understand the deformational features of these rocks, we collected new paleomagnetic, structural, petrographic and magnetic fabric data from well exposed hypabyssal rocks of the Combia event. The magnetizations of these rocks are controlled by a low-coercivity ferromagnetic phase. Samples respond well to alternatingfield demagnetization isolating a magnetization component of moderate coercivity. These rocks do not have ductile deformation features. Anisotropy of magnetic susceptibility and morphotectonic analysis indicate that rotation about horizontal axes is consistently to the south-east, suggesting the need to apply a structural correction to the paleomagnetic data. The relationships between magnetic foliations and host-rock bedding planes indicate tectonic activity initiated before ~10 Ma. We present a mean paleomagnetic direction (declination D = 342.8°, inclination I = 12.1°, 95% confidence interval α95 = 12.5°, precision parameter k = 8.6, number of specimens n = 18) that incorporates structural corrections. The dispersion S = 27° of site means cannot be explained by secular variation alone, but it indicates a counterclockwise rotation of 14.8° ± 12.7° relative to stable South America. Paleomagnetic data within a block bounded by the Sabanalarga and Cascajosa faults forms a more coherent data set (D = 336.5°, I = 17.4°, α95 = 11.7°, k = 12.5, n = 14), which differs from sites west of the Sabanalarga fault and shows a rotation about a vertical axis of 20.2° ± 10.7°. Deformation in the Amagá basin may be tentatively explained by the obduction of the Cañas Gordas terrane over the northwestern margin of the northern Andean block. However, it can also be related to the local effects of the Cauca-Romeral fault system.  相似文献   

11.
One of the reasons for performing paleomagnetic studies is to determine whether the geomagnetic field remains dipolar during a polarity transition. Data on 23 field reversals of Recent, Tertiary and Upper Mesozoic age are examined with regard to the longitudinal and latitudinal distribution of paleomagnetic poles during a polarity change. Both frequency distributions of the transitional pole positions are not random. The results suggest that some field reversals are characterized by the rotation of the dipole axis in the meridional plane and show that two preferential meridional bands of polarity transitions exist centered on planes through 40°E–140°W and 120°E–60°W respectively. The latitudinal distribution of transitional paleopoles shows that there is a decrease in the number of observed poles with decreasing latitude. This is interpreted as the result of an acceleration in the motion of the dipole axis when it approaches the equator. Comparison of transitional velocities and paleointensity magnitudes reveals that the dipole moment is very weak only for a short part of the transitional period when the paleopole position lies within the latitudes of 10°N and 10°S. The overall conclusion is that the geomagnetic field retains its dipolar character during polarity changes.  相似文献   

12.
For long time the western-central Mexico has been affected by oblique subduction caused by Farallon plate beneath North America. As result, smaller plates (e.g. Cocos Plate), several fault systems outlining crustal blocks (e.g. Michoacán block) and magmatic arcs (e.g. Paleocene-Early Oligocene magmatism and the Trans-Mexican Volcanic Belt) were developed. Still, no paleomagnetic data are available for Oligocene and Miocene. The principal aim of this study is to evaluate whether the tectonic rotations and relative motions of these blocks occurred before the Miocene. Here, we report a detailed rock-magnetic and paleomagnetic results from Tecalitlan area, located in the Michoacán block. Sixteen sites (about 150 oriented samples) were collected including one radiometrically dated diabase dike (35.0 ± 1.8 Ma). Rock-magnetic experiments permitted identification of magnetic carriers and assessment of the paleomagnetic stability. Continuous susceptibility measurements vs temperature in most cases yield reasonably reversible curves with Curie points close to that of magnetite. Reliable paleomagnetic directions were obtained for 12 sites. Inclination I and declination D of the mean paleomagnetic direction obtained in this study are I = 33.1°, D = 345.0°, and Fisherian statistical parameters are k = 25, α95 = 8.9°. The corresponding mean paleomagnetic pole position is Plat = 75.7°, Plong = 166.6°, K = 31, A95 = 8.0°. The mean inclination is in reasonably good agreement with the expected value, as derived from reference poles for the stable North America. Magnetic declination is not significantly different from that expected which is in disagreement with a counterclockwise tectonic rotation of about 20° previously reported for the studied area. Based on paleomagnetic results obtained in this study compiled with those currently available from the Michoacán Block, we propose a simple model suggesting that sometime in Eocene epoch the convergence vector of the Farallon plate relative to North America plate was normal to the trench before reaching an actual oblique convergence.  相似文献   

13.
A rock magnetic and paleomagnetic investigation was performed on some selected, radiometrically dated lava flows from the Mascota Volcanic Field (MVF), western Trans- Mexican Volcanic Belt. A set of rock-magnetic experiments and standard paleomagnetic analysis were carried out on 19 sites spanning the time interval from 2268 to 72 kyr. The paleomagnetic directions are anchored to absolute radiometric ages while no such information was available in previous studies. This makes possible to correctly evaluate the fluctuation of Earth’s magnetic field from Pliocene to Pleistocene and reveal the firm evidence of possible Levantine excursion. Both Ti-poor and Ti-rich titanomagnetites seem to carry the remanent magnetization with Curie temperatures ranging from 350°C to 537°C. Thirteen flows correspond to the Brunhes chron, one of them exhibits transitional directions, while the remaining six sites belong to the Matuyama chron. New and existing dataset for MVF were used to estimate the paleosecular variation parameters. The selected data include 35 Plio-Quaternary lava flows. After excluding the poor quality data, as well as the transitional directions, the mean paleodeclination is 356.1° and oaleoinclination 39.9°, which agree well with the geocentric axial dipole (GAD) and the expected paleodirections for the Plio-Pleistocene, as derived from the reference poles for the stable North America. The corresponding mean paleomagnetic poles are paleolongitude 226.7° and paleolatitude 86.0°. The virtual geomagnetic pole scatter for the MVF is 15.2°, which is consistent with the value expected from model G at latitude of 20° (this model provides an interpretation of the paleosecular variation at different latitudes for the time of interest). The combined paleomagnetic data, supported by positive reversal test, indicate no paleomagnetically detectable vertical-axis rotations in the study area. The evidence of one transitional directions was detected, which may correspond to the Levantine excursion (360-370 kyr) or unnamed event between 400-420 kyr.  相似文献   

14.
We present new Middle Miocene paleomagnetic data for the central Japan Arc, and discuss their implications for Miocene rotation. To obtain a refined paleodirection, we made magnetic measurements on basaltic to andesitic lavas and intrusive rocks from 12 sites in the Tsugu volcanic rocks (ca 15 Ma) in the northern part of the Shitara area, Japan. Significant secondary magnetizations in samples with strong magnetic intensities are interpreted as lightning‐induced components. Mean directions carried by magnetite and/or titanomagnetite were determined for all sites. An overall mean direction with a northerly declination was obtained from dual‐polarity site means for nine sites. This direction is indistinguishable from the mean direction for coeval parallel dikes in the northern part of the Shitara area, and also indistinguishable from the Miocene reference direction derived from the paleopole for the North China Block in the Asian continent. These comparisons suggest little or no rotation or latitudinal motion in the study area with respect to the North China Block since 15 Ma. We obtained a refined early Middle Miocene paleodirection (D = 9.7°, I = 52.5°, α95 = 4.8°; 30 sites) and paleopole (82.0°N, 230.8°E, A95 = 5.6°) for Shitara by combining data from the Tsugu volcanic rocks and a coeval dike swarm. An anomalous direction found at three sites could be a record of an extraordinary field during a geomagnetic polarity transition or excursion. Paleomagnetic data from Shitara suggest that: (i) the western wing of the Kanto Syntaxis, a prominent cuspate geologic structure in central Honshu, underwent a counterclockwise rotation with respect to the main part of the southwestern Japan Arc between ca 17.5 Ma and 15 Ma; (ii) collision between the Japan and Izu–Bonin (Ogasawara) Arcs began prior to 15 Ma; and (iii) clockwise rotation of the entire southwestern part of the Japan Arc had ceased by 15 Ma.  相似文献   

15.
Summary It has been predicted that the geomagnetic field strength will be at its highest during periods of low reversal frequency. Using basaltic lavas from Israel and India, which were erupted during the 35 Ma interval of normal polarity in the mid-Cretaceous (the Cretaceous Quiet Zone), we have obtained palaeointensity estimates. The mean virtual dipole moments from the two areas are about 75% of the present value. This suggests that there is no simple relationship between the time averaged strength of the dipole and the frequency of reversals.  相似文献   

16.
The reconstruction of the tectonic evolution of the oceanic crust, including the recognition of ancient oceanic plumes and the differentiation between multiple and single oceanic arcs, relies on the paleogeographic analysis of accreted oceanic fragments found in orogenic belts. Here we present paleomagnetic and gravity data from Cretaceous oceanic basaltic and gabbroic rocks, the continental metamorphic basement, and their associated cover from northwestern Colombia. Based on regional scale tectonic reconstructions and geochemical constraints, such rocks have been interpreted as remnants of an oceanic large igneous province formed in southern latitudes, which was accreted to the sialic continental margin during the Late Cretaceous. Gravity analyses suggest the existence of a coherent high density segment separated by major suture zones from a lower density material related to the continental crust and/or thick sedimentary sequences trapped during collision. A characteristic paleomagnetic direction in Early and Late Cretaceous oceanic volcano-plutonic rocks, revealing a southeastern declination (D) and a negative inclination (I), may be interpreted in two different ways: (1a primary magnetization (tilt-corrected direction D = 130.3°, I = -23.3°, k = 23.4, α95 = 26.4°), suggesting clockwise rotation around 130°, and magnetization acquired in southern latitudes (range of 4°S to 21°S); or (2) a remagnetization event during a reverse interval of the Earth’s magnetic field in the Cenozoic (in situ direction D = 128.7°, I = -6.2°, k = 23.1, α95 = 26.1°), suggesting a counter-clockwise rotation around 50°. The first scenario seems more plausible, as it is consistent with previous paleomagnetic studies at other localities; it is compatible with a southern paleogeography for this block, and when integrated with other regional geological and paleomagnetic studies, supports a southern Pacific origin of a major oceanic block, formed as a part of a broader Cretaceous plateau that may have extended south or southwest of Galapagos. After its initial accretion, this block was subsequently fragmented due to the oblique SW-NE approach to the continental margin during the Late Cretaceous.  相似文献   

17.
A representative collection of Upper Cretaceous rocks of Georgia (530 samples from 24 sites) is used for the study of magnetic properties of the rocks and the determination of the paleodirection and paleointensity (H an) of the geomagnetic field. Titanomagnetites with Curie points of 200–350°C are shown to be carriers of natural remanent magnetization (NRM) preserving primary paleomagnetic information during heatings to 300–350°C. The characteristic NRM component of the samples is identified in the interval 120–350°C. The Thellier and Thellier-Coe methods are used for the determination of H an meeting modern requirements on the reliability of such results. New paleointensity determinations are obtained and virtual dipole magnetic moment (VDM) values are calculated for four sites whose stratigraphic age is the Upper Cretaceous (Cenomanian-Campanian). It is shown that, in the interval 99.6–70.6 Ma, the VDM value was two or more times smaller than the present value, which agrees with the majority of H an data available for this time period. According to our results, the H an value did not change at the boundary of the Cretaceous normal superchron.  相似文献   

18.
A Paleocene granodiorite pluton on Jamaica has been subject to extensive weathering caused by the tropical marine environment of the island. The natural remanence of 29 samples obtained from relatively fresh rock in two localities was found to consist of two components with overlapping coercivity ranges. Alternating field treatment proved ineffective for removing the secondary component without destroying the primary one. Thermal demagnetization of samples from the two localities was more effective and yielded paleomagnetic poles at 14.7°N, 11.6°W and 58.9°N, 15.9°E respectively. These pole positions are different from those available from contemporaneous North American rocks and from poles derived from Jamaican Cretaceous and Upper Miocene rocks. Mineralogical studies showed that the granodiorite has undergone an extensive maghemitization superposed on earlier class 2 deuteric oxidation and related to the weathering process. Some of the titanomaghemite has, however, been converted to titanohematite. Hence although the secondary remanence carried by the former was removable by thermal treatment at 500°C, its part carried by the latter could not be removed without simultaneously destroying the primary remanence carried by the residual titanomagnetite. The observed paleopole positions do not, therefore, represent the true Paleocene geomagnetic field, but suggest that the direction of magnetization of the pluton has been approximately equatorial and was probably acquired in a reversed geomagnetic field. This could be interpreted as having been caused by the behavior of the geomagnetic field during a polarity transition, but a more favorable interpretation appears to be a large anticlockwise tectonic rotation of the islands since the Paleocene.  相似文献   

19.
A variety of paleomagnetic data from the Mediterranean region show a strong bias toward shallow inclinations. This pattern of shallow inclinations has been interpreted to be the result of (1) major northward terrane displacement, (2) large nondipole components in the Earth's magnetic field, and (3) systematic inclination flattening of the paleomagnetic directions. Here, we use the observation that, in addition to the well-known variation of magnetic inclination with latitude, the N-S elongation of directional dispersion also varies, being most elongate at the equator and nearly symmetric at the poles. Assuming that inclination shallowing follows the relationship long known from experiment, we invert the inclinations using a range of “flattening factors” to find the elongation/inclination pair consistent with a statistical model for the paleosecular variation. We apply the so-called “elongation/inclination” method to the extensive paleomagnetic data sets from the Miocene sediments of the Calatayud basin (Spain) and the island of Crete (Greece). After correction, the Spanish data are in good agreement with the expected middle Miocene latitude of the region. The data from Crete suggest that it occupied a position in the late Miocene about 275 km north of the predicted location. This is in agreement with the geological and geodynamical models for the east Mediterranean region, which indicate that slab rollback processes in combination with Anatolian push generated southward migration of Crete. The 7.5 million year average displacement rate of Crete estimated by the E/I method is 37 mm/yr to the south, which closely coincides with present-day rates based on global positioning system (GPS) and model measurements. We also show that inappropriate tilt corrections lead to a shallow inclination bias as well, explaining that observed in studies of lava flows of the region. We conclude that the east Mediterranean inclination anomaly is caused by sedimentary inclination error and not by a persistent octupolar contribution to the geomagnetic field, or northward transport.  相似文献   

20.
Pacific plate equatorial sediment facies provide estimates of the northward motion of the Pacific plate that are independent of paleomagnetic data and hotspot tracks. Analyses of equatorial sediment facies consistently indicate less northward motion than analyses of the dated volcanic edifices of the Hawaiian-Emperor chain. The discrepancy is largest 60–70 Ma B.P.; the 60- to 70-Ma equatorial sediment facies data agree with recent paleomagnetic results from deep-sea drilling on Suiko seamount [1] and from a northern Pacific piston core [2]. Equatorial sediment facies data and paleomagnetic data, combined with K-Ar age dates along the Emperor chain [3], indicate a position of the spin axis at 65 Ma B.P. of 82°N, 205°E in the reference frame in which the Pacific Ocean hotspots are fixed. This pole agrees well with the position of the spin axis in the reference frame in which the Atlantic Ocean hotspots and the Indian Ocean hotspots are fixed [4,5], supporting the joint hypotheses that (1) the Pacific Ocean hotspots are fixed with respect to the hotspots in other oceans, (2) the hotspots have shifted coherently with respect to the spin axis, and (3) the time average of the earth's magnetic field 65 Ma B.P. was an axial geocentric dipole. Global Neogene paleomagnetic data suggest that a shift of the mantle relative to the spin axis has been occurring during the Neogene in the same direction as the shift between 65 Ma B.P. and the present. All data are consistent with a model in which the hotspots (and by inference the mantle) have shifted with respect to the spin axis about a fixed Euler pole at a constant rate of rotation for the last 65 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号