首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present X-ray/ γ -ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft state by ASCA , RXTE and CGRO /OSSE in 1996 May and June. The spectra consist of a dominant soft component below ∼2 keV and a power-law-like continuum extending to at least ∼800 keV. We interpret them as emission from an optically thick, cold accretion disc and from an optically thin, non-thermal corona above the disc. A fraction f ≳0.5 of total available power is dissipated in the corona.
We model the soft component by multicolour blackbody disc emission taking into account the torque-free inner-boundary condition. If the disc extends down to the minimum stable orbit, the ASCA RXTE data yield the most probable black hole mass of M X≈10 M and an accretion rate,     , locating Cyg X-1 in the soft state in the upper part of the stable, gas-pressure-dominated, accretion-disc solution branch.
The spectrum of the corona is well modelled by repeated Compton scattering of seed photons from the disc off electrons with a hybrid, thermal/non-thermal distribution. The electron distribution can be characterized by a Maxwellian with an equilibrium temperature of kT e∼30–50 keV, a Thomson optical depth of τ ∼0.3 and a quasi-power-law tail. The compactness of the corona is 2≲ℓh≲7, and a presence of a significant population of electron–positron pairs is ruled out.
We find strong signatures of Compton reflection from a cold and ionized medium, presumably an accretion disc, with an apparent reflector solid angle, Ω/2π∼0.5–0.7. The reflected continuum is accompanied by a broad iron K α line.  相似文献   

2.
We study the soft X-ray variability of Cygnus X-3. By combining data from the All-Sky Monitor and Proportional Counter Array instruments on the RXTE satellite with EXOSAT /Medium Energy (ME) detector observations, we are able to analyse the power density spectrum (PDS) of the source from 10−9 to 0.1 Hz, thus covering time-scales from seconds to years. As the data on the longer time-scales are unevenly sampled, we combine traditional power spectral techniques with simulations to analyse the variability in this range. The PDS at higher frequencies  (≳10−3 Hz)  are for the first time compared for all states of this source. We find that it is for all states well described by a power law, with index  ∼−2  in the soft states and a tendency for a less steep power law in the hard state. At longer time-scales, we study the effect of the state transitions on the PDS, and find that the variability below  ∼10−7 Hz  is dominated by the transitions. Furthermore, we find no correlation between the length of a high/soft-state episode and the time since the previous high/soft state. On intermediate time-scales, we find evidence for a break in the PDS at time-scales of the order of the orbital period. This may be interpreted as evidence for the existence of a tidal resonance in the accretion disc around the compact object, and constraining the mass ratio to   M 2/ M 1≲ 0.3  .  相似文献   

3.
We present the results obtained by a detailed study of the extragalactic Z source LMC X-2, using broad-band Suzaku data and a large (∼750 ks) data set obtained with the proportional counter array (PCA) onboard the Rossi X-ray Timing Experiment ( RXTE ). The PCA data allow the study of the complete spectral evolution along the horizontal, normal and flaring branches of the Z track. Comparison with previous studies shows that the details of spectral evolution (like the variation of Comptonizing electron temperature) are similar to those of GX 17+2 but unlike those of Cyg X-2 and GX 349+2. This suggests that Z sources are a heterogeneous group, with perhaps LMC X-2 and GX 17+2 being members of a subclass. However, non-monotonic evolution of the Compton y parameter seems to be generic to all sources. The broad-band Suzaku data reveal that the case in which the additional soft component of the source is modelled as disc blackbody emission is strongly preferred over the one where it is taken to be a blackbody spectrum. This component, as well as the temperature of seed photons, does not vary when the source goes into flaring mode, and the entire variation can be ascribed to the Comptonizing cloud. The bolometric unabsorbed luminosity of the source is constrained to be  ∼2.23 × 1038 erg s−1  , which, if the source is Eddington-limited, implies a neutron star mass of  1.6 M  . We discuss the implications of these results.  相似文献   

4.
We present a general relativistic accretion disc model and its application to the soft-state X-ray spectra of black hole binaries. The model assumes a flat, optically thick disc around a rotating Kerr black hole. The disc locally radiates away the dissipated energy as a blackbody. Special and general relativistic effects influencing photons emitted by the disc are taken into account. The emerging spectrum, as seen by a distant observer, is parametrized by the black hole mass and spin, the accretion rate, the disc inclination angle and the inner disc radius.
We fit the ASCA soft-state X-ray spectra of LMC X-1 and GRO J1655-40 by this model. We find that, having additional limits on the black hole mass and inclination angle from optical/UV observations, we can constrain the black hole spin from X-ray data. In LMC X-1 the constraint is weak, and we can only rule out the maximally rotating black hole. In GRO J1655-40 we can limit the spin much better, and we find 0.68 a 0.88 . Accretion discs in both sources are radiation-pressure dominated. We do not find Compton reflection features in the spectra of any of these objects.  相似文献   

5.
We have obtained high time resolution (seconds) photometry of LMC X-2 in 1997 December, simultaneously with the Rossi X-ray Timing Explorer ( RXTE ), in order to search for correlated X-ray and optical variability on time-scales from seconds to hours. We find that the optical and X-ray data are correlated only when the source is in a high, active X-ray state. Our analysis shows evidence for the X-ray emission leading the optical with a mean delay of <20 s. The time-scale for the lag can be reconciled with disc reprocessing, driven by the higher-energy X-rays, only by considering the lower limit for the delay. The results are compared with a similar analysis of archival data of Sco X-1.  相似文献   

6.
Using RXTE /PCA data, we study the fast variability of the reflected emission in the soft spectral state of Cyg X-1 by means of Fourier frequency-resolved spectroscopy. We find that the rms amplitude of variations of the reflected emission has the same frequency dependence as the primary radiation down to time-scales of ≲30–50 ms. This might indicate that the reflected flux reproduces, with nearly flat response, variations of the primary emission. Such behaviour differs notably from that of the hard spectral state, in which variations of the reflected flux are significantly suppressed in comparison with the primary emission, on time-scales shorter than ∼0.5–1 s.
If related to the finite light-crossing time of the reflector, these results suggest that the characteristic size of the reflector, presumably an optically thick accretion disc, in the hard spectral state is larger by a factor of ≳5–10 than in the soft spectral state. Modelling the transfer function of the disc, we estimate the inner radius of the accretion disc to be R in∼100 R g in the hard state and R in≲10 R g in the soft state for a 10-M black hole.  相似文献   

7.
We develop a model of an accretion disc in which the variability induced at a given radius is governed by a damped harmonic oscillator at the corresponding epicyclic frequency. That variability induces both linear and non-linear responses in the locally emitted radiation. The total observed variability of a source is the sum of these contributions over the disc radius weighted by the energy dissipation rate at each radius. It is shown that this simple model, which effectively has only three parameters including the normalization, can explain the range of the power spectra observed from Cyg X-1 in the soft state. Although a degeneracy between the black hole mass and the strength of the damping does not allow a unique determination of the mass, we can still constrain it to  ≲(16–20) M  . We also show that our model preserves the observed linear rms–flux relationship even in the presence of the non-linear flux response.  相似文献   

8.
We report the discovery of a decay in the superorbital period of the binary X-ray pulsar LMC X-4. Combining archival data and published long term X-ray light curves, we have found a decay in the third period in this system (P ∼ 30.3 day, P ∼ −2 × 10−5 s s−1). Along with this result, a comparison of the superorbital intensity variations in LMC X-4, Her X-1 and SMC X-1 is also presented.  相似文献   

9.
Using the exceptional long-term monitoring capabilities of the MACHO project, we present here the optical history of LMC X-2 for a continuous 6-yr period. These data were used to investigate the previously claimed periodicities for this source of 8.15 h and 12.54 d: we find upper limits of 0.10 mag and 0.09 mag, respectively.  相似文献   

10.
We study X-ray spectra of Cyg X-3 from BeppoSAX , taking into account absorption and emission in the strong stellar wind of its companion. We find the intrinsic X-ray spectra are well modelled by disc blackbody emission, its upscattering by hot electrons with a hybrid distribution, and by Compton reflection. These spectra are strongly modified by absorption and reprocessing in the stellar wind, which we model using the photoionization code cloudy . The form of the observed spectra implies the wind is composed of two phases. A hot tenuous plasma containing most of the wind mass is required to account for the observed features of very strongly ionized Fe. Small dense cool clumps filling ≲0.01 of the volume are required to absorb the soft X-ray excess, which is emitted by the hot phase but not present in the data. The total mass-loss rate is found to be  (0.6–1.6) × 10−5 M yr−1  . We also discuss the feasibility of the continuum model dominated by Compton reflection, which we find to best describe our data. The intrinsic luminosities of our models suggest that the compact object is a black hole.  相似文献   

11.
We present spectral variations of the binary X-ray pulsar LMC X-4 observed with the RXTE/PCA during different phases of its 30.5 day long third period. Only out-of-eclipse data were used for this study. The 3–25 keV spectrum, modeled with high energy cut-off power-law and iron line emission is found to show strong dependence on the intensity state. Correlations between the Fe line emission flux and different parameters of the continuum are presented here.  相似文献   

12.
Cygnus X-2 appears to be the descendant of an intermediate-mass X-ray binary (IMXB). Using Mazzitelli's stellar code we compute detailed evolutionary sequences for the system and find that its prehistory is sensitive to stellar input parameters, in particular the amount of core overshooting during the main-sequence phase. With standard assumptions for convective overshooting a case B mass transfer starting with a 3.5-M donor star is the most likely evolutionary solution for Cygnus X-2. This makes the currently observed state rather short-lived, of order 3 Myr, and requires a formation rate > 10−7–10−6 yr−1 of such systems in the Galaxy. Our calculations show that neutron star IMXBs with initially more massive donors (≳4 M) encounter a delayed dynamical instability; they are unlikely to survive this rapid mass transfer phase. We determine limits for the age and initial parameters of Cygnus X-2 and calculate possible dynamical orbits of the system in a realistic Galactic potential, given its observed radial velocity. We find trajectories which are consistent with a progenitor binary on a circular orbit in the Galactic plane inside the solar circle that received a kick velocity ≤200 km s−1 at the birth of the neutron star. The simulations suggest that about 7 per cent of IMXBs receiving an arbitrary kick velocity from a standard kick velocity spectrum would end up in an orbit similar to Cygnus X-2, while about 10 per cent of them reach yet larger Galactocentric distances.  相似文献   

13.
We present phase resolved optical spectroscopy and Doppler tomography of V1341 Cygni, the optical counterpart to the neutron star low-mass X-ray binary (LMXB) Cygnus X-2 (Cyg X-2). We derive a radial velocity (RV) curve for the secondary star, finding a projected RV semi-amplitude of   K 2= 79 ± 3 km s−1  , leading to a mass function of  0.51 ± 0.06 M, ∼30  per cent lower than the previous estimate. We tentatively attribute the lower value of K 2 (compared to that obtained by other authors) to variations in the X-ray irradiation of the secondary star at different epochs of observations. The limited phase coverage and/or longer timebase of previous observations may also contribute to the difference in K 2. Our value for the mass function implies a primary mass of  1.5 ± 0.3 M  , somewhat lower than previous dynamical estimates, but consistent with the value found by analysis of type-I X-ray bursts from this system. Our Doppler tomography of the broad He  ii λ4686 line reveals that most of the emission from this line is produced on the irradiated face of the donor star, with little emission from the accretion disc. In contrast, the Doppler tomogram of the N  iii λ4640.64 Bowen blend line shows bright emission from near the gas stream/accretion disc impact region, with fainter emission from the gas stream and secondary star. This is the first LMXB for which the Bowen blend is dominated by emission from the gas stream/accretion disc impact region, without comparable emission from the secondary star. This has implications for the interpretation of Bowen blend Doppler tomograms of other LMXBs for which the ephemeris may not be accurately known.  相似文献   

14.
We have analysed the kinematical parameters of Cir X-1 to constrain the nature of its companion star, the eccentricity of the binary and the pre-supernova parameter space. We argue that the companion is most likely to be a low-mass (≲2.0 M) unevolved star and that the eccentricity of the orbit is 0.94±0.04. We have evaluated the dynamical effects of the supernova explosion and we find it must have been asymmetric. On average , we find that a kick of ∼740 km s−1 is needed to account for the recently measured radial velocity of +430 km s−1 (Johnston, Fender & Wu) for this extreme system. The corresponding minimum kick velocity is ∼500 km s−1. This is the largest kick needed to explain the motion of any observed binary system. If Cir X-1 is associated with the supernova remnant G321.9-0.3 then we find a limiting minimum age of this remnant of ∼60 000 yr. Furthermore, we predict that the companion star has lost ∼10 per cent of its mass as a result of stripping and ablation from the impact of the supernova shell shortly after the explosion.  相似文献   

15.
The spectra of disc accreting neutron stars generally show complex curvature, and individual components from the disc, boundary layer and neutron star surface cannot be uniquely identified. Here we show that much of the confusion over the spectral form derives from inadequate approximations for Comptonization and for the iron line. There is an intrinsic low-energy cut-off in Comptonized spectra at the seed photon energy. It is very important to model this correctly in neutron star systems as these have expected seed photon temperatures (from either the neutron star surface, inner disc or self-absorbed cyclotron) of ≈1 keV, clearly within the observed X-ray energy band. There is also reflected continuum emission which must accompany the observed iron line, which distorts the higher energy spectrum. We illustrate these points by a reanalysis of the Ginga spectra of Cyg X-2 at all points along its Z track, and show that the spectrum can be well fitted by models in which the low-energy spectrum is dominated by the disc, while the higher energy spectrum is dominated by Comptonized emission from the boundary layer, together with its reflected spectrum from a relativistically smeared, ionized disc.  相似文献   

16.
We present a model for the short time-scale spectral variability of accreting black holes. It describes the time-averaged spectra well, and also temporal characteristics such as the power-density spectrum, time/phase lags, and coherence function of Cygnus X-1. We assume that X/ γ -rays are produced in compact magnetic flares at radii ≲100 GM c 2 from the central black hole. The tendency for magnetic loops to inflate and detach from the underlying accretion disc causes the spectrum of a flare to evolve from soft to hard because of the decrease of the feedback from the cold disc, so causing time delays between hard and soft photons. We identify the observed time lags with the evolution time-scales of the flares, which are of the order of the Keplerian time-scale. We model the overall temporal variability using a pulse avalanche model in which each flare has a certain probability of triggering a neighbouring flare, thus occasionally producing long avalanches. The duration of the avalanches determines the Fourier frequencies at which most of the power emerges.  相似文献   

17.
The X-ray pulsar GX 1+4 was observed with the RXTE satellite for a total of 51 ks between 1996 July 19 and 21. During this period the flux decreased smoothly from an initial mean level of ≈6×1036 erg s−1 to a minimum of ≈4×1035 erg s−1 (2–60 keV, assuming a source distance of 10 kpc) before partially recovering towards the initial level at the end of the observation.
BATSE pulse timing measurements indicate that a torque reversal took place approximately 10 d after this observation. Both the mean pulse profile and the photon spectrum varied significantly. The observed variation in the source may provide important clues as to the mechanism of torque reversals.
The single best-fitting spectral model was based on a component originating from thermal photons with kT 0≈1 keV Comptonized by a plasma of temperature kT ≈7 keV. Both the flux modulation with phase during the brightest interval and the evolution of the mean spectra over the course of the observation are consistent with variations in this model component; with, in addition, a doubling of the column density n H contributing to the mean spectral change.
A strong flare of duration ≲50 s was observed during the interval of minimum flux, with the peak flux ≈20 times the mean level. Although beaming effects are likely to mask the true variation in M ˙ thought to give rise to the flare, the timing of a modest increase in flux prior to the flare is consistent with dual episodes of accretion resulting from successive orbits of a locally dense patch of matter in the accretion disc.  相似文献   

18.
We present Keck II spectroscopy of optical mHz quasi-periodic oscillations (QPOs) in the light curve of the X-ray pulsar binary Hercules X-1. In the power spectrum it appears as 'peaked noise', with a coherency ∼2, a central frequency of 35 mHz and a peak-to-peak amplitude of 5 per cent. However, the dynamic power spectrum shows it to be an intermittent QPO, with a lifetime of ∼100 s, as expected if the lifetime of the orbiting material is equal to the thermal time-scale of the inner disc. We have decomposed the spectral time series into constant and variable components and used blackbody fits to the resulting spectra to characterize the spectrum of the QPO variability and constrain possible production sites. We find that the spectrum of the QPO is best fitted by a small hot region, possibly the inner regions of the accretion disc, where the ballistic accretion stream impacts on to the disc. The lack of any excess power around the QPO frequency in the X-ray power spectrum, created using simultaneous light curves from RXTE , implies that the QPO is not simply reprocessed X-ray variability.  相似文献   

19.
The short high state in Her X-1 was observed with good coverage and good sensitivity with the Ginga LAC in 1989. These observations have so far not been analysed in any detail. Here are reported the results of analyses of the light curves and spectra from this data set. The spectral model has absorbed and unabsorbed components. The behaviour of these two components during the short high state indicates a spatially extended continuum source. The iron-line intensity is linearly dependent on the total intensity, indicating that the total intensity is reprocessed emission. The equivalent width of ≃0.7 keV is consistent with an illuminated disc geometry, with most of the radiation of the central source (the pulsar) blocked from the observer's view. An extended ingress is seen which is a persistent feature during the short high state. The ingress duration gives a source size of ∼3×109 cm, corresponding to the inner disc.  相似文献   

20.
Using data obtained with the Rossi X-ray Timing Explorer , we report the detection of a 5-Hz quasi-periodic oscillation (QPO) in the bright low-mass X-ray binary and Z source Cygnus X-2 during high overall intensities (the high-intensity state). This QPO was detected on the so-called normal-branch and can be identified with the normal-branch QPO or NBO. Our detection of the NBO is the first one during times when Cygnus X-2 was in the high-intensity state. The rms amplitude of this QPO decreased from 2.8 per cent between 2 and 3.1 keV to <1.9 per cent between 5.0 and 6.5 keV. Above 6.5 keV, its amplitude rapidly increased to ∼12 per cent rms above 16 keV. The time lags of the QPO were consistent with being zero below 5 keV (compared with the 2–3.1 keV band), but they rapidly increased to ∼70 ms (140°) around 10 keV, above which the time lags remained approximately constant near 70 ms. The photon energy dependences of the rms amplitude and the time lags are very similar to those observed for the NBO with other satellites ( Ginga , EXOSAT ) at different (i.e. lower) intensity states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号