首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
U–Pb (TIMS–ID and SIMS) and Sm–Nd analyses of zircons and garnet-whole rock pairs were applied on high-pressure granulite facies metapelites and metagranodiorite from Tcholliré and Banyo regions, respectively in the Adamawa–Yadé and Western Domains of the Central-African Fold Belt (CAFB) of Cameroon. Cathodoluminescence (CL) images of zircons reveal that they are made up of ubiquitous magmatitic xenocrystic cores, surrounded and/or overprinted by light unzoned recrystallized domains. U–Pb data on cores yield ages ranging from Paleoproterozoic to Neoproterozoic, which we consider as dating inheritances. Data on overgrowths and recrystallized domains give ages ranging between 594 and 604 Ma, interpreted as the time of HP granulite-facies metamorphism in the Tcholliré and Banyo regions. This is also supported by ages derived from Sm–Nd garnet-whole rock pairs. Sediments of the Tcholliré region were deposited after ca. 620 Ma from Paleoproterozoic, Mesoproteroszoic and Neoproterozoic protoliths, while those from the Banyo region were deposited after 617.6 ± 7.1 Ma essentially from Neoproterozoic protoliths.  相似文献   

2.
Ion microprobe U–Pb dating of zircons from Neoproterozoic volcano-sedimentary sequences in Cameroon north of the Congo craton is presented. For the Poli basin, the depositional age is constrained between 700–665 Ma; detrital sources comprise ca. 920, 830, 780 and 736 Ma magmatic zircons. In the Lom basin, the depositional age is constrained between 613 and 600 Ma, and detrital sources include Archaean to Palaeoproterozoic, late Mesoproterozoic to early Neoproterozoic (1100–950 Ma), and Neoproterozoic (735, 644 and 613 Ma) zircons. The Yaoundé Group is probably younger than 625 Ma, and detrital sources include Palaeoproterozoic and Neoproterozoic zircons. The depositional age of the Mahan metavolcano-sedimentary sequence is post-820 Ma, and detrital sources include late Mesoproterozoic (1070 Ma) and early Neoproterozoic volcanic rocks (824 Ma). The following conclusions can be made from these data. (1) The three basins evolved during the Pan-African event but are significantly different in age and tectonic setting; the Poli is a pre- to syn-collisional basin developed upon, or in the vicinity of young magmatic arcs; the Lom basin is post-collisional and intracontinental and developed on old crust; the tectono-metamorphic evolution of the Yaoundé Group resulted from rapid tectonic burial and subsequent collision between the Congo craton and the Adamawa–Yade block. (2) Late Mesoproterozoic to early Neoproterozoic inheritance reflects the presence of magmatic event(s) of this age in west–central Africa.  相似文献   

3.
The eastern Amery Ice Shelf (EAIS) and southwestern Prydz Bay are situated near the junction between the Late Neoproterozoic/Cambrian high-grade complex of the Prydz Belt and the Early Neoproterozoic Rayner Complex. The area contains an important geological section for understanding the tectonic evolution of East Antarctica. SHRIMP U–Pb analyses on zircons of felsic orthogneisses and mafic granulites from the area indicate that their protoliths were emplaced during four episodes of ca. 1380 Ma, ca. 1210–1170 Ma, ca. 1130–1120 Ma and ca. 1060–1020 Ma. Subsequently, these rocks experienced two episodes of high-grade metamorphism at > 970 Ma and ca. 930–900 Ma, and furthermore, most of them (except for some from the Munro Kerr Mountains and Reinbolt Hills) were subjected to high-grade metamorphic recrystallization at ca. 535 Ma. Two suites of charnockite, i.e. the Reinbolt and Jennings charnockites, intrude the Late Mesoproterozoic/Early Neoproterozoic and Late Neoproterozoic/Cambrian high-grade complexes at > 955 Ma and 500 Ma, respectively. These, together with associated granites of similar ages, reflect late- to post-orogenic magmatism occurring during the two major orogenic events. The similarity in age patterns suggests that the EAIS–Prydz Bay region may have suffered from the same high-grade tectonothermal evolution with the Rayner Complex and the Eastern Ghats of India. Three segments might constitute a previously unified Late Mesoproterozoic/Early Neoproterozoic orogen that resulted from the long-term magmatic accretion from ca. 1380 to 1020 Ma and eventual collision before ca. 900 Ma between India and the western portion of East Antarctica. The Prydz Belt may have developed on the eastern margin of the Indo-Antarctica continental block, and the Late Neoproterozoic/Cambrian suture assembling Indo-Antarctica and Australo-Antarctica continental blocks should be located southeastwards of the EAIS–Prydz Bay region.  相似文献   

4.
The Teplá–Barrandian unit (TBU) of the Bohemian Massif shared a common geological history throughout the Neoproterozoic and Cambrian with the Avalonian–Cadomian terranes. The Neoproterozoic evolution of an active plate margin in the Teplá–Barrandian is similar to Avalonian rocks in Newfoundland, whereas the Cambrian transtension and related calc-alkaline plutons are reminiscent of the Cadomian Ossa–Morena Zone and the Armorican Massif in western Europe. The Neoproterozoic evolution of the Teplá–Barrandian unit fits well with that of the Lausitz area (Saxothuringian unit), but is significantly distinct from the history of the Moravo–Silesian unit.The oldest volcanic activity in the Bohemian Massif is dated at 609+17/−19 Ma (U–Pb upper intercept). Subduction-related volcanic rocks have been dated from 585±7 to 568±3 Ma (lower intercept, rhyolite boulders), which pre-dates the age of sedimentation of the Cadomian flysch ( t chovice Group). Accretion, uplift and erosion of the volcanic arc is documented by the Neoproterozoic Dob í conglomerate of the upper part of the flysch. The intrusion age of 541+7/−8 Ma from the Zgorzelec granodiorite is interpreted as a minimum age of the Neoproterozoic sequence. The Neoproterozoic crust was tilted and subsequently early Cambrian intrusions dated at 522±2 Ma (T ovice granite), 524±3 Ma (V epadly granodiorite), 523±3 Ma (Smr ovice tonalite), 523±1 Ma (Smr ovice gabbro) and 524±0.8 Ma (Orlovice gabbro) were emplaced into transtensive shear zones.  相似文献   

5.
TIMS-ID and SIMS U–Pb dating on zircons from metaplutonic rocks involved in the Pan-African nappe of southern Cameroon allow definition of three groups of subduction-related intrusions: group-I intrusions represented by the Masins metagabbro in the Lomie region yielded 666 ± 26 Ma; group-II intrusions represented by the Mamb metasyenogabbro and the Yaoundé pyriclasite yielded ca. 620 Ma and are broadly coeval with the deposition of the Yaoundé metasediments; group-III intrusions represented by the Elon augen metagranite and the Ngaa Mbappe metamonzodiorite yielded ca. 600 Ma. The onset of the nappe tectonics occurred under high-grade conditions in the range 616 to 610 Ma and continued around 600 Ma with the emplacement of the shallowest nappes. Finally, the construction of southern Cameroon proceeded by a multi-stage evolution characterized by a long-lived development of magmatic arcs associated with rapid opening and closure of sedimentary marginal basins in relation to a northward subduction.  相似文献   

6.
《Precambrian Research》1987,37(1):71-87
Northern Cameroon has been classically divided into an old ‘basement complex’, a Middle Proterozoic cover (‘séries intermédiaires’) and granites emplaced during the Pan-African orogeny. New U/Pb geochronological data on different rock units from this region are presented. A rhyolite from the Poli schists (‘séries intermédiaires’) gives an age close to 800 Ma. Migmatitic gneisses of the ‘basement complex’ seem to derive from different detrital or magmatic sources. The metadiorites and foliated granites of the ‘basement complex’ give ages around 630 Ma. The 800 Ma age is interpreted as dating volcanic activity, probably related to the initial stage of the Pan-African evolution. Ages around 630 Ma date a syn-tectonic plutonism dominated by a regional-scale basic to intermediate plutonic suite (BIP). Zircons of the BIP suite are almost concordant and show no evidence of inheritance; the suite shows calc-alkaline affinity and relatively low 87Sr/86Sr initial ratios; thus the BIP suite represents material newly added to the crust during the PanAfrican orogeny. These data are at variance with previous interpretations of this part of the mobile belt as old Precambrian crust reactivated during the Pan-African orogeny. The previous distinction between the ‘séries intermédiaires’ and a regional ‘basement complex’ must be reappraised, similar ages being found in both units. A chronological succession of the Pan-African evolution is established and tentatively compared with that of the Trans-Saharan belt in Nigeria and Hoggar.  相似文献   

7.
额尔古纳地块新元古代岩浆作用:锆石U-Pb年代学证据   总被引:1,自引:0,他引:1  
本文拟在研究区确定新元古代岩浆作用期次,进而在一定程度上从岩浆活动的角度制约额尔古纳地块的构造属性,故在前人工作的基础上,对额尔古纳地块新元古代侵入岩进行了LA-ICP-MS锆石U-Pb定年。研究区内6个代表性侵入岩中的锆石大部分呈自形–半自形晶,显示出典型的岩浆生长环带或条痕状吸收的特点,暗示其为岩浆成因。结合前人研究结果及本文测年结果,可将额尔古纳地块上新元古代岩浆作用划分为七期:1~927 Ma的碱长花岗岩;2~890 Ma的二长花岗岩;3~851 Ma的正长花岗岩;4~830 Ma的正长花岗岩和二长花岗岩;5~790 Ma的双峰式火成岩(包括辉长岩、辉长闪长岩、碱长花岗岩、正长花岗岩和花岗闪长岩);6~762 Ma的花岗闪长岩;7~737 Ma的正长花岗岩和二长花岗岩。这些新元古代侵入岩的发现表明额尔古纳地块上存在前寒武纪地质体。结合全球岩浆构造热事件,可以判定额尔古纳地块新元古代岩浆作用应是对Rodinia超大陆演化的响应,并且这些岩浆事件可以同图瓦–蒙古地块和中蒙古地块上发育的同期岩浆事件相对比,这暗示额尔古纳地块与西伯利亚克拉通南缘的这些微陆块具有亲缘性。  相似文献   

8.
The infill of the Neuquén Basin recorded the Meso-Cenozoic geological and tectonic evolution of the southern Central Andes being an excellent site to investigate how the pattern of detrital zircon ages varies trough time. In this work we analyze the U–Pb (LA–MC–ICP–MS) zircon ages from sedimentary and volcanic rocks related to synrift and retroarc stages of the northern part of the Neuquén Basin. These data define the crystallization age of the synrift volcanism at 223 ± 2 Ma (Cerro Negro Andesite) and the maximum depositional age of the original synrift sediments at ca. 204 Ma (El Freno Formation). Two different pulses of rifting could be recognized according to the absolute ages, the oldest developed during the Norian and the younger during the Rhaetian–Sinemurian. The source regions of the El Freno Formation show that the Choiyoi magmatic province was the main source rock of sediment supply. An important amount of detrital zircons with Triassic ages was identified and interpreted as a source area related to the synrift magmatism. The maximum depositional age calculated for the Tordillo Formation in the Atuel-La Valenciana depocenter is at ca. 149 Ma; as well as in other places of the Neuquén Basin, the U–Pb ages calculated in the Late Jurassic Tordillo Formation do not agree with the absolute age of the Kimmeridgian–Tithonian boundary (ca. 152 Ma). The main source region of sediment in the Tordillo Formation was the Andean magmatic arc. Basement regions were also present with age peaks at the Carboniferous, Neoproterozoic, and Mesoproterozoic; these regions were probably located to the east in the San Rafael Block. The pattern of zircon ages summarized for the Late Jurassic Tordillo and Lagunillas formations were interpreted as a record of the magmatic activity during the Triassic and Jurassic in the southern Central Andes. A waning of the magmatism is inferred to have happened during the Triassic. The evident lack of ages observed around ca. 200 Ma suggests cessation of the synrift magmatism. The later increase in magmatic activity during the Early Jurassic is attributed to the onset of Andean subduction, with maximum peaks at ca. 191 and 179 Ma. The trough at ca. 165 Ma and the later increase in the Late Jurassic could be explained by changes in the relative convergence rate in the Andean subduction regime, or by the shift to a more mafic composition of the magmatism with minor zircon fertility.  相似文献   

9.
The Nagoundéré Pan-African granitoids in Central North Cameroon belong to a regional-scale massif, which is referred to as the Adamawa-Yade batholith. The granites were emplaced into a ca. 2.1 Ga remobilised basement composed of metasedimentary and meta-igneous rocks that later underwent medium- to high-grade Pan-African metamorphism. The granitoids comprise three groups: the hornblende–biotite granitoids (HBGs), the biotite ± muscovite granitoids (BMGs), and the biotite granitoids (BGs). New Th–U–Pb monazite data on the BMGs and BGs confirm their late Neoproterozoic emplacement age (ca. 615 ± 27 Ma for the BMGs and ca. 575 Ma for the BGs) during the time interval of the regional tectono-metamorphic event in North Cameroon. The BMGs also show the presence of ca. 926 Ma inheritances, suggesting an early Neoproterozoic component in their protolith.The HBGs are characterized by high Ba–Sr, and low K2O/Na2O ratios. They show fairly fractionated REE patterns (LaN/YbN 6–22) with no Eu anomalies. The BMGs are characterized by higher K2O/Na2O and Rb/Sr ratios. They are more REE-fractionated (LaN/YbN = 17–168) with strong negative Eu anomalies (Eu/Eu* = 0.2–0.5). The BGs are characterized by high SiO2 with K2O/Na2O > 1. They show moderated fractionated REE patterns (LaN/YbN = 11–37) with strong Eu negative anomalies (Eu/Eu* = 0.2–0.8) and flat HREE features (GdN/YbN = 1.5–2.2). In Primitive Mantle-normalized multi-element diagrams, the patterns of all rocks show enrichment in LILE relative to HFSE and display negative Nb–Ta and Ti anomalies. All the granitoids belong to high-K calc-alkaline suites and have an I-type signature.Major and trace element data of the HBGs are consistent with differentiation of a mafic magma from an enriched subcontinental lithospheric mantle, with possible crustal assimilation. In contrast, the high Th content, the LREE-enrichment, and the presence of inherited monazite suggest that the BGs and BMGs were derived from melting of the middle continental crust. Structural and petrochemical data indicate that these granitoids were emplaced in both syn- to post-collision tectonic settings.  相似文献   

10.
A comprehensive review of new data on geology and geochronology of Precambrian terranes in the western Central Asian Orogenic Belt reveals new insights into its evolution. At the present surface, these terranes mostly consist of Meso- to Neoproterozoic sedimentary, magmatic and metamorphic assemblages, with insignificant Paleoproterozoic rocks. Archean material is represented exclusively by detrital and xenocrystic zircons in younger strata. Meso- to Neoproterozoic felsic magmatic rocks were mostly sourced from Neoarchean and Paleoproterozoic continental crust, indicating its reworking and potential wider presence at deeper crustal levels. Most Meso- to Neoproterozoic assemblages are of intraplate origin. The supra-subduction assemblages of Neoproterozoic and Mesoproterozoic ages are of limited extent.We propose to recognize the Issedonian and Ulutau-Moyunkum groups of terranes, separated by early Paleozoic Z-shaped ophiolitic suture, based on their different tectono-magmatic evolution in the Mesoproterozoic and Neoproterozoic. Distinctly different are the Mesoproterozoic and early Neoproterozoic assemblages, with lithological variations at the beginning of the late Neoproterozoic and practically no differences at the end of the Neoproterozoic.The Issedonian group of terranes could be part of a Mesoproterozoic (ca. 1100 Ma) orogen between the Siberian, North China and Laurentian cratons. The pre-Mesoproterozoic crust of these terranes was completely reworked during the younger events. The Ulutau-Moyunkum group of terranes appear to be lithologically and geochronologically similar to the Tarim craton. Both the Issedonian and Ulutau-Moyunkum groups of terranes were metamorphosed during the Ulutau-Moyunkum event at 700 ± 25 Ma.The breakup into currently mappable Precambrian terranes took place during end-Ediacaran to early Paleozoic times after opening of oceanic basins, whose relics are preserved in numerous Paleozoic ophiolitic sutures.  相似文献   

11.
There are several pre-orogenic Neoproterozoic granitoid and metavolcanic rocks in the Lufilian–Zambezi belt in Zambia and Zimbabwe that are interpreted to have been emplaced in a continental-rift setting that is linked to the break-up of the Rodinia supercontinent. However, no geochemical data were previously available for these rocks in the Zambian part of the belt to support this model. We conducted petrographic and whole-rock chemical analyses of the Neoproterozoic Nchanga Granite, Lusaka Granite, Ngoma Gneiss and felsic metavolcanic rocks from the Lufilian–Zambezi belt in Zambian, in order to evaluate their chemical characteristics and tectonic settings. Other magmatic rocks of importance for understanding the evolution of the belt in Zambia, included in this study, are the Mesoproterozoic Munali Hills Granite and associated amphibolites and the Mpande Gneiss. The Neoproterozoic rocks have monzogranitic compositions, aluminum-saturation indices (ASI) < 1.1, and high contents of high field strength elements (HFSE) and rare earth elements (REE). The chondrite-normalised spider diagrams are similar to those of A-type granites from the Lachlan fold belt and show negative Sr, P, and Ti anomalies. On various tectonic discrimination diagrams the Neoproterozoic rocks plot mainly in A-type granite fields. These petrographic and trace element compositions indicate that these rocks are A-type felsic rocks, but they do not have features of granites and rhyolites emplaced in true continental-rift settings, as previously suggested. On the basis of the A-type features and independent regional geological and geochronological data, we suggest that the Neoproterozoic granitoid and felsic metavolcanic rocks were emplaced during the earliest extensional stages of continental rifting in the Lufilian–Zambezi belt. The apparent continental-arc like chemistry of the granitoid and felsic metavolcanic rocks is thus inferred to be inherited from calcalkaline sources. The Mesoproterozoic Munali Hills Granite and Mpande Gneiss have trace element features e.g., Nb–Ta depletions, which indicate that that these gneisses were emplaced in a convergent-margin setting. The MORB-normalised spider diagram of co-magmatic amphibolites exhibit a fractionated LILE/HFSE pattern recognized in subduction zones. This inference is consistent with remnants of ocean crust, juvenile Island arcs and ophiolites elsewhere in the Mesoproterozoic Irumide belt in Zambia and Zimbabwe. In addition, we report the first U–Pb zircon age of 1090.1 ± 1.3 Ma for the Munali Hills Granite. The age for the Munali Hills Granite provides new constraints on correlation and tectono-thermal activity in the Lufilian–Zambezi belt. The age of the Munali Hills Granite indicates that some supracrustal rocks in the Zambezi belt of Zambia, which were previously thought to be Neoproterozoic and correlated with the Katanga Supergroup in the Lufilian belt, are Mesoproterozoic or older. Consequently, previous regional lithostratigraphic correlations in the Lufilian–Zambezi belt would require revision.  相似文献   

12.
The paper is a first attempt to unravel the Archean multi-stage metaplutonic assemblage of the Meso/Neoarchean terrane of the State of Goiás, Central Brazil, by means of the U–Pb SHRIMP zircon and Sm–Nd techniques. Two stages of granitic plutonism, spanning ca. 140 m.y., were precisely established for the accretion of the gneiss protoliths. The earliest stage embraces tonalitic to granodioritic and minor granitic orthogneisses with Nd juvenile signature, emplaced from ca. 2845 to ca. 2785 Ma, interpreted as the roots of an early arc. Inherited zircon xenocrysts and Nd isotopic data indicate that the juvenile magmas underwent contamination from a sialic crust as old as 3.3 Ga, from which there are, so far, no recognizable exposures. The second stage comprises granodioritic to granitic gneisses and lasted from ca. 2711 to 2707 Ma. Based on their Nd isotopic signatures and on inherited zircon crystals, their protoliths are interpreted as dominantly crustal-derived. The SHRIMP data from zircon crystals did not depict a Paleoproterozoic overprinting on the Archean gneisses, which is due to geological processes with prevailing temperatures below the isotopic stability of the U/Pb/Th system in the mineral. These processes comprise crustal extension and intrusion of a mafic dike swarm at ca. 2.3 Ga, followed by low grade events mostly related to shear zones between ca. 2.15 and 2.0 Ga. The study also revealed the extent of the Pan- African tectono-thermal overprinting on the Archean orthogneisses. Most of the zircon populations show morphological evidence of metamorphic peripheral recrystallization dated between ca. 750 and 550 Ma. One of the banded gneisses with a crystallization age of ca. 2700 Ma (2σ) has a more complex zircon population including magmatic new grains, which yielded a precise 206Pb/238U crystallization age of 590 ± 10 Ma (2σ). These new grains are interpreted to have grown in anatectic veins injected within strongly sheared gneiss.The data characterize a widespread Pan-African-aged metamorphic overprinting, culminating with localized anatexis of the Archean orthogneisses.  相似文献   

13.
Approximately 500-Ma-old orthogneisses are widespread in the eastern part of the Variscan belt and are commonly interpreted to have intruded mica-schist series of assumed Neoproterozoic age. New SHRIMP zircon ages of quartzofeldspathic metavolcanogenic rocks of the mica schist series in the eastern part of the Karkonosze-Izera Massif (SW Poland) indicate that they are late Cambrian/early Ordovician rather than Neoproterozoic in age, based on the zircon age spectra distributed mainly between ca. 500 and 660 Ma (with a few Proterozoic inherited minimum ages of ca. 970 and 1,825 Ma). Younger zircon dates, dispersed between ca. 412 and 464 Ma, are interpreted as a result of Pb-loss likely caused by subsequent metamorphism. Consequently, the felsic metavolcanogenic rocks appear to be roughly contemporaneous with the intrusion of ca. 500-Ma-old orthogneiss protoliths (with the pooled concordia age of 487 ± 8 Ma interpreted as the best approximation of the protolith intrusive age). Field relationships, petrological and geochemical features of the felsic and mafic rocks studied support a model in which the accompanying mica schist series are not the original country rocks to the ca. 500 Ma granite intrusions, and indicate that their recent close proximity is the result of tectonic juxtaposition. However, both the mica schists enclosing the bimodal metavolcanic rocks, and the orthogneisses, are interpreted to represent a Cambro-Ordovician passive continental margin sequence being part of the Saxothuringian domain. They are tectonically overlain to the east by HP/T metamorphic units, comprising MORB-type metaigneous rocks, and delineating a tectonic suture separating the Saxothuringian block in the west from an assumed continental block (Tepla-Barrandian) to the south-east.  相似文献   

14.
The Late Paleozoic magmatism in central Inner Mongolia provides important insights on the tectonic evolution and crustal growth in the Central Asian Orogenic Belt (CAOB), which formed due to the closure of the Paleo-Asian Ocean (PAO). This paper presents new zircon UPb ages and Hf isotopic compositions as well as whole-rock geochemical data on a suite of volcanic rocks from the Late Paleozoic Baoligaomiao Formation and coeval intrusions in the Baiyinwula region of the Mongolian Arc. This study revealed that the magmatic sequences evolution includes: (1) early andesites (317–311 Ma) with enrichment in large ion lithophile elements (LILEs), depletion in high field strength elements (HSFEs), and positive zircon εHf (t) values from +9.0 to +15.5, indicating a derivation from enriched mantle; (2) felsic rocks emplaced from 306 Ma to 292 Ma, with relatively lower εHf (t) values from +6.3 to +11.3, implying juvenile crust as the primary magma source; and (3) A-type igneous rocks (280–278 Ma). The comparison of palaeontological, lithostratigraphical, and magmatic evolution in Late Paleozoic between different tectonic units in the eastern part of CAOB has displayed that the subduction of Paleo-Asian oceanic crust caused the opening of the Hegenshan Ocean along the southern margin of Mongolian Arc in Devonian; and the Baoligaomiao Formation volcanic rocks and coeval intrusions have recorded early northwards subduction and subsequent slab rollback of Hegenshan oceanic crust.  相似文献   

15.
U–Pb isotope analyses by LA-MC-ICPMS (Laser Ablation – Multi Collector – Inductively Coupled Plasma Mass Spectrometry) in zircon crystals from metatonalites, tonalites and granodiorite gneiss from the Arroio dos Ratos Complex (ARC) early magmatism in southernmost Brazil are presented. The ARC is located in the eastern portion of the Sul-rio-grandense Shield, occurring as septa and roof pendants on granitoids emplaced along the Southern Brazilian Shear Belt (SBSB). The SBSB corresponds to a translithospheric structure composed of several anastomosed shear zones of dominantly transcurrent kinematics whose syntectonic magmatism, of Neoproterozoic age, is characteristic of post-collisional environments. The studied rocks comprise TTG-type associations with coeval mafic magmatism, deformed and metamorphosed within a ductile shear zone. Zircon crystals obtained from six samples are interpreted as igneous given that the crystals are subhedral to euhedral, bipyramidal, with concentric zonation, have ratios Th/U between 0.13 and 0.81 and have restricted evidence of overgrowth. The oldest Association 1 (A1) has structures compatible with recrystallization under conditions of high temperature and an igneous age of 2148 ± 33 Ma, obtained in a metatonalite. The rocks of Association 2 (A2) have similar compositions, although with a more significant coeval mafic fraction. They are intrusive into A1 and also show high-temperature recrystallization features. However, they are less deformed and partly preserve their primary, igneous fabric. The igneous ages obtained from two A2 tonalites are 2150 ± 28 Ma and 2136 ± 27 Ma. Association 3 (A3) is represented by tonalitic to granodioritic gneisses whose structure, composition and metamorphic features are similar to those of A1 rocks, except for the absence of coeval mafic magmas in the former. Local features resulting from partial melting are present in A3 rocks. Three samples from A3 were dated. A tonalitic gneiss gives igneous age of 2099 ± 10 Ma and two granodioritic gneisses give igneous ages of 2081 ± 7 Ma and 2077 ± 13 Ma. Restricted to A1, inheritance is represented by one subhedral, zoned, gently rounded zircon crystal interpreted as igneous, of 2732 ± 40 Ma (207Pb/206Pb age), with discordance of 9% and 232Th/238U ratio of 1.17. A single Neoproteozoic metamorphic date value was obtained from the rim of a zircon crystal of Paleoproterozoic core. The age of 635 ± 6 Ma (207Pb/206Pb age), with Th/U ratio < 0.1 and 1% discordance, is interpreted as compatible with adjacent SBSB magmatism. The three associations are interpreted to represent the record of successive magmatic pulses that mark the evolution of a Paleoproterozoic continental magmatic arc. In the study area, these magmatic arc associations represent relict areas partly reworked and relatively well-preserved from Neoproterozoic tectono-magmatic post-collisional events during the construction of the Southern Brazilian Shear Belt.  相似文献   

16.
The geodynamic evolution of the early Paleozoic ultrahigh-pressure metamorphic belt in North Qaidam, western China, is controversial due to ambiguous interpretations concerning the nature and ages of the eclogitic protoliths. Within this framework, we present new LA-ICP-MS U–Pb zircon ages from eclogites and their country rock gneisses from the Xitieshan terrane, located in the central part of the North Qaidam UHP metamorphic belt. Xitieshan terrane contains clearly different protolith characteristics of eclogites and as such provides a natural laboratory to investigate the geodynamic evolution of the North Qaidam UHP metamorphic terrane. LA-ICP-MS U–Pb zircon dating of three phengite-bearing eclogites and two country rock gneiss samples from the Xitieshan terrane yielded 424–427 Ma and 917–920 Ma ages, respectively. The age of 424–427 Ma from eclogite probably reflects continental lithosphere subduction post-dating oceanic lithosphere subduction at ~ 440–460 Ma. The 0.91–0.92 Ga metamorphic ages from gneiss and associated metamorphic mineral assemblages are interpreted as evidence for the occurrence of a Grenville-age orogeny in the North Qaidam UHPM belt. Using internal microstructure, geochemistry and U–Pb ages of zircon in this study, combined with the petrological and geochemical investigations on the eclogites of previous literature’s data, three types of eclogitic protoliths are identified in the Xitieshan terrane i.e. 1) Subducted early Paleozoic oceanic crust (440–460 Ma), 2) Neoproterozoic oceanic crust material emplaced onto micro-continental fragments ahead of the main, early Paleozoic, collision event (440–420 Ma) and 3) Neoproterozoic mafic dikes intruded in continental fragments (rifted away from the former supercontinent Rodinia). These results demonstrate that the basement rocks of the North Qaidam terrane formed part of the former supercontinent Rodinia, attached to the Yangtze Craton and/or the Qinling microcontinent, and recorded a complex tectono-metamorphic evolution that involved Neoproterozoic and Early Paleozoic orogenies.  相似文献   

17.
The Brasília Belt is a Neoproterozoic orogenic belt in central Brazil, developed between the Amazon, São Francisco-Congo and Paranapanema cratons. It consists of a thick sedimentary pile, made up of several stratigraphic units, which have been deformed and metamorphosed along the western margin of the São Francisco Craton during the Brasiliano orogenic cycle. In the western part of the belt, a large, juvenile magmatic arc is exposed (the Goiás Magmatic Arc), consisting of calc-alkaline plutonic suites as well as volcano-sedimentary sequences, ranging in age between ca. 860 and 650 Ma. Regional-scale, west-dipping thrusts and reverse faults normally mark the limits between the main stratigraphic units, and clearly indicate tectonic transport towards the east. The age of deposition and tectonic significance of the sedimentary units comprising the Brasília Belt have been a matter of continuous debate over the last three decades. In the present paper, recent provenance data based on LA-ICPMS U–Pb ages of detrital zircon grains from several of these units, are reviewed and their significance for the age of deposition of the original sediments and tectonic evolution of the Brasília Belt are discussed.The Paranoá, Canastra and the Vazante groups, in the central part of the Belt, have detrital zircon grains with ages older than ca. 900 Ma and are interpreted as representative of the passive margin sequence deposited on the western margin of the São Francisco Craton. On the other hand, samples from the Araxá and Ibiá groups have a much younger population of Neoproterozoic zircon grains, as young as 650 Ma, and have been interpreted as syn-orogenic (fore-arc?) deposits. The Bambuí Group, exposed in the easternmost part of the belt and covering large areas of the São Francisco Craton also has young zircon grains and is interpreted, at least in part, as the foreland basin of the Brasília Belt.  相似文献   

18.
简要叙述冈瓦纳超大陆聚合过程和中非造山带泛非期地质构造过程,剖析了西冈瓦纳喀麦隆北部和乍得西南地区岩石构造单元及其形成的构造背景并对喀麦隆北部河流冲积物进行了重矿物分析。分析结果表明重矿物可能来自近源基岩,为西喀麦隆地体(Western Cameroon Domain)内的雷博巴(Rey Bouba)绿岩带和马约科比(Mayo Kebbi)弧岩浆岩带;重矿物中的自然金可能主要来自雷博巴绿岩带。分析结果为该地区砂金矿开采提供了一定的指示。  相似文献   

19.
In an attempt to elucidate the pre-Variscan evolution history of the various geological units in the Austrian part of the Bohemian Massif, we have analysed zircons from 12 rocks (mainly orthogneisses) by means of SHRIMP, conventional multi-grain and single-grain U–Pb isotope-dilution/mass-spectrometry. Two of the orthogneisses studied represent Cadomian metagranitoids that formed at ca. 610 Ma (Spitz gneiss) and ca. 580 Ma (Bittesch gneiss). A metagranite from the Thaya batholith also gave a Cadomian zircon age (567±5 Ma). Traces of Neoproterozoic zircon growth were also identified in several other samples, underlining the great importance of the Cadomian orogeny for the evolution of crust in the southern Bohemian Massif. However, important magmatic events also occurred in the Early Palaeozoic. A sample of the Gföhl gneiss was recognised as a 488±6 Ma-old granite. A tonalite gneiss from the realm of the South Bohemian batholith was dated at 456±3 Ma, and zircon cores in a Moldanubian metagranitic granulite gave similar ages of 440–450 Ma. This Ordovician phase of magmatism in the Moldanubian unit is tentatively interpreted as related to the rifting and drift of South Armorica from the African Gondwana margin. The oldest inherited zircons, in a migmatite from the South Bohemian batholith, yielded an age of ca. 2.6 Ga, and many zircon cores in both Moravian and Moldanubian meta-granitoid rocks gave ages around 2.0 Ga. However, rocks from the Moldanubian unit show a striking lack of zircon ages between 1.8 and 1.0 Ga, reflecting an ancestry from Armorica and the North African part of Gondwana, respectively, whereas the Moravian Bittesch gneiss contains many inherited zircons with Mesoproterozoic and Early Palaeoproterozoic ages of ca. 1.2, 1.5 and 1.65–1.8 Ga, indicating a derivation from the South American part of Gondwana.  相似文献   

20.
A newly identified northwest–southeast oriented, deeply-rooted, steep to vertical, large-scale structural system within the Proterozoic Curnamona Province, Australia, which we term the “Benagerie Shear Zone”, is imaged in regional magnetic and gravity datasets. In this study, we use a combination of field analysis and quantitative geophysical methods, to establish a 1100 Myr history of activity along the Benagerie Shear Zone during which the location of younger geological structures are influenced by the pre-existing shear zone. This deformational system is interpreted to have 1) aided ascent and emplacement of the ca. 1600 Ma Ninnerie (magmatic) Supersuite; 2) controlled the loci of nucleation of normal faults during rifting and continental breakup at ca. 800 Ma; and 3) influenced the development of fold structures as well as acting as a plane co-linear to the rotation axis of pre-existing normal faults such that they were steepened and reactivated as strike slip structures during the ca. 500 Ma Delamerian Orogeny. We interpret that the Benagerie Shear Zone has not undergone uni-directional propagation during its evolution but rather through reactivation was a primary influence on controlling the nucleation of Neoproterozoic rift faults, thereby playing a major role in accommodating strain over a significant period of the evolution of the Curnamona Province. This study demonstrates that crustal-scale shear zones can evolve over hundreds of millions of years, have strike-lengths of hundreds to thousands of kilometers, and have vastly different surface expressions along strike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号