首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate warming in the Arctic directly causes two opposite changes in Arctic coastal systems: increased melt‐water discharge through rivers induces extra influx of sediments and extended open water season increases wave impact which reworks and erodes the shores. A shoreline change analysis along the southern coast of Disko Island in western Greenland was conducted with aerial photographs and satellite images from 1964, 1985, and 2012. The decadal morphologic evolution of this 85 km section showed that large parts of the coast had undergone very limited changes. However, two deltas were highly dynamic and popped up as hotspots. The Tuapaat delta and Skansen delta showed large progradation rates (1.5 and 7 m/yr) and migration of the adjacent barriers and spits. The dynamic behavior at the delta mouths was mainly caused by classic delta channel lobe switching at one delta (Tuapaat), and by a breach of the fringing spit at the other delta (Skansen). The longshore and cross‐shore transports are responsible for reworking the sediment with a result of migrating delta mouths and adjacent subaqueous mouth bars. Seaward progradation of the deltas is limited due to the steep nature of the bathymetry in Disko Bay. Finally, a schematic conceptual overview of processes and associated morphological responses for deltas in Arctic environments is presented, including the climate drivers affecting delta evolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The effect of solar and galactic cosmic ray variations on the duration of elementary synoptic processes (ESPs) in the Atlantic-European sector of the Northern Hemisphere has been studied. It has been found that solar cosmic ray (SCR) bursts result in an increase in the duration of ESPs, which belong to the western and meridional forms of atmospheric circulation. Forbush decreases in galactic cosmic rays (GCRs) are accompanied by an increase in the duration of ESPs, which belong to the meridional atmospheric circulation form, and in a decrease in the duration of ESPs, which are related to the western and eastern circulation forms. It has been assumed that the observed variations in the ESP duration are caused by the effect of short-period cosmic ray variations on the intensity of cyclonic processes at middle and high latitudes, namely, the regeneration of cyclones near the southeastern coast of Greenland after SCR bursts and the development of blocking anticyclones over the northeastern Atlantic, Europe, and Scandinavia during GCR Forbush decreases.  相似文献   

3.
Variations of atmospheric pressure in the North Atlantic region during Forbush decreases of galactic cosmic rays were investigated. A noticeable pressure growth with the maximum on the 3rd and 4th days after the Forbush decrease onsets was revealed over Scandinavia and the northern region of the European part of Russia. It was shown that the observed pressure growth was caused by the formation of blocking anticyclones in the region of the climatic Arctic front, as well as by the sharp slowing of the movement of North Atlantic cyclones. It was suggested that the particles that precipitate in the regions of the climatic Arctic and Polar fronts, with the minimum energies E~20–80 MeV and ~2–3 GeV, respectively, may influence the processes of cyclone and anticyclone formation and development at extratropical latitudes.  相似文献   

4.
A possible influence of tropical cyclones on seismic activity in the cyclonic zone of the northwestern Pacific is considered. There is no direct and sufficiently reliable method for calculating the degree of impact of tropical cyclones on the Earth’s crust. Therefore, a sort of inverse problem is solved in the investigation: a possible qualitative influence of tropical cyclones on seismic activity is estimated from its intra-annual dynamics. It is established that for territories of the cyclonic zone, the intra-annual dynamics of cyclonic and seismic activities are similar. Low monthly mean values of the cyclonic and seismic energies are attained in July–October, whereas in the continental territories under consideration (Central Asia), the seismic activity is higher in January–March. The results obtained suggest that cyclones can affect the seismic regime in the cyclonic zone of the northwestern Pacific.  相似文献   

5.
Mesoscale circulation along the Sakhalin Island eastern coast   总被引:1,自引:1,他引:0  
The seasonal and interannual variability of mesoscale circulation along the eastern coast of the Sakhalin Island in the Okhotsk Sea is investigated using the AVISO velocity field and oceanographic data for the period from 1993 to 2016. It is found that mesoscale cyclones with the horizontal dimension of about 100 km occur there predominantly during summer, whereas anticyclones occur predominantly during fall and winter. The cyclones are generated due to a coastal upwelling forced by northward winds and the positive wind stress curl along the Sakhalin coast. The anticyclones are formed due to an inflow of low-salinity Amur River waters from the Sakhalin Gulf intensified by southward winds and the negative wind stress curl in the cold season. The mesoscale cyclones support the high biological productivity at the eastern Sakhalin shelf in July– August.  相似文献   

6.
Summary Pressure anomaly maps for the world for different periods have been constructed from barometric information received as a result of international appeals. Maps of changes by 5-year periods have been shown to reflect a pressure see-saw between West Greenland and the Indian Ocean. The sign of this pattern is defined by the «pressure parameter», approximately the reversed pressure in the latter area. The parameter seems to represent much more reliably than sunspot numbers the effective changes in solar radiation. Changes by 30-year periods, at least between 1876/1905 and 1906/35, follow a geographical pattern very similar to that of the ordinary southern oscillation, with at least one marked «discontinuity» in the nodal zone off south-east Australia. In contrast to the map of changes by five-year periods, West Greenland now acts as a negative area, that is, its pressure fluctuates in sympathy with the Indian Ocean. However, there is a phase difference, associated with «south-steering», and a difference of wave-length between the Arctic and the Tropics, and historical evidence suggests that Greenland can also be a «positive» area. In low latitudes, the major pressure oscillation has for over a century been closely in phase with the major sunspot oscillation, that is, an oscillation of the order of 60 to 90 years. A sudden change to low parameter phase in the next decade or so is therefore expected. This will be associated presumably with severe droughts in many low latitude regions and the characteristic changes in circulation patterns.  相似文献   

7.
全球变暖背景下的冰盖消融以及由此带来海平面上升日益明显,直接影响地球表面的陆地水质量平衡,以及固体地球瞬间弹性响应,研究冰盖质量变化的海平面指纹能够帮助深入了解未来海平面区域变化的驱动因素.本文基于海平面变化方程并考虑负荷自吸效应(SAL)与地球极移反馈的影响,借助美国德克萨斯大学空间研究中心(Center for Space Research,CSR)发布的2003年到2012年十年期间的GRACE重力场月模型数据(RL05),结合加权高斯平滑的区域核函数,反演得到格陵兰与南极地区冰盖质量变化的时空分布,并利用海平面变化方程计算得到了相对海平面的空间变化,结果表明:格陵兰与南极冰盖质量整体呈明显的消融趋势,变化速率分别为-273.31 Gt/a及-155.56 Gt/a,由此导致整个北极圈相对海平面降低,最高可达约-0.6 cm·a-1;而南极地区冰盖质量变化趋势分布不一,导致西南极近海相对海平面下降,而东南极地区近海相对海平面上升,最高可达约0.2 cm·a-1.远离质量负荷区域的全球海平面以上升趋势为主,平均全球相对海平面上升0.71 mm·a-1,部分远海地区相对海平面上升更加突出(例如北美与澳大利亚),高出全球平均海平面上升速率将近30%.此外,本文也重点探讨了GRACE监测冰盖消融结果中由于极地近海海平面变化导致的泄漏影响,经此项影响校正后的结果表明:海平面指纹效应对GRACE监测格陵兰与南极地区2003-2012期间整体冰盖消融速率的贡献分别为约3%与9%,建议在后期利用GRACE更精确地估算研究区冰盖质量变化时,应考虑海平面指纹效应的渗透影响.  相似文献   

8.
全球地震台网(GSN)及中国地震台网(CENC)的地震观测数据分析表明:由北大西洋、北冰洋等海域进入北欧的强冷涡气旋(北欧风暴)能引发与其过程相关联的震动,其中由挪威海登陆斯堪的纳维亚半岛的强气旋风暴引发的震动波,几乎可以被整个欧亚大陆的地震仪观测到,该震动主要包含两个信号:一个主频为0.15~0.25 Hz(周期约4~7 s);而另一个是主频为0.08~0.12 Hz(周期8~12 s)的面波信号,它们分别来自不同的产生机理.不同海域和地区的风暴引发的震动信号存在差异,与气旋运动路径经过的地形地貌特征有关,气旋经过的浅海区域、海水深度、登陆地点的地形以及气旋的结构、观测点相对气旋的分布等因素决定了气旋在运动中激发有独特的震动信号.地震观测可以监测气旋在时间和空间的发展变化过程,有助于探索气旋运动过程中与地球表面的相互作用对气旋的影响.  相似文献   

9.
Some very pronounced crustal inhomogeneities have been found in the North Sea and in Greenland, in regions which were adjacent to each other before the opening of the North Atlantic Ocean by sea-floor spreading. Some of these regions of inhomogeneities are zones of relatively high seismicity, while others are aseismic. In the North Sea, the Viking Graben has earthquakes, while its southern continuation, the Central Graben, is almost aseismic. In eastern Greenland, there are only few earthquakes near the Mesozoic graben, while there is a prominent earthquake zone at the coast line in north-eastern Greenland. It is concluded that, superposed on the apparent similarities in the two regions, some differences in stress conditions or crustal weakness patterns must exist.  相似文献   

10.
Wang  Xuezhu  Wang  Qiang  Sidorenko  Dmitry  Danilov  Sergey  Schr&#;ter  Jens  Jung  Thomas 《Ocean Dynamics》2012,62(10):1471-1486

The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.

  相似文献   

11.
The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.  相似文献   

12.
Inter-monthly to inter-decadal global variability of lower stratosphere temperature (LST) is studied in order to improve current knowledge on its variability and trends, as well as natural and anthropogenic influences upon it. Principal Component Analysis (PCA) with S-mode Varimax rotated PCA were used. The first seven components, which explain 70% of variance make it possible to determine homogeneous LST behaviour zones with little overlap between areas, and practically no unclassified areas. Composite time series, referred to as reference series, in the core of the subregions defined by each of the PCs, were calculated in order to obtain the temporal patterns. The equatorial-tropical zone and the subtropical area display warmings caused by the eruptions of El Chichon and Mt. Pinatubo volcanoes as well as the strong influence of the Quasi-Biennial Oscillation (QBO) which leads to equatorial warming (cooling) in the west (east) phase and cooling (warming) in subtropical latitudes. Only low latitudes show some kind of global teleconnection between hemispheres. Significant correlation with several ocean/atmosphere index time-series like ENSO, Antarctic and Arctic Oscillations (AAO, AO), Arctic Circumpolar Vortex was detected over latitudinally separate regions. Antarctic and Arctic ozone hole values were contrasted with warming and cooling features registered in mid and high latitudes in both hemispheres. The LST reference series exhibit a negative trend, commonly attributed to the increase in greenhouse gases that lead to a warming of the troposphere and a cooling of the stratosphere, in all sub regions. The highest cooling rate of − 0.65 °C/ decade is detected in the Gobi desert, and the lowest values of −0.1 °C/ decade over the NE of Canada and Greenland which indicates the great longitudinal variability that the LST trends may present. The difference with other authors is mainly due to the fact that results are based either on latitudinal averages or radiosonde data.  相似文献   

13.
Using the data on solar proton fluxes measured on board the GOES satellites, the most powerful solar proton events (SPEs) of solar cycle 23 are selected, and ionization rates in the atmosphere in these periods at high latitudes of the Northern Hemisphere are calculated. Assuming that each ion pair formed at the retardation of solar protons in the atmosphere leads to the formation of 1.25 molecules of nitric oxide, 2.0 molecules of the OH radical, and one oxygen atom, changes in the content of ozone, nitrogen and other compounds were calculated using a photochemical model. The calculations showed that the strongest ionization and destruction of ozone was caused by SPEs that occurred on July 14, 2000; November 8, 2000; November 4, 2001; and October 28, 2003. The results can form the basis for compiling the catalog of changes in ionization and ozone in the atmosphere caused by solar proton activity.  相似文献   

14.
Variation in the concentrations of iodine-129 (129I, T1/2=15.7 Myr), a low-level radioactive component of nuclear fuel waste, is documented in surface waters and depth profiles collected during 2001 along a transect from the Norwegian Coastal Current to the North Pole. The surface waters near the Norwegian coast are found to have 20 times higher 129I concentration than the surface waters of the Arctic Ocean. The depth profiles of 129I taken in the Arctic Ocean reveal a sharp decline in the concentration to a depth of about 300-500 m followed by a weaker gradient extending down to the bottom. A twofold increase in the 129I concentration is observed in the upper 1000 m since 1996. Based on known estimates of marine transient time from the release sources (the nuclear reprocessing facilities at La Hague, France, and Sellafield, UK), a doubling in the 129I inventory of the top 1000 m of the Arctic Ocean is expected to occur between the years 2001 and 2006. As 129I of polar mixed layer and Atlantic layer of the Arctic Ocean is ventilated by the East Greenland Current into the Nordic Seas and North Atlantic Ocean, further dispersal and increase of the isotope concentration in these regions will be encountered in the near future.  相似文献   

15.
半个世纪来热带海洋风暴对中国大陆的影响   总被引:13,自引:4,他引:13       下载免费PDF全文
本文利用美国海军台风警报中心(JTWC)提供的1945~2002年热带风暴路径资料统计分析了西北太平洋(NWP)和中国南海(SCS)风暴生成及登陆中国大陆热带风暴的时空演变特征.季节变化上,NWP风暴登陆主要集中于6~11月,SCS风暴影响主要集中在6~9月,但后者登陆总数比前者少.西北太平洋风暴在东南沿海(27°N,120°E)附近登陆的频次最高,在此以北随纬度急剧下降.年际变化时间尺度上,登陆大陆的风暴年总数与来自南海的年风暴数成正比.登陆我国的热带风暴年频数有明显的区域差异和显著的2~7年振荡.长期趋势上,两个海域的风暴年生成频数和登陆大陆的年风暴频数在58年中总体呈线性增长趋势,其中登陆频数增长趋势相对缓慢,但近几年登陆风暴数与生成风暴数都表现出减少的趋势.生成频数和登陆频数都呈现出年代际变化,其年代转换发生在1960、1970年和1990年前后.  相似文献   

16.
The formation conditions and the dynamics of groundwater in the upper hydrodynamic zone of the northern coast of European Russia, which discharge directly into the Barents and White seas, are analyzed. The normal annual water, ionic, and thermal runoff and the anticipated submarine groundwater runoff into the Arctic Ocean are evaluated. The stability of marine arctic methane-hydrates under the observed and anticipated climate changes is analyzed. A physical substantiation is given to the concept of climate-determined increase in submarine groundwater discharge as a possible cause of the intensification of arctic methane hydrate decomposition, which does not contradict empirical data.  相似文献   

17.
The coast of Mozambique is often affected by storms, particularly tropical cyclones during summer or sometimes midlatitude systems in the southern part. Storm surges combined with high freshwater discharge can drive huge coastal floods, affecting both urban and rural areas. To improve the knowledge about the impact of storm surges in the coast of Mozambique, this study presents the first attempt to model this phenomenon through the implementation of the Princeton Ocean Model (POM) in the Southwestern Indian Ocean domain (SWIO; 2–32°S, 28–85°E) using a regular grid with 1/6° of spatial resolution and 36 sigma levels. The simulation was performed for the period 1979–2010, and the most interesting events of surges were related to tropical cyclones Bonita (1996) and Lisette (1997) that occurred in the Mozambique Channel. The results showed that the model represented well the amplitude and phase of principal lunar and solar tidal constituents, as well as it captured the spatial pattern and magnitudes of SST with slight positive bias in summer and negative bias in winter months. In terms of SSH, the model underestimated the presence of mesoscale eddies, mainly in the Mozambique Channel. Our results also showed that the atmospheric sea level pressure had a significant contribution to storm heights during the landfall of the tropical cyclones Bonita (1996) and Lisette (1997) in the coast of Mozambique contributing with about 20 and 16% of the total surge height for each case, respectively, surpassing the contribution of the tide-surge nonlinear interactions by a factor of 2.  相似文献   

18.
Results of the sea-level budget in the high latitudes (up to 80°N) and the Arctic Ocean during the satellite altimetry era. We investigate the closure of the sea-level budget since 2002 using two altimetry sea-level datasets based on the Envisat waveform retracking: temperature and salinity data from the ORAP5 reanalysis, and Gravity Recovery And Climate Experiment (GRACE) space gravimetry data to estimate the steric and mass components. Regional sea-level trends seen in the altimetry map, in particular over the Beaufort Gyre and along the eastern coast of Greenland, are of halosteric origin. However, in terms of regional average over the region ranging from 66°N to 80°N, the steric component contributes little to the observed sea-level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree well with the altimetry-based sea-level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus, we estimated the mass contribution from the difference between the altimetry-based sea level and the steric component. We also investigate the coastal sea level with tide gauge records. Twenty coupled climate models from the CMIP5 project are also used. The models lead us to the same conclusions concerning the halosteric origin of the trend patterns.  相似文献   

19.
Tropical cyclones (termed hurricanes and typhoons in other regions), are extreme events associated with strong winds, torrential rain and storm surges (in coastal areas) and cause extensive damage as a result of strong winds and flooding (caused by either heavy rainfall or ocean storm surges) in the immediate area of impact. The eastern Indian Ocean, particularly in the northwest region of Australia, is impacted by up to 10 tropical cyclones during the cyclone season, although direct impact of cyclones along the west and southwest coastlines is rare. However, the sub-tidal frequency component of sea level records along the west and south coasts of Western Australia indicates lagged correspondence with the occurrence of tropical cyclones. It is demonstrated that the tropical cyclones generate a continental shelf wave which travels along the west and south coasts of Australia up to 3500 km with speeds of 450–500 km day−1 (5.2–5.8 ms−1) with maximum trough to crest wave height of 0.63 m, comparable with the mean daily tidal range in the region. The shelf wave is identified in the coastal sea level records, initially as a decrease in water level, 1–2 days after the passage of the cyclone and has a period of influence up to 10 days. Amplitude of the shelf wave was strongly affected by the path of the tropical cyclone, with cyclones travelling parallel to the west coast typically producing the most significant signal due to resonance and superposition with local forcing. Analysis of water levels from Port Hedland, Geraldton, Fremantle and Albany together with cyclone paths over a ten year period (1988–1998) indicated that the tropical cyclones paths may be classified into 6 different types based on the amplitude of the wave.  相似文献   

20.
The present estimates of ice drift in the Arctic include utilization of satellite imagery data (special sensor microwave/imager) and a reconstruction of air pressure for the period 1899-1998. A significant part of the sea ice in the Arctic Ocean has its origin in the Kara Sea and melts in the Greenland and the Barents Sea (BS). Consequently there may be a particular risk of pollutants in the Kara Sea entering the food webs of the Greenland and BS. The ice export from the Kara Sea between 1988 and 1994 was about 208,000 km2 (154 km3) per year. The import of ice into the BS was during the same period 161,000 km2 (183 km3) per year while the ice drift through the Fram Strait into the Greenland Sea was 583,000 km2 (1859 km3) per year. Ice which formed adjacent to the Ob and Yenisey rivers in early January, drifted into the BS within two years (with a probability of about 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号