首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Proterozoic sulfide deposits within the basement of northern Sweden have lead isotopic compositions that fall on a mixing line in the206Pb/204Pb-207Pb/204Pb diagram. These deposits contain a highly radiogenic Phanerozoic lead component that was leached from the Proterozoic basement at around 0.4 Ga during the Caledonian orogeny. Within the Proterozoic deposits, the less radiogenic lead isotopic compositions occur in undeformed and little deformed sections, while the more radiogenic lead isotopic compositions are observed along fault, fracture, and shear zones. These zones with radiogenic Phanerozoic lead also have higher contents of lead, zinc, and gold, respectively, than the other parts of the deposits, which suggests that these metals were introduced together with the radiogenic lead at a much later event than the metals in the unaltered Proterozoic deposit. The Proterozoic deposits acted as traps for metal additions along Caledonian reactivated fault and shear zones in the Proterozoic basement.
Kaledonische Metallanreicherung in niedrighaltigen proterozoischen Buntmetallerzen in Nordschweden
Zusammenfassung Proterozoische Sulfidvererzungen im proterozoischen Grundgebirge weisen Bleiisotopenzusammensetzungen auf, die auf eine Mischungslinie im206Pb/204Pb-207Pb/204Pb Diagramm fallen. Die proterozoischen Vererzungen enthalten eine Komponente radiogenen Bleis, welches im Verlaufe der kaledonischen Orogenese aus dem proterozoischen Grundgebirge ausgelaugt wurde. Wenig oder nicht deformierte Abschnitte in den proterozoischen Sulfidvererzungen weisen weniger radiogene Bleiisotopenzusammensetzungen auf, als Bruch- und Scherzonen in denselben Vererzungen. Diese Zonen mit radiogenem, kaledonischem Blei weisen auch höhere Blei-, Zink- und Gold-Gehalte auf als die übrigen Teile der Vererzung, was andeutet, daß diese Metalle zusammen mit dem radiogenen Blei zu einem viel späteren Zeitpunkt in die Vererzung eingebracht worden sind. Die proterozoischen Vererzungen bewirkten die Metallausfällung aus Fluiden, die entlang von kaledonisch mobilisierten Verwerfungen und Scherzonen flossen.


With 3 Figures  相似文献   

2.
95 analyses of ore lead isotope ratios from 23 Phanerozoic ore deposits from the Swedish segment of the Fennoscandian Shield form a marked linear trend on a 207Pb/204Pb versus 206Pb/204Pb diagram. The line may be interpreted in a two-stage model, the lead being derived from 1.8±0.15 Ga old Svecokarelian basement and mineralization occurring at 0.4±0.15 Ga. The initial composition of the Svecokarelian rock lead was similar to the lead in early Proterozoic volcanogenic sulfide ores in Sweden. — The large spread in the isotope ratios was caused by a combination of selective leaching of different minerals in the source rocks, mixing with less radiogenic Caledonian lead, and local or regional variations in the U, Th and Pb contents of the basement. As a consequence, conventional methods of identifying source rocks from lead isotopic data (e.g. mu-values, Th/U ratios) may not be directly applicable. Phanerozoic ore lead development in the Swedish section of the Fennoscandian Shield was ensialic. That is, the ore lead was almost entirely derived from the Precambrian basement, although this basement does not appear to be anomalously enriched in Pb. No juvenile or mantle lead was apparently contributed to this section of the crust after the Precambrian, except for that mechanically transported onto the western edge of the Shield by the Caledonian nappes. However, some of Europe's largest lead deposits are included in these Swedish Phanerozoic mineralizations, suggesting that it was the nature of the processes involved rather than the richness of the source, that determined their formation.  相似文献   

3.
The Proterozoic sediment-hosted Zn–(Pb) sulfide and non-sulfide deposits of the São Francisco Craton, Brazil, are partially syn-diagenetic and epigenetic and were probably formed during extensional events. The majority of the deposits occur within shallow water dolomites. The Pb isotopic data of sulfides are relatively homogeneous for individual deposits and plot above the upper crust evolution curve of the Plumbotectonic model. Some of the deposits are characterized by highly radiogenic lead (206Pb/204Pb ≥ 21) originating from the highly radioactive crust of the São Francisco Craton. Pb and S isotopic data suggest the sources of metal and sulfur for the deposits to be the basement rocks and seawater sulfates in the sediments, respectively. The relatively high temperatures of formation (100 to 250 °C) and moderate salinity (3% to 20% NaCl equiv.) of the primary fluid inclusions in the sphalerite crystals suggest the participation of basinal mineralizing fluids in ore formation. The steep paleo-geothermal gradient generated by the radioactively enriched basement rocks probably assisted in heating up the circulating mineralizing fluids.  相似文献   

4.
Base metal–Ag mineralisation at Dikulushi and in other deposits on the Kundelungu Plateau (Democratic Republic of Congo) developed during two episodes. Subeconomic Cu–Pb–Zn–Fe polysulphide ores were generated during the Lufilian Orogeny (c. 520 Ma ago) in a set of E–W- and NE–SW-oriented faults. Their lead has a relatively unradiogenic and internally inhomogeneous isotopic composition (206Pb/204Pb = 18.07–18.49), most likely generated by mixing of Pb from isotopically heterogeneous clastic sources. These sulphides were remobilised and enriched after the Lufilian Orogeny, along reactivated and newly formed NE–SW-oriented faults into a chalcocite-dominated Cu–Ag mineralisation of high economic interest. The chalcocite samples contain only trace amounts of lead and show mostly radiogenic Pb isotope signatures that fall along a linear trend in the 207Pb/204Pb vs. 206Pb/204Pb diagram (206Pb/204Pb = 18.66–23.65; 207Pb/204Pb = 15.72–16.02). These anomalous characteristics reflect a two-stage evolution involving admixture of both radiogenic lead and uranium during a young fluid event possibly c. 100 Ma ago. The Pb isotope systematics of local host rocks to mineralisation also indicate some comparable young disturbance of their U–Th–Pb systems, related to the same event. They could have provided Pb with sufficiently radiogenic compositions that was added to less radiogenic Pb remobilised from precursor Cu–Pb–Zn–Fe polysulphides, whereas the U most likely originated from external sources. Local metal sources are also suggested by the 208Pb/204Pb–206Pb/204Pb systematics of combined ore and rock lead, which indicate a pronounced and diversified lithological control of the immediate host rocks on the chalcocite-dominated Cu–Ag ores. The Pb isotope systematics of polysulphide mineralisation on the Kundelungu Plateau clearly record a diachronous evolution.  相似文献   

5.
The Kaapvaal Craton of South Africa comprises an Archaean core of ≈3.5 Ga lithospheric and crustal rocks surrounded by younger accreted terrains of ≈3.0–2.7 and ≈2.1–1.9 Ga. The craton is covered by relatively undeformed 3.0–2.4 Ga supracrustal rocks, which show the effects of thermal and hydrothermal interaction. Part of this activity is manifested by a large number of epigenetic Pb–Zn (±Ag, Au, Cu, F) deposits in the cover rocks of the Kaapvaal Craton. These include small volcanic and breccia hosted deposits in mafic and felsic volcanic rocks of the 2.7 Ga Ventersdorp Supergroup and the Mississippi Valley-type (MVT) deposits in the carbonates of the Transvaal Supergroup.MVT mineralization at the Pering (and other Zn–Pb deposits) is hosted in fracture-generated N–S breccia bodies in the Paleoproterozoic carbonate succession of the western Kaapvaal Craton. The fluids carrying the metals were focused in vertical bodies within the fracture zones (FZ), the metals and the sulphur being carried together and precipitated in organic-rich sectors of the basin. Two small Pb–Zn deposits within mafic rocks of the Ventersdorp Supergroup, stratigraphically below the basin-hosted MVTs on the southwestern part of the Kaapvaal Craton have secondary chlorite which is extremely Rb-rich, associated with the mineralization. This chlorite and the associated altered basaltic host rocks give a Rb–Sr date of ≈1.98 Ga, and the associated galena Pb isotope data plot on the same array as those of other Pb–Zn deposits, the radiogenic intercept giving a date of ≈2.0 Ga. We interpret these data to indicate a craton-wide epigenetic fluid-infiltration event, which exploited the Maquassie Quartz Porphyry (MQP) as the aquifer and metal source.Sr isotopic results for the ore-zone gangue minerals show highly radiogenic 87Sr/86Sr ratios (>0.710) which support earlier models that the origin of radiogenic Sr isotopic composition in the calcite cements is the felsic tuffs (MQP) of the Ventersdorp Supergroup occurring at deeper levels within the basin. Relationships between δ18O and δ13C performed on carbonate cements within the aquifers are complex: the range in δ13C for some of the cements represents a mixture from two sources and with a progression from heavy carbon in the host to somewhat lighter carbon in the cements. Similarly, the lighter δ18O values have a narrow range indicative of rapid exchanges between hydrous fluid and rock.  相似文献   

6.
Lead isotope compositions for individual grains of galena and altaite (PbTe) were determined in situ using a secondary ion mass spectrometer (SIMS). Galena was collected from the Ross deposit and altaite from the Kirkland Lake (KL) deposits in the southern Abitibi greenstone belt, Superior Province of Canada. The samples from KL are more radiogenic than those from the Ross deposit. Isotopic compositions vary significantly between different grains in each deposit and form broad linear arrays in 207Pb/204Pb-206Pb/204Pb and 208Pb/204Pb-206Pb/204Pb diagrams. The linear arrays of Pb-isotope data are attributed to mixing of Pb from different sources. At least two sources are required for individual deposits: one with low U/Pb and Th/Pb ratios and the other with high ratios. Lead minerals occurring with Au are less radiogenic than those that are not obviously associated with Au, suggesting that Au was supplied from low U/Pb sources such as sulphides or older ultramafic-mafic rocks. While most data are consistent with the derivation from local rocks, highly radiogenic Pb with relatively low 207Pb/206Pb ratios recorded at KL require post-Archaean mineralization or derivation of the Pb from an unusual crustal source with low . The latter interpretation is favored because of the lack of textural evidence and because it is difficult to dissolve and precipitate altaite at low temperatures. The presence of a Pb reservoir with low is also inferred from the data of Archaean banded iron formations and volcanogenic massive sulphide deposits. Different isotopic patterns of the two deposits suggest different sources of metals in the two deposits. While this conclusion does not reject the derivation of fluids from the lower crust or mantle, the data are not in accord with conceptual models invoking a common source reservoir for metals. The study suggests that fluids, which may have a common origin, leached metals and other constituents from the upper crustal rocks during their ascent. The proposed model, different origins for different constituents, explains much of the conflicting evidence presented by Archaean Au deposits, including provinciality of mineralogy and relatively uniform fluid inclusion and C-isotope data from many Au deposits.  相似文献   

7.
Lead isotopic composition and uranium and lead concentrations have been determined for galena, sphalerite, pyrite and acetic acid soluble material from the McArthur area in order to test the hypothesis of a dual sulphur source suggested by the sulphur isotope data of Smith and Croxford (Sulphur isotope ratios in the McArthur lead-zinc-silver deposit, Nature Phys. Sci. 245, 10–12 (1973)). Galena, sphalerite and the acetic acid washes from the McArthur deposit have uniform isotopic ratios (206Pb/204Pb, 16.07–16.15; 207Pb/204Pb, 15.37–15.47; 208Pb/204Pb, 35.57–35.89) consistent with other conformable ore deposits, whereas the ratios for pyrite are variable and quite radiogenic (206Pb/204Pb, 16.24–16.49; 207Pb/204Pb, 15.42–15.58; 208Pb/204Pb, 35.82–36.98). Acid washes where dolomite is a major dissolved phase are also radiogenic. The lead in the pyrite appears to have been derived from at least two sources: the less radiogenic lead coming from an exhalative source as for galena and sphalerite and the more radiogenic lead probably being leached from the country rocks. It is proposed that analysis of pyrite for isotopic composition and concentration of lead could be used as an indicator for similar types of deposits in this area.  相似文献   

8.
Neodymium, Sr and Pb isotopic compositions, along with rare earth element (REE) concentrations were determined for twelve black ores and one yellow ore from twelve localities of the Kuroko deposits, Japan. The ores were generated by submarine hydrothermal activity during the Miocene age. Neodymium isotopic compositions of the ores (Nd: –4.9 to +6.5) mostly overlap with spatially associated igneous rocks. On a Nd versus Sr isotopic correlation diagram, however, 87Sr/86Sr ratios are shifted from the associated igneous rocks towards the higher contemporaneous seawater ratio. REE patterns are highly variable, ranging from light REE enriched to depleted, and show no Ce anomalies, as would be expected if they were derived from seawater. These results suggest that the REEs contained in ores were mainly derived from the associated igneous rocks, but that the ore Sr is a mixture derived from both seawater and the igneous rocks. Most Pb isotopic compositions fall within the range defined by the associated igneous rocks (206Pb/204Pb=18.35–18.84, 207Pb/204Pb=15.59–15.97 and 208Pb/204Pb=38.53–39.90), although several samples have very radiogenic compositions that were most likely derived from basement rocks. Our new Pb isotopic results display greater variation, and have a larger range of more radiogenic compositions than has been noted previously for these ores. In addition, the black ore with the most radiogenic Pb isotopic composition also has the least radiogenic Nd isotopic composition. This suggests that at least some of the Pb contained in the ores was derived mainly from older basement rocks. The large positive Eu anomalies for some black ores are consistent with a high-temperature origin for the parental fluids, irrespective of the source rock. The single yellow ore examined, however, has a small negative Eu anomaly, which may indicate derivation from a lower temperature fluid. Previous studies suggested that the Kuroko ores were formed in the presence of organic materials in an anoxic basin. Combined Nd, Sr, Pb and Os isotopic and REE abundance data indicate that multiple sources were involved in the genesis of Kuroko ores.  相似文献   

9.
The Huogeqi orefield located on the northern side of Mt. Langshan, Inner Mongolia occurs in the Middle Proterozoic Langshan Group metamorphic rocks, and the orebodies arc stratiform. In the past twenty years, many Chinese geologists have conducted researches on the Huogeqi Cu-Pb-Zn deposit, but there has been still a controversy on its origin. Some advocate that the deposit is of sedimentary-metamorphic rcworking origin, some hold that it is of sea-floor SEDEX origin, and others have a preference for magmatic superimposition origin. The crux of the controversy is that there is no common understanding about the source of ore-forming materials. In this paper, the Pb isotopic compositions of regional Achaean-Early Proterozoic basement rocks, various types of sedimentary- metamorphic rocks and volcanic rocks in the mining district, Late Proterozoic and Hercynian magmatic rocks arc introduced and compared with the orc-lead composition, so as to constrain the source of the ore lead. The result indicates that (1) sulfides in the ores have homogeneous Pb isotopic compositions, showing a narrow variation range. Their ^206pb/^204pb ratios arc within a range of 17.027- 17.317; ^207Pb/^204pb ratios, 15.451-15.786 and ^208Pb/^204pb ratios, 36.747-37.669; (2) the Pb isotopic compositions of the regional Achaean-Early Proterozoic basement rocks arc characteristic of the old Pb isotopic composition at the early-stage evolution of the Earth, which varies over a wider range, reflecting significant differences in Pb isotopic compositions of the ores. All this indicates that the source of ore lead has no bearing on the basement rocks; (3) the sedimentary-metamorphic rocks in the mining district arc characterized by highly variable and more radiogenic Pb isotopic compositions and their Pb isotopic ratios arc obviously higher than those of ores, demonstrating that ore lead did not result from metamorphic rcworking of these rocks; (4) Pb isotopic compositions of Late Proterozoic diorite-gabbro and Hercynian granite are higher than those of ores. Meanwhile, the Pb isotopic compositions of sulfides in the small-sized strata-penetrating mineralized veinlets formed at later stages arc completely consistent with that of sulfides in stratiform-banded ores, suggesting that these veiniets arc the product of autochthonous rcworking of the stratiform-banded ores during the period of metamorphism and the late magmatic superimposition-mineralization can be excluded; (5) amphibolite, whose protolith is basic volcanic rocks, has the same Pb isotopic compositions as ores, implying that ore lead was derived probably from basic volcanism. So, the source of ore-forming materials for the Huogeqi deposit is like that of the volcanic massive sulfide (VMS) deposits. However, the orebodies do not occur directly within the volcanic rocks, and instead they overlie the volcanic rocks, showing some differences from those typical VMS-type deposits.  相似文献   

10.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

11.
对扬子陆块的西北部边界至今尚未得到有效的限定.中央山系西段祁连山带基底岩系和花岗岩类的Pb-Nd同位素组成为限定扬子陆块的西北边界提供限制.祁连山带前寒武纪基底岩系的Nd同位素亏损地幔模式年龄(TDM)主要分布于0.75-2.5 Ga之间, 峰值为2.1 Ga左右; 该带古生代花岗岩类的TDM变化于1.07-2.14 Ga之间.由此表明, 祁连山带地壳增长主要发生于元古宙, 缺乏太古宙地壳增长的信息.祁连山带前寒武纪基底和花岗岩类全岩均以高放射成因的铅同位素组成为特征, 极大多数样品的206Pb/204Pb > 18.0, 207Pb/204Pb > 15.5, 208Pb/204Pb > 38.0.因此, 祁连山带地壳增长特征和铅同位素组成特征与华北陆块存在明显的差异, 而与扬子陆块一致, 从而表明祁连山带具有扬子型陆块的构造属性.因此, 扬子陆块的西北部边界扩大至祁连山带的北侧.自新元古代以来, 祁连山带经历了岩石圈裂解作用, 并有洋盆形成, 但这些构造事件均发生在扬子型陆块内部的地质背景.   相似文献   

12.
A regional isotopic study of Pb and S in hydrothermal galenas and U–Pb and S in potential source rocks was carried out for part of Moravia, Czech Republic. Two major generations of veins, (syn-) Variscan and post-Variscan, are defined based on the Pb-isotope system together with structural constraints (local structures and regional trends). The Pb-isotopic compositions of galena plot in two distinct populations with outliers in 206Pb/204Pb–207Pb/204Pb space. Galena from veins hosted in greywackes provides a cluster with the lowest Pb–Pb ratios: 206Pb/204Pb = 18.15–18.27, 207Pb/204Pb = 15.59–15.61, 208Pb/204Pb = 38.11–38.23. Those hosted in both limestones and greywackes provide the second cluster: 206Pb/204Pb = 18.37–18.44, 207Pb/204Pb = 15.60–15.63, 208Pb/204Pb = 38.14–38.32. These clusters suggest model Pb ages as Early Carboniferous and Triassic–Jurassic, the latter associated with MVT-like deposits. Two samples from veins hosted in Proterozoic rocks lie outside the two clusters: in metagranitoid (206Pb/204Pb = 18.55, 207Pb/204Pb = 15.64, 208Pb/204Pb = 38.29) and in orthogneiss (206Pb/204Pb = 18.79, 207Pb/204Pb = 15.73, 208Pb/204Pb = 38.54). The results from these two samples suggest an interaction of mineralizing fluids with the radiogenic Pb-rich source (basement?). The values of δ34S suggest the Paleozoic host rocks (mostly ?6.7 to +5.2‰ CDT) as the source of S for hydrothermal sulfides (mostly ?4.8 to +2.5‰ CDT). U–Pb data and Pb isotope evolutionary curves indicate that Late Devonian and Early Carboniferous sediments, especially siliciclastics, are the general dominant contributor of Pb for galena mineralization developed in sedimentary rocks. Plumbotectonic mixing occurred, it is deduced, only between the lower and the upper crust (the latter involving Proterozoic basement containing heterogeneous radiogenic Pb), without any significant input from the mantle. It is concluded that in the Moravo–Silesian and Rhenohercynian zones (including proximal districts in Poland) lead and sulfur have been mobilized from the adjacent rocks during multiple hydrothermal events in processes that are remarkably comparable in timing, geochemistry of fluids and nature of sources.  相似文献   

13.
The Almadén district constitutes the largest and probably the most intriguing mercury concentration in the world. Two types of mineralization are recognized: 1) stratabound, of Lower Silurian age, well represented by the large Almadén deposit; and 2) fully discordant mercury deposits of minor importance in terms of size, and exemplified by the deposit of Las Cuevas. The latter ones can be found at different positions along the Almadén stratigraphic column. Both types of deposits are always associated with the so-called frailesca rocks (diatremes of alkali basaltic composition). This paper reports the first lead isotope compositions of cinnabar in the district. Whole samples and stepwise leaching cinnabar aliquots display relatively homogeneous isotopic compositions (206Pb/204Pb = 18.112–18.460; 207Pb/204Pb = 15.635–15.705; 208Pb/204Pb = 38.531–38.826). Taken together with Jébrak et al.s (2002) pyrite lead isotope results, the new cinnabar isotopic data define a steep array trend on the 207Pb/204Pb– 206Pb/204Pb diagram, indicating a mixed contribution of lead and probably mercury from different sedimentary sources in the Almadén basin. The Almadén Hg deposits are related to a contemporaneous mafic magmatism that might have provided part of the mercury. Hydrothermal leaching of organic matter from sedimentary rocks and formation of Hg organic complexes enhanced metal solubility, promoting transport from and within the volcanic units.Editorial handling: M. Chiaradia  相似文献   

14.
Shales of the ca. 3.0 Ga Buhwa Greenstone Belt, Zimbabwe, were derived from a compositionally diverse provenance whose ages, determined by ion probe analyses of detrital zircons in interbedded sandstones, range from 3.8 to 3.1 Ga. Geochemical data for the shales were previously interpreted to indicate that sediments had been derived from an intensely weathered source. REE concentrations in the shales were interpreted to suggest that the provenance was compositionally mixed, with components of felsic (tonalite and alkalic granitoid) and mafic rocks. Sm/Nd and Nd isotopic compositions of these rocks can be used to model initial Nd isotopic ratios at the time of sedimentation (εNdsed), as well as model crustal formation ages (TDM). The former, at the age of sedimentation, range from +0.6 to −10.8, consistent with a range of provenance ages. The latter range from 4.46 Ga to 2.99 Ga. The oldest crustal formation ages, up to 0.7 Ga older than known detrital components, are interpreted here to indicate that the Sm-Nd system of the sediments experienced open system behavior. The implied alteration would have included an increase in Sm/Nd by about 20-25 percent, probably in the form of preferential loss of Nd with respect to Sm. The Pb isotopic compositions of whole rock samples are quite radiogenic, with a range of 206Pb/204Pb from 25.5 to 154. An array of ten samples lies scattered about a line with a 207Pb/204Pb -206Pb/204Pb slope age of about 2.73 Ga. Five individual samples were sequentially leached to further test the timing and characteristics of this U-Th-Pb alteration event. These arrays of a whole rock, three leach steps, and a residue also form linear Pb-Pb arrays (one is more scattered) with ages ranging from 2260 ± 360 Ma to 2824 ± 170 Ma, suggesting that all samples experienced a latest Archean to earliest Proterozoic enrichment in U/Pb. This age range also may be the approximate age of Sm/Nd enrichment for the shales. All samples, both whole rocks and leached samples, lie grouped on a 208Pb/204Pb - 206Pb/204Pb diagram around a line with 232Th/238U = 3.5 (2.9 to 3.9). Because of the lack of large differences in the Th/U of the samples through large ranges of U/Pb, we interpret this consistency in Th/U to mean that the shales of the Buhwa belt experienced Pb loss, rather than U and Th gain. Circumstances that may be responsible for Pb loss in a sedimentary basin include loss of saline fluids during basin dewatering. Such an event would likely have been related to folding associated with the thrusting and magmatic intrusion of the adjacent Limpopo Belt, suggesting that uplift, dewatering, and geochemical and isotopic alteration can be genetically related.  相似文献   

15.
Lead isotope ratios of galena from the carbonate-hosted massive sulphide deposits of Kabwe (Pb-Zn) and Tsumeb (Pb-Zn-Cu) in Zambia and Namibia, respectively, have been measured and found to be homogeneous and characteristic of upper crustal source rocks. Kabwe galena has average isotope ratios of 206/204Pb = 17.997 ± 0.007, 207/204Pb = 15.713 ± 0.010 and 208/204Pb = 38.410 ± 0.033. Tsumeb galena has slightly higher 206/204Pb (18.112 ± 0.035) and slightly lower 207/204Pb (15.674 ± 0.016) and 208/204Pb (38.276 ± 0.073) ratios than Kabwe galena. The isotopic differences are attributed to local differences in the age and composition of the respective source rocks for Kabwe and Tsumeb. The homogeneity of the ore lead in the two epigenetic deposits suggests lead sources of uniform isotopic composition or, alternatively, thorough mixing of lead derived from sources with relatively similar isotopic compositions. Both deposits have relatively high 238U/204Pb ratios of 10.31 and 10.09 for Kabwe and Tsumeb galenas, respectively. These isotope ratios are considered to be typical of the upper continental crust in the Damaran-Lufilian orogenic belt, as also indicated by basement rocks and Cu-Co sulphides in stratiform Katangan metasediments which have a mean μ-value of 10.25 ± 0.12 in the Copperbelt region of Zambia and the Democratic Republic of Congo (formerly Zaire). The 232Th/204Pb isotope ratios of 43.08 and 40.42 for Kabwe and Tsumeb suggest Th-enriched source regions with 232Th/235U (κ-values) of 4.18 and 4.01, respectively. Model isotopic ages determined for the Kabwe (680 Ma) and Tsumeb (530 Ma) deposits indicate that the timing of the mineralisation was probably related to phases of orogenic activity associated with the Pan-African Lufilian and Damaran orogenies, respectively. Galena from the carbonate-hosted Kipushi Cu-Pb-Zn massive sulphide deposit in the Congo also has homogeneous lead isotope ratios, but its isotopic composition is comparable to that of the average global lead evolution curve for conformable massive sulphide deposits. The μ (9.84) and κ (3.69) values indicate a significant mantle component, and the isotopic age of the Kipushi deposit (456 Ma) suggests that the emplacement of the mineralisation was related to a post-tectonic phase of igneous activity in the Lufilian belt. The isotope ratios (206/204Pb, 207/204Pb, 208/204Pb) of the three deposits are markedly different from the heterogeneous lead ratios of the Katangan Cu-Co stratiform mineralisation of the Copperbelt as well as those of the volcanogenic Nampundwe massive pyrite deposit in the Zambezi belt which typically define radiogenic linear trends on lead-lead plots. The host-rock dolomite of the Kabwe deposit also has homogeneous lead isotope ratios identical to the ore galena. This observation indicates contamination of the Kabwe Dolomite Formation with ore lead during mineralisation. Received: 8 September 1997 / Accepted: 21 August 1998  相似文献   

16.
The paper considers the results of high-precision Pb–Pb isotopic analysis of 120 galena samples from 27 Au and Ag deposits of the South Verkhoyansk Synclinorium (SVS) including large Nezhdaninsky deposit (628.8 t Au). The Pb isotopic composition is analyzed on a MC-ICP-MS NEPTUNE mass-spectrometer from solutions with an error of no more than ±0.02% (2σ). Four types of deposits are studied: (i) stratified vein gold–quartz deposits (type 1) hosted in metamorphosed Upper Carboniferous–Lower Permian terrigenous rocks and formed during accretion of the Okhotsk Block to the North Asian Craton synchronously with dislocation metamorphism and related granitic magmatism; (ii) vein gold–quartz (Nezhdaninsky type) deposits also hosted in Lower Permian metasedimentary rocks; (iii) Au–Bi deposits localized at the contact zones of the Late Cretaceous granitic plutons; and (iv) Sn–Ag polymetallic deposits related to granitic and subvolcanic rocks of the Okhotsk Zone of the SVS. The deposits of types 2, 3, and 4 are postaccretionary. The general range of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios is 18.1516–18.5903 (2.4%), 15.5175–15.6155 (0.63%), and 38.3010–39.0481 (2.0%), respectively. In 206Pb/204Pb–207Pb/204Pb and 206Pb/204Pb–208Pb/204Pb diagrams, the data points of Pb isotopic compositions of all deposits occupy restricted, partly overlapping areas along a general elongated trend. The various SVS Au–Ag deposits can be classified according to the Pb isotopic composition in accordance with all three Pb ratios. Deposits of the same type show distinct Pb isotopic compositions that strongly exceed the scale of analytical error (±0.02%). The differences in Pb isotopic composition within specific deposits are low and subordinate and have little effect on variations in the Pb isotopic composition of the SVS deposits. The μ2 values (Stacey–Kramers model), which characterize the 238U/204Pb ratios of ore lead sources of the SVS deposits, widely vary from 9.7 to 9.38. The ω2 values (232Th/204Pb) are 39.82–36.61, whereas the Th/U ratios are 4.04–3.86. The content of all three radiogenic Pb isotopes and μ2 values of feldspars from SVS intrusive rocks are strongly distinct from those of galena of stratified gold–quartz and vein gold–quartz deposits and are identical to Pb of galena from Au–Bi and Sn–Ag polymetallic deposits, indicating a mostly magmatic origin for the Pb of these deposits. Detailed isotopic study of the Nezhdaninsky deposit shows different Pb isotopic composition of two consecutive mineral assemblages (gold–sulfide and Ag polymetallic): ~0.30, ~0.07, and ~0.22% for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios, respectively. These differences are interpreted as a result of involvement of at least two metal sources during the evolution of an ore-forming system: (i) host Lower Permian terrigenous rocks and (ii) a magmatic source similar in Pb isotopic composition to that of Sn–Ag polymetallic deposits. The Pb isotopic composition and μ2 and Th/U values show that lead of stratified gold–quartz deposits combines isotopic tracers of lower and upper crustal sources (Upper Carboniferous–Lower Permian terrigenous rocks), lead of which was mobilized by ore-bearing fluids. The high 208Pb/206Pb ratios and Th/U evolutionary parameter are common to all Pb isotopic composition of all studied Au–Ag deposits and SVS Cretaceous intrusive rocks and indicate that Pb sources were depleted in U relative to Th. Taking into account the structure of the region and conceptions on its evolution, we can suggest that the magma source was related to lower crustal subducted rocks of the Archean (~2.6 Ga) North Asian Craton and the Okhotsk terrane.  相似文献   

17.
The strata-bound Cu−Pb−Zn polymetallic sulfide deposits occur in metamorphic rocks of greenschist phase of the middle-upper Proterozoic Langshan Group in central Inner Mongolia. δ34S values for sulfides range from −3.1‰ to +37.3‰, and an apparent difference is noticed between vein sulfides and those in bedded rocks. For example, δ34S values for bedded pyrite range from +10.6‰ to +20.0‰, while those for vein pyrite vary from −3.1‰ to +14.1‰. δ34S of bedded pyrrhotite is in the range +7.9‰–+23.5‰ in comparison with +6.5‰–+17.1‰ for vein pyrrhotite. The wide scatter of δ34S and the enrichment of heavier sulfur indicate that sulfur may have been derived from H2S as a result of bacterial reduction of sulfates in the sea water. Sulfur isotopic composition also differs from deposit to deposit in this area because of the difference in environment in which they were formed. The mobilization of bedded sulfides in response to regional metamorphism and magmatic intrusion led to the formation of vein sulfides. δ18O and δ13C of ore-bearing rocks and wall rocks are within the range typical of ordinary marine facies, with the exception of lower values for ore-bearing marble at Huogeqi probably due to diopsidization and tremalitization of carbonate rocks. Pb isotopic composition is relatively stable and characterized by lower radio-genetic lead. The age of basement rocks was calculated to be about 23.9 Ma and ore-forming age 7.8 Ma.207Pb/204Pb−206Pb/204Pb and208Pb/204Pb−206Pb/204Pb plots indicate that Pb may probably be derived from the lower crust or upper mantle. It is believed that the deposits in this region are related to submarine volcanic exhalation superimposed by later regional metamorphism and magmatic intrusion.  相似文献   

18.
We have studied Pb isotopic systems of K-feldspar, pyrite, and pyrrhotine from gabbroids and ore of the Velimyaki Early Proterozoic massif in the northern Ladoga region in the southeastern part of the Fennoscandian Shield. The isochronous Pb–Pb age of sulfides has been determined as ~450 Ma, which corresponds to intersection of the regression line with the lead accumulation curve with μ = 10.4–10.8; the model Pb age of sulfides is close to isochronous under the condition that the composition of lead evolved from a geochemical reservoir with an age of 1.9 Ga. The isotopic parameters of the lead in sulfides and K-feldspar indicate their formation in upper crust conditions (μ = 238U/204Pb > 10). From the obtained data, it follows that the isotopic composition of lead in K-feldspar corresponds to a Proterozoic age (1890 Ma) of magmatic crystallization of the rocks in the massif, and strongly radiogenic lead sulfides testify, with the greatest probability, to the later (Caledonian) formation of sulfide ores.  相似文献   

19.
Mesozoic and Cenozoic ore deposits in the Chilean Andes between La Serena (~30°S) and Santiago (~34°S) include polymetallic vein, low- and high-sulfidation epithermal vein, skarn, porphyry copper-molybdenum and porphyry copper-gold. These deposits are associated with volcanic and plutonic complexes emplaced in eastward-migrating longitudinal arcs which formed during subduction along the continental margin of South America since the Middle Jurassic. Stratabound, but epigenetic, volcanic rock- and sedimentary rock-hosted manto deposits contain additional copper resources. Lead isotopic compositions in ore minerals from 29 deposits vary with age and geographic location, and hence with basement and host rocks. Lead in most ore deposits is derived from temporally related igneous rocks, except for the manto deposits whose lead is derived from host volcanic and sedimentary rock sequences. Lead in the ore deposits is dominated by two crustal sources. Low 207Pb/204Pb characterizes one source whereas high 207Pb/204Pb characterizes the second source. Lead isotopic compositions of Jurassic and Miocene ore minerals (206Pb/204Pb>18.50; 207Pb/204Pb>15.61) lie along the average crustal growth curve. By contrast, most Cretaceous deposits have ore minerals with lower 206Pb/204Pb (<18.39) and 207Pb/204Pb (<15.58) than Jurassic ore minerals. The shift in lead isotopic composition to lower lead isotopic values precludes derivation of lead from a source of similar composition to those in the Jurassic or Tertiary deposits. For Cretaceous deposits, polymetallic and low-sulfidation epithermal veins and a skarn have lower 206Pb/204Pb than a porphyry copper-gold system and peripheral gold veins at Andacollo (18.43-18.50). Late Cretaceous veins from the Bellavista deposit have the lowest 206Pb/204Pb (18.33) of all deposits. Ore minerals in Miocene and Pliocene porphyry copper-molybdenum deposits have higher 206Pb/204Pb (18.58-18.67) than Cretaceous deposits, consistent with their age being younger. The Miocene and Pliocene ore minerals also have higher 207Pb/204Pb (15.58-15.66) than Cretaceous ore minerals, thereby requiring an additional input from the high-207Pb/204Pb source into the younger deposits. Miocene auriferous deposits in the north have similar 206Pb/204Pb values as the Miocene and Pliocene porphyry copper-molybdenum deposits in the south, but they are distinguished by higher and variable 207Pb/204Pb (15.61-15.66) and 208Pb/204Pb (38.54-39.01), which are arrayed along steep mixing trends. These ore minerals have the largest input of high-207Pb/204Pb material in the deposits studied. By contrast, lead in the epigenetic manto deposits appears to be derived from the host volcanic or sedimentary rock-dominated sequences, and locally exhibits large-scale isotopic heterogeneity within a deposit. Overall, the lead isotopic compositions of ore minerals mimic the values and variations established in age-equivalent rock sequences. The low-207Pb/204Pb material in the deposits is derived from Cretaceous igneous rocks or their sources as they evolved with time; low 207Pb/204Pb characterizes these rocks. By contrast, high-207Pb/204Pb material is likely derived from Carboniferous to Triassic igneous rocks or their sources, as this lead isotopic characteristic dominates these rocks.  相似文献   

20.
A lead isotope study of mineralization in the Saudi Arabian Shield   总被引:1,自引:0,他引:1  
New lead isotope data are presented for some late Precambrian and early Paleozoic vein and massive sulfide deposits in the Arabian Shield. Using the Stacey Kramers (1975) model for lead isotope evolution, isochron model ages range between 720 m.y. and 420 m.y. Most of the massive sulfide deposits in the region formed before 680 m.y. ago, during evolution of the shield. Vein type mineralization of higher lead content occurred during the Pan African event about 550 m.y. ago and continued through the Najd period of extensive faulting in the shield that ended about 530 m.y. ago. Late post-tectonic metamorphism may have been responsible for vein deposits that have model ages less than 500 m.y. Alternatively some of these younger model ages may be too low due to the mineralizing fluids acquiring radiogenic lead from appreciably older local crustal rocks at the time of ore formation.The low207Pb/204Pb ratios found for the deposits in the main part of the shield and for those in north-eastern Egypt, indicate that the Arabian craton was formed in an oceanic crustal environment during the late Precambrian. Involvement of older, upper-crustal material in the formation of the ore deposits in this part of the shield is precluded by their low207Pb/204Pb and208Pb/204Pb characteristics.In the eastern part of the shield, east of longitude 44°20E towards the Al Amar-Idsas fault region, lead data are quite different. They exhibit a linear207Pb/204Pb-206Pb/204Pb relationship together with distinctly higher208Pb/204Pb characteristics. These data imply the existence of lower crustal rocks of early Proterozoic age that apparently have underthrust the shield rocks from the east. If most of the samples we have analyzed from this easterly region were mineralized 530 m.y. ago, then the age of the older continental rocks is 2,100±300 m.y. (2).The presence of upper crustal rocks, possibly also of early Proterozoic age, is indicated by galena data from Hailan in South Yemen and also from near Muscat in Oman. These data are the first to indicate such old continental material in these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号