首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
淹没矩形防波堤透反射系数特性研究   总被引:2,自引:1,他引:2  
采用解析方法研究了斜向入射波作用下淹没矩形防波堤的透反射系数特性.首先利用特征函数展开法导出了绕射势函数的分析解和透反射系数的计算公式,然后利用边界元方法验证了解析解,在此基础上利用解析解分析了若干工况下的防波堤透反射特性.计算结果表明,淹没矩形防波堤截面的宽度、高度和相对位置以及入射角的改变都不同程度影响反射系数和透射系数.在中等深度条件下,对于一定频率的波浪,位置和尺寸适当的淹没矩形堤可以反射大部分斜向入射波.研究结果对设计淹没的矩形防波堤具有重要的参考价值.  相似文献   

2.
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.  相似文献   

3.
An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.  相似文献   

4.
The overall performance of pile-restrained flexible floating breakwaters is investigated under the action of linear monochromatic incident waves in the frequency domain. The aforementioned floating breakwaters undergo only vertical structural deflections along their length and are held in place by means of vertical piles. The total number of degrees of freedom equals the six conventional body modes, when the breakwater moves as a rigid body, plus the extra bending modes. These bending modes are introduced to represent the structural deflections of the floating breakwater and are described by the Bernoulli–Euler flexible beam equation. The number of bending modes introduced is determined through an appropriate iterative procedure. The hydrostatic coefficients corresponding to the bending modes are also derived. The numerical analysis of the flexible floating breakwaters is based on a three-dimensional hydrodynamic formulation of the floating body. A parametric study is carried out for a wide range of structural stiffness parameters and wave headings, to investigate their effect on the performance of flexible floating breakwaters. Moreover, this performance is compared with that of the corresponding pile-restrained rigid floating breakwater. Results indicated that the degree of structural stiffness and the wave heading strongly affect the performance of flexible floating breakwaters. The existence of an “optimum” value of structural stiffness is demonstrated for the entire wave frequency range.  相似文献   

5.
The wave transmission, reflection and energy dissipation characteristics of ‘’-type breakwaters were studied using physical models. Regular and random waves in a wide range of wave heights and periods and a constant water depth were used. Five different depths of immersion (two emerged, one surface flushing and two submerged conditions) of this breakwater were selected. The coefficient of transmission, Kt, and coefficient of reflection, Kr, were obtained from the measurements, and the coefficient of energy loss, Kl was calculated using the law of balance of energy. It was found that the wave transmission is significantly reduced with increased relative water depth, d/L, whether the vertical barrier of the breakwater is surface piercing or submerged, where ‘d’ is the water depth and ‘L’ is the wave length. The wave reflection decreases and energy loss increases with increased wave steepness, especially when the top tip of the vertical barrier of this breakwater is kept at still water level (SWL). For any incident wave climate (moderate or storm waves), the wave transmission consistently decreases and the reflection increases with increased relative depth of immersion, Δ/d from −0.142 to 0.142. Kt values less than 0.3 can be easily obtained for the case of Δ/d=+0.071 and 0.142, where Δ is the height of exposure (+ve) or depth of immersion (−ve) of the top tip of the vertical barrier. This breakwater is capable of dissipating wave energy to an extent of 50–80%. The overall performance of this breakwater was found to be better in the random wave fields than in the regular waves. A comparison of the hydrodynamic performance of ‘’-type and ‘T’-type shows that ‘T’-type breakwater is better than ‘’-type by about 20–30% under identical conditions.  相似文献   

6.
This study examines the Bragg reflection of water waves by multiple submerged semi-circular breakwaters. The multipole expansions combined with the shift of polar coordinates are used to develop full linear potential solutions of the problem. In the full solutions, the obliquely and normally incident waves are independently considered. Experimental tests are carried out to measure the reflection and transmission coefficients of the breakwaters at different wave periods and body spacings. The analytical results are in reasonable agreement with the experimental data. The peak reflection coefficient of multiple submerged semi-circular breakwaters and the bandwidth of Bragg reflection are carefully examined by numerical examples. Some significant results for practical application are discussed.  相似文献   

7.
8.
The interaction of surface water waves with submerged breakwaters   总被引:1,自引:0,他引:1  
This paper concerns the behaviour of nonlinear regular waves interacting with rectangular submerged breakwaters. A new series of experimental results is presented and compared with numerical calculations based upon a Boundary Element Method (BEM) that utilises multiple fluxes to deal with the discontinuities encountered at the corners of the domain. Specifically, comparisons concern both the spatial water surface profiles at various times and the spatial evolution of the harmonics generated by the breakwaters, the latter being an important focus for the paper. The BEM is shown to accurately model both the water surface profile and the harmonic generation, provided the breakwater width is sufficient to ensure that flow separation is not a controlling influence. Furthermore, evidence is provided to confirm that reflection from rectangular submerged breakwaters is fundamentally a linear phenomenon.  相似文献   

9.
This paper provides a stochastic method by which the two-dimensional onshore scour characteristics along the base of submerged breakwaters exposed to normally incident random waves on both sloping and horizontal sandy seabed can be derived. Here the formulas for the regular wave-induced scour characteristics provided by Young and Testik (2009) are used. These formulas are combined with describing the waves as a stationary Gaussian narrow-band random process to derive the random wave-induced onshore scour characteristics; the maximum scour depth, the scour length, and the distance of the maximum scour depth location from the onshore breakwater face. An example of calculation is also provided.  相似文献   

10.
This study investigated how the porosity of submerged breakwaters affects non-breaking wave transformations. Eight model geometries each with six different porosities, from 0.421 to 0.912, were also considered. Experimental results reveal that the model width has little effect on wave reflection and transmission when the model heights are fixed. The transmission coefficient is maximum at a kh in the range from 1.3 to 2.0 and minimum at a kh around 0.7. The wave reflection maximum is at kh of near 0.5. The energy loss of the primary waves is maximum near kh=0.81 and minimum when the porosity of the model is large. Porosity does affect wave transformation and its influence becomes significant as the heights of the models increase. For the range of porosities tested, wave energy loss from the primary harmonic was found to be almost constant at around 0.4 when kh >1.3, decreasing slowly when kh <1.3; wave energy loss decreases for porosities above 0.75.  相似文献   

11.
The performance of the new wave diffraction feature of the shallow-water spectral model SWAN, particularly its ability to predict the multidirectional wave transformation around shore-parallel emerged breakwaters is examined using laboratory and field data. Comparison between model predictions and field measurements of directional spectra was used to identify the importance of various wave transformation processes in the evolution of the directional wave field. First, the model was evaluated against laboratory measurements of diffracted multidirectional waves around a breakwater shoulder. Excellent agreement between the model predictions and measurements was found for broad frequency and directional spectra. The performance of the model worsened with decreasing frequency and directional spread. Next, the performance of the model with regard to diffraction–refraction was assessed for directional wave spectra around detached breakwaters. Seven different field cases were considered: three wind–sea spectra with broad frequency and directional distributions, each coming from a different direction; two swell–sea bimodal spectra; and two swell spectra with narrow frequency and directional distributions. The new diffraction functionality in SWAN improved the prediction of wave heights around shore-parallel breakwaters. Processes such as beach reflection and wave transmission through breakwaters seem to have a significant role on transformation of swell waves behind the breakwaters. Bottom friction and wave–current interactions were less important, while the difference in frequency and directional distribution might be associated with seiching.  相似文献   

12.
Experiments on wave transmission coefficients of floating breakwaters   总被引:1,自引:0,他引:1  
To find a simple, inexpensive, and effective type of floating breakwater for deep-sea aquaculture, we studied three types of structures: the single box, the double box, and the board net. We conducted two-dimensional physical model tests in a wave-current flume in the laboratory to measure the wave transmission coefficients of the three types of breakwaters under regular waves with or without currents. Based on the initial comparison of the wave transmission coefficients, we proposed the use of the board-net floating breakwater for use with fish cages; we then conducted detailed experiments to examine how wave transmission coefficients are affected by several factors, including the width of the board, the row number of the net, the rigidity of the board, and the current velocity. The experimental results show that the board-net floating breakwater, which is a simple and inexpensive type of structure, can effectively protect fish and fish cages and may be adopted for aquaculture engineering in deep-water regions.  相似文献   

13.
Wave force coefficients for horizontally submerged rectangular cylinders   总被引:1,自引:0,他引:1  
The results of wave force measurements carried out on a section of horizontally submerged rectangular cylinders, which are used as pontoons in many offshore structures, are reported in this paper. Two rectangular cylinders with aspect (depth–breadth) ratios equal to 12 and 34 and a square section (aspect ratio=1.0) cylinder are chosen for this study. Experiments are carried out in a wave tank at a water depth of 2.2 m at low Keulegan–Carpenter (KC) numbers to measure the horizontal and vertical wave forces acting on a 100 mm section, located at mid-length of the cylinders. For each cylinder, tests are carried out for two relative depths of submergence of 2.68 and 4.68. Measured wave forces in regular and irregular waves are then used to derive drag (CD) and inertia coefficients (CM). The analysis show that at very low KC numbers the inertia coefficients for all cylinders approached the potential flow values for both horizontal and vertical forces. The drag coefficients at low KC numbers exhibited large values and they decreased sharply with increase in KC number. For the square cylinder, where relatively a large KC number is obtained compared to other cylinders, inertia coefficients reached minimum values in the range of KC of about 3–4 and increased thereafter. In this range, CM values are about 50% or so, smaller than the same at KC close to zero. The results of the experiments reveal that aspect ratio has large influence on hydrodynamic coefficients.  相似文献   

14.
双淹没矩形体的透反射特性分析   总被引:1,自引:0,他引:1  
刘鹏飞  游亚戈  胡城 《海洋学报》2007,29(1):133-138
采用解析方法研究了斜向入射波作用下双淹没矩形体的透反射系数特性.首先利用特征函数展开法导出了绕射势函数的分析解并进一步得到透反射系数的计算公式,然后利用边界元方法验证了解析解.与单个的淹没矩形体相比,双淹没矩形体在一定范围内有较高的反射系数.最后利用解析解分析了若干工况下的双淹没矩形体的透反射特性,给出了影响透反射系数的几何因素.  相似文献   

15.
A three-dimensional general mathematical hydroelastic model dealing with the problem of wave interaction with a floating and a submerged flexible structure is developed based on small amplitude wave theory and linear structural response. The horizontal floating and submerged flexible structures are modelled with a thin plate theory. The linearized long wave equations based on shallow water approximations are derived and results are compared. Three-dimensional Green’s functions are derived using fundamental source potentials in water of finite and infinite depths. The expansion formulae associated with orthogonal mode-coupling relations are derived based on the application of Fourier transform in finite and infinite depths in case of finite width in three-dimensions. The usefulness of the expansion formula is demonstrated by analysing a physical problem of surface gravity wave interaction with a moored finite floating elastic plate in the presence of a finite submerged flexible membrane in three-dimensions. The numerical accuracy of the method is demonstrated by computing the complex values of reflected wave amplitudes for different modes of oscillation and mooring stiffness. Further, the effect of compressive force and modes of oscillations on a free oscillation hydroelastic waves in a closed channel of finite width and length for floating and submerged elastic plate system is analysed.  相似文献   

16.
潜堤结构型式及其透射系数研究   总被引:6,自引:2,他引:6  
针对胜利油田某保滩促淤工程,进行了多种方案不同潜堤结构型式的优选,比较了其中四种结构型式,并对这四种结构型式的潜堤分别进行了波浪水槽试验,测试其透射系数,在此基础上,给出了计算潜堤透射系数的经验公式,为工程设计提供依据。  相似文献   

17.
Wave interaction with T-type breakwaters   总被引:1,自引:0,他引:1  
The wave transmission, reflection and energy dissipation characteristics of partially submerged ‘T'-type breakwaters (Fig. 1) were studied using physical models. Regular and random waves, with wide ranges of wave heights and periods and a constant water depth were used. Five different depths of immersions of the ‘T'-type breakwater were selected. The coefficient of transmission, Kt, coefficient reflection, Kr, were obtained from the measurements and the coefficient of energy loss, Kl is calculated using the law of conservation of energy. It is found that the coefficient of transmission generally reduces with increased wave steepness and increased relative water depth, d/L. This breakwater is found to be effective closer to deep-water conditions. Kt values less than 0.35 is obtained for both normal and high input wave energy levels, when the horizontal barrier of the T type breakwater is immersed to about 7% of the water depth. This breakwater is also found to be very efficient in dissipating the incident wave energy to an extent of about 65% (i.e. Kl>0.8), especially for high input wave energy levels. The wave climate in front of the breakwater is also measured and studied.
Full-size image (12K)
Fig. 1. Schematic view of the T-type breakwater.  相似文献   

18.
《Coastal Engineering》2005,52(10-11):949-969
Recent experimental data collected during the DELOS project are used to validate two approaches for simulating waves and currents in the vicinity of submerged breakwaters.The first approach is a phase-averaged method in which a wave model is used to simulate wave transformation and calculate radiation stresses, while a flow model (2-dimensional depth averaged or quasi-3D) is used to calculate the resulting wave driven currents. The second approach is a phase resolving method in which a high order 2DH-Boussinesq-type model is used to calculate the waves and flow.The models predict wave heights that are comparable to measurements if the wave breaking sub-model is properly tuned for dissipation over the submerged breakwater. It is shown that the simulated flow pattern using both approaches is qualitatively similar to that observed in the experiments. Furthermore, the phase-resolving model shows good agreement between measured and simulated instantaneous surface elevations in wave flume tests.  相似文献   

19.
The front slope stability of breakwaters with a homogeneous berm was studied in a large number of two dimensional model tests at Aalborg University, Denmark. The results are presented together with a new formula for prediction of the berm recession which is the most important parameter for describing the reshaping. The formula has also been calibrated and validated against model test data from other researchers. The significance of the new design formula is that it predicts berm recession much better than the existing methods, especially in case of more stable structures.  相似文献   

20.
Wave overtopping nearshore coastal structures, such as shore-parallel breakwaters, can significantly alter the current circulation and sediment transport patterns around the structures, which in turn affects the formation of tombolos and salients in the nearshore area. This paper describes the implementation of a wave overtopping module into an existing depth-averaged coastal morphological mode: COAST2D and model applications to investigate the effect of wave overtopping on the hydrodynamics and morphodynamics around a group of shore-parallel breakwaters. The hydrodynamic aspects of the model were validated against a series of laboratory conditions. The model was then applied to a study site at Sea Palling, Norfolk, UK, where 9 shore-parallel segmented breakwaters including 4 surface-piercing and 5 low-crested breakwaters are present, for the storm conditions in Nov 2006. The model results were compared with laboratory data and field measurements, showing a good agreement on both hydrodynamics and morphological changes. Further analysis of wave overtopping effect on the nearshore hydrodynamics and morphodynamics reveals that wave overtopping has significant impacts on the nearshore circulation, sediment transport and the resulting morphological changes within such a complex breakwater scheme under the storm and macro-tide conditions. The results indicate the importance of including the wave overtopping in modelling nearshore morphodynamics with the presence of coastal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号