共查询到10条相似文献,搜索用时 0 毫秒
1.
针对现有区域天顶对流层延迟(ZTD)模型属于函数或格网型,参数固定,且难以表达ZTD时空快速变化特性等问题,提出一种基于小波变换、傅里叶级数拟合、自回归(AR)、支持向量回归(SVR)的组合预报新模型构建方法。该模型在时域内对ZTD序列进行小波变换,分解出低频和高频序列。低频序列采用傅里叶级数拟合成时间函数,高频序列则由AR进行预报。在空间域内利用SVR建立位置参数向傅里叶级数参数的映射。在该模型中输入时间与位置信息即可获取ZTD预报值。利用94个GNSS基站2 a的ZTD数据进行建模,24个GNSS基站1 a的ZTD数据进行预测对比。结果表明,实测值与模型预报值之间的平均偏差为-2.02 mm,均方根误差为3.07 cm,优于大部分区域ZTD模型。在伪距单点定位测试中,该模型能够显著提高定位精度。实验表明,该组合模型具有较高的预报精度和可靠性,具有一定的应用价值。 相似文献
2.
提出一种基于主成分分析(PCA)的ZTD时空建模方法,并利用GNSS连续运行参考站获取的ZTD数据,建立香港、云南、中国3个区域范围的ZTD时空模型。结果表明,所建立的区域对流层延迟时空模型不仅精度明显高于Saastamoinen、EGNOS和UNB3m模型,而且建模过程简单,模型参数较少,使用方便。 相似文献
3.
针对传统BP神经网络存在的学习速度慢、易陷入局部极值等问题,利用鲸鱼优化算法(WOA)以及狼群算法(WPA)混合优化BP神经网络的权值和阈值,构建WPA-WOA-BP神经网络模型,并对PM2.5浓度进行预测.实验结果证明,WPA-WOA-BP神经网络模型预测稳定性高,可用于PM2.5浓度的预测,且预测精度优于BP神经网... 相似文献
4.
为应对突发公共卫生事件而采取的流动限制性措施,为研究人类活动对PM2.5浓度的影响提供了一个独特的自然实验环境,但该期间关中平原城市群PM2.5浓度分布及驱动力有何变化尚缺乏关注。基于2018~2020年PM2.5遥感反演数据,采用空间自相关分析、地理探测器和多尺度地理加权回归(MGWR)模型,分析2020年2月至3月实施流动限制性措施期间关中平原城市群PM2.5浓度及驱动因子的时空演变特征。结果表明:(1)2020年2月至3月PM2.5浓度显著下降,2020年2月热点减少,3月冷点减少。(2)相比历年同期,所有人为因素单因子在2020年2月对关中平原城市群PM2.5浓度的解释力最低,自然因素解释力较高。其中,工厂兴趣点分布(POI_D)及路网分布(RD)解释力相比历年同期平均解释力降幅最大,分别为20.3%和38.6%。所有人为因素双因子交互影响解释力在2020年2月最低。(3)所有人为因素在2020年2月对关中平原城市群PM2.5... 相似文献
5.
可解释的准确预测PM2.5浓度变化可以有助于人类规避暴露风险,对人类健康风险评估和政策实施具有重要意义。目前已有PM2.5浓度预测模型过多专注于提升模型预测精度,但忽略了模型的可解释性,造成模型可复用性和可信任度较差。鉴于此,本文提出了一种兼顾模型预测精度与模型可解释性的注意力时空常微分方程模型(Attentional SpatioTemporal Ordinary Differential Equation,ASTODE)用于PM2.5浓度预测任务。具体而言,本文将神经常微分方程集成至PM2.5浓度预测任务中,以提升预测模型的可解释性。此外,针对传统神经常微分方程难以挖掘PM2.5浓度数据中空间依赖关系的挑战,本文提出了一种新颖时空导数网络将传统神经常微分方程扩展到了时空常微分方程。针对传统神经常微分方程难以挖掘PM2.5浓度数据中长期依赖关系的挑战,本文设计了一种时空注意力机制去融合多个时间节点的隐藏状态。本文采用真实的PM2.5... 相似文献
6.
为提高PM2.5浓度预测的时效和精度,本文综合大气污染物、GNSS水汽和风速等观测要素,利用FFT与LSTM神经网络方法构建PM2.5浓度预测模型,开展未来24 h的PM2.5浓度预测研究。首先对大气污染物、GNSS水汽和风速等观测要素进行快速傅里叶变换,提取各类要素的公共变化周期,获得最佳公共周期为216 h;然后选取最佳公共周期长度的各类要素作为模型输入,24 h序列的PM2.5浓度作为模型输出,分别以PM2.5单要素的RBF神经网络和融合大气污染物、风速、GNSS水汽的LSTM神经网络构建PM2.5浓度预测模型;最后利用实测PM2.5浓度序列分别对2种模型开展外部可靠性检验,将RMSE和IA作为评价指标进行模型精度评价。研究结果表明,基于FFT-LSTM的PM2.5浓度预测模型的RMSE和IA分别为16.22 μg/m3和84.36%,模型预测精度较好,可有效预测未来24 h的PM2.5浓度,该模型可为大气污染防治部门空气质量预测提供参考。 相似文献
7.
在传统支持向量回归机的基础上,考虑观测数据的混沌特性,通过对训练样本的相空间重构,并结合遗传算法在寻参上的优势,建立边坡变形的相空间重构GA-SVR组合模型。通过组合模型对某矿山边坡位移预测值与实测值进行对比分析,发现组合模型在预测精度上更具优势。 相似文献
8.
针对SVM模型在基坑沉降预测领域存在参数选择困难和基于单点数据建模的缺点,建立顾及邻近点的PSO-SVM模型.采用PSO-SVM模型进行最优训练样本数量研究,结果表明短期样本的预测效果最优.将邻近点沉降变形值作为影响基坑沉降的因素引入到改进的PSO-SVM模型中,实例表明,在短期样本数据下顾及邻近点的PSO-SVM模型... 相似文献
9.
地下水位预测对滑坡稳定性分析具有重要意义,三峡库区库岸滑坡地下水位时间序列在季节性强降雨和周期性库水位涨落等诸多因素影响下呈现混沌特征。在对地下水位序列进行相空间重构的基础上,采用饱和关联维数法和最大Lyapunov指数法对其混沌特征进行验证。再用预测性能优秀的最小二乘支持向量机(LSSVM)模型对其进行预测,并用粒子群算法优化选取LSSVM模型的参数,以克服LSSVM模型参数选取困难的缺点。以三峡库区三舟溪滑坡前缘STK-1水文孔日平均地下水位序列为例进行了混沌分析,分别运用粒子群优化的LSSVM模型(PSO-LSSVM)和BP神经网络模型对STK-1水文孔地下水位进行了预测。结果表明库岸滑坡地下水位序列存在混沌特征,PSO-LSSVM模型预测结果的均方根误差为0.193m,拟合优度为0.815,说明预测效果较理想,且PSO-LSSVM模型预测精度高于BP网络模型,具有较强的实用性。 相似文献
10.
为定量化平滑先验法中正则化参数的取值及提高滑坡位移预测精度,提出一种基于平滑先验法(SPA)-麻雀搜索算法(SSA)-支持向量机回归(SVR)模型的滑坡位移预测方法。以三峡库区八字门和白水河滑坡为研究对象,首先采用平滑先验法分解累计位移序列和影响因素序列,基于波形相似度确定最优正则化参数并得到位移分解结果,利用灰色关联度确定波动项位移预测时最优输入序列,然后使用BP神经网络和麻雀搜索算法优化支持向量机回归模型,分别拟合预测趋势项位移和波动项位移,最后将位移分量叠加得到累计位移。结果表明:基于SPA-SSA-SVR模型的八字门滑坡监测点ZG110位移预测均方根误差(RMSE)为4.32 mm,白水河滑坡监测点ZG118、DX-01位移预测均方根误差分别为3.44和4.81 mm,比基于经验模态分解(EMD)-果蝇优化(FOA)-最小二乘支持向量机(LSSVM)模型得到的均方根误差分别减少8.59、3.82和11.58 mm,证明基于SPA-SSA-SVR模型的滑坡位移预测方法预测效果较好;平滑先验分解中正则化参数的最优取值随累计位移时间序列的增加而趋于某一固定值,同一滑坡不同监测点和相同... 相似文献