首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nonconnah Creek, located in the loess-mantled Blufflands along the eastern wall of the Lower Mississippi Alluvial Valley in Tennessee displays a sedimentary sequence representing the Altonian Substage through the Woodfordian Substage of the Wisconsinan Stage. The site has a biostratigraphic record for the Altonian and Farmdalian Substages that documents warm-temperate upland oak-pine forest, prairie, and bottomland forest. At 23,000 yr B.P., white spruce and larch migrated into the Nonconnah Creek watershed and along braided-stream surfaces in the Mississippi Valley as far as southeastern Louisiana. The pollen and plant-macrofossil record from Nonconnah Creek provides the first documentation of a full-glacial locality in eastern North America for beech, yellow poplar, oak, history, black walnut, and other mesic deciduous forest taxa. During the full and late glacial, the Mississippi Valley was a barrier to the migration of pine species, while the adjacent Blufflands provided a refuge for mesic deciduous forest taxa. Regional climatic amelioration, beginning about 16,500 yr B.P., is reflected by increases in pollen percentages of cooltemperate deciduous trees at Nonconnah Creek. The demise of spruce and jack pine occurred 12,500 yr B.P. between 34° and 37° N in eastern North America in response to postglacial warming.  相似文献   

2.
A complex late Quaternary alluvial history was documented along Henson Creek, a low order tributary on the Fort Hood Military Reservation in central Texas. Three Quaternary alluvial landforms were recognized: terrace 2 (T2), terrace 1 (T1), and the modern floodplain (T0). The late Pleistocene T2 terrace may contain an array of sites spanning the entire known cultural record, while T1 may have sites spanning the last 5000 years only. Five fluvial units, three colluvial facies, two alluvial fan facies, and two buried paleosols were also recognized. Fluvial deposition was occurring approximately 15,000 yr B.P., 10,000-8000 yr B.P., 7000–4800 yr B.P., 1650-600 yr B.P., and during the last 400 years. Colluvial deposition was ongoing mainly in the early and middle Holocene, while alluvial fan aggradation was proceeding primarily in the middle Holocene. Because of erosional unconformities, there is minimal potential for recovering buried sites dating to intervals between depositional eposides for most of the drainage basin. Preservation potentials for buried sites are greatest in fine-grained fluvial deposits dating to the late Pleistocene, early Holocene, and parts of the late Holocene, and in fine-grained colluvial deposits dating to the early and middle Holocene. This investigation demonstrates that within the study area, and perhaps throughout much of central Texas, a greater continuum of sediments and preservation potentials exists in late Quaternary alluvial deposits of rivers than in low-order tributaries.  相似文献   

3.
Lake Emma, which no longer exists because of a mining accident, was a tarn in a south-facing cirque near the headwaters of the Animas River in the San Juan Mountains of southwestern Colorado. During the Pinedale glaciation, this area was covered by a large transection glacier centered over the Lake Emma region. Three radiocarbon dates on basal organic sediment from Lake Emma indicate that by ca. 15,000 yr B.P. this glacier, one of the largest in the southern Rocky Mountains, no longer existed. Twenty-two radiocarbon dates on Picea and Abies krummholz fragments in the Lake Emma deposits indicate that from ca. 9600 to 7800 yr B.P., from 6700 to 5600 yr B.P., and at 3100 yr B.P. the krummholz limit was at least 70 m higher than present. These data, in conjunction with Picea:Pinus pollen ratios from both the Lake Emma site and the Hurricane Basin site of J. T. Andrews, P. E. Carrara, F. B. King, and R. Struckenrath (1975, Quaternary Research 5, 173–197) suggest than from ca. 9600 to 3000 yr B.P. timberline in the San Juan Mountains was higher than present. Cooling apparently began ca. 3000 yr B.P. as indicated by decreases in both the percentage of Picea pollen and Picea:Pinus pollen ratios at the Hurricane Basin site (Andrews et al., 1975). Cooling is also suggested by the lack of Picea or Abies fragments younger than 3000 yr B.P. at either the Lake Emma or the Hurricane Basin site.  相似文献   

4.
Middle Park, a high‐altitude basin in the Southern Rocky Mountains of north‐central Colorado, contains at least 59 known Paleoindian localities. At Barger Gulch Locality B, an extensive Folsom assemblage (˜10,500 14C yr B.P.) occurs within a buried soil. Radiocarbon ages of charcoal and soil organic matter, as well as stratigraphic positions of artifacts, indicate the soil is a composite of a truncated, latest‐Pleistocene soil and a younger mollic epipedon formed between ˜6000 and 5200 14C yr B.P. and partially welded onto the older soil following erosion and truncation. Radiocarbon ages from an alluvial terrace adjacent to the excavation area indicate that erosion followed by aggradation occurred between ˜10,200 and 9700 14C yr B.P., and that the erosion is likely related to truncation of the latest‐Pleistocene soil. Erosion along the main axis of Barger Gulch occurring between ˜10,000 and 9700 14C yr B.P. was followed by rapid aggradation between ˜9700 and 9550 14C yr B.P., which, along with the erosion at Locality B, coincides with the abrupt onset of monsoonal precipitation following cooling in the region ˜11,000–10,000 14C yr B.P. during the Younger Dryas oscillation. Buried soils dated between ˜9500 and 8000 14C yr B.P. indicate relative landscape stability and soil formation throughout Middle Park. Morphological characteristics displayed by early Holocene soils suggest pedogenesis under parkland vegetation in areas currently characterized by sagebrush steppe. The expansion of forest cover into lower elevations during the early Holocene may have resulted in lower productivity in regards to mammalian fauna, and may partly explain the abundance of early Paleoindian sites (˜11,000–10,000 14C yr B.P., 76%) relative to late Paleoindian sites (˜10,000–8000 14C yr B.P., 24%) documented in Middle Park. © 2005 Wiley Periodicals, Inc.  相似文献   

5.
Five pollen diagrams reveal late Wisconsin and Holocene vegetation changes in the Walker Lake/Alatna Valley region of the central Brooks Range, approximately 100 km west of the area studied by D. A. Livingstone (1955, Ecology36, 587–600). New insights into the vegetation history of this region are provided by calculations of pollen influx and by the use of linear discriminant analysis to separate Picea glauca and P. mariana pollen. Three major pollen zones are identified: (1) a basal herb zone, characterized by high percentages of Cyperaceae, Gramineae, Salix, and Artemisia, and low total pollen influx; (2) a shrub Betula zone with increased total pollen influx and very high percentages of Betula pollen, predominantly in the size range of B. nana and B. glandulosa; and (3) and Alnus zone dominated by Alnus pollen. Lakes currently within the boreal forest or near tree line show relatively high percentages of Picea pollen in the Alnus zone. Several striking vegetation changes occurred between ca. 10,000 and 7000 yr B.P. Between ca. 11,000 and 10,000 yr B.P., Populus balsamifera pollen percentages as great as 30% indicate that this species was present at low-elevation sites near Walker Lake. These populations declined abruptly ca. 10,000 yr ago and have never regained prominence. About 8500 yr B.P., Picea glauca pollen reached 10–15%, indicating the arrival of P. glauca in or near the study area. P. glauca populations evidently decreased ca. 8000 yr ago, when Picea pollen percentages and influx fell to low values. About 7000 yr B.P., Alnus pollen percentages and influx rose sharply as alder shrubs became established widely. Picea once more expanded ca. 5000 yr ago, but these populations were dominated by P. mariana rather than P. glauca, which increased slowly at this time and may still be advancing northward. Some vegetation changes have been remarkably synchronous over wide areas of interior Alaska, and probably reflect responses of in situ vegetation to environmental changes, but others may reflect the lagged responses of species migrating into new areas.  相似文献   

6.
Two sediment cores from Kaiyak and Squirrel lakes in northwestern Alaska yielded pollen records that date to ca. 39,000 and 27,000 yr B.P., respectively. Between 39,000 and 14,000 yr B.P., the vegetation around these lakes was dominated by Gramineae and Cyperaceae with some Salix and possibly Betula nana/glandulosa forming a local, shrub component of the vegetation. Betula pollen percentages increased about 14,000 yr B.P., indicating the presence of a birchdominated shrub tundra. Alnus pollen appeared at both sites between 9000 and 8000yr B.P., and Picea pollen (mostly P. mariana) arrived at Squirrel Lake about 5000 yr B.P. The current foresttundra mosaic around Squirrel Lake was established at this time, whereas shrub tundra existed near Kaiyak Lake throughout the Holocene. When compared to other pollen records from north-western North America, these cores (1) represent a meadow component of lowland. Beringian tundra between 39,000 and 14,000 yr B.P., (2) demonstrate an early Holocene arrival of Alnus in northwestern Alaska that predates most other Alnus horizons in northern Alaska or northwestern Canada, and (3) show an east-to-west migration of Picea across northern Alaska from 9000 to 5000 yr B.P.  相似文献   

7.
In western North America, pollen data from highland lakes are often used to reconstruct vegetation on the adjacent lowlands. Plant macrofossils and pollen from packrat middens now provide a means to evaluate such reconstructions. On the basis of pollen diagrams from the Chuska Mountains, H. E. Wright, Jr., A. M. Bent, B. S. Hansen, and L. J. Maher, Jr., ((1973), Geological Society of America Bulletin, 84, 1155–1180) arrived at conservative estimates for late Pleistocene depression of highland conifers. In their interpretation, a proposed slight depression of 500 m for lower tree line precluded expansion of Pinus ponderosa into elevations now in desertscrub. Instead, it was suggested that pinyon pine and Artemisia occupied the lowland plateaus. Packrat midden records on either side of the Chuskas fail to verify this model. Early Holocene middens from Chaco Canyon, New Mexico, and a terminal Pleistocene midden from Canyon de Chelly, Arizona, show that blue spruce, limber pine, Douglas fir, dwarf juniper, and Rocky Mountain juniper expanded at least down to 1770 m elevation Neither Colorado pinyon nor ponderosa pine was found as macrofossils in the middens. Artemisia pollen percentages are high in the terminal Pleistocene midden, as they are in the Chuska Mountain pollen sequence, suggesting regional dominance by sagebrush steppe. Of 38 taxa identified, only 3 are shared by middens dated 11,900 and 3120 yr B.P. from Canyon de Chelly, indicating a nearly complete turnover in the flora between the late Pleistocene and late Holocene. Although corn was previously thought to have been introduced to the Colorado plateaus after 2200 yr B.P., the midden dated 3120 yr B.P. contains pollen of corn and other indicators of incipient agriculture.  相似文献   

8.
Dust,clouds, rain types,and climatic variations in tropical north Africa   总被引:2,自引:0,他引:2  
Dust and processes of raindrop formation in the clouds play a very important role in the climatic evolution of tropical north Africa. Sedimentologic, stratigraphic, pedologic, geomorphologic, and palynologic data converge to show that a major environmental change occurred in tropical Africa about 7000 yr B.P. In the Sudanian and Sudano-Guinean zones (wet tropical zone), from 15,000 to 7000 yr B.P., rivers deposited mostly clay, while from 7000 to 4000 yr B.P. they deposited mostly sand. During the first period, pedogenesis was vertisolic (montmorillonite dominant), associated with pollen belonging mostly to vegetation typical of hydromorphic soils, while during the second period pedogenesis was of ferruginous type (kaolinite dominant) with pollen belonging mostly to vegetation typical of well-drained soils. The great change near 7000 yr B.P. is linked chiefly to a major hydrological change that appears related to a change in the size of raindrops: from fine rains associated with considerable atmospheric dust (raindrop diameter essentially less than 2 mm) to the second period associated with thunderstorm rains (raindrop diameter mostly greater than 2 mm). The size of raindrops is related particularly to cloud thickness and dust concentration in the troposphere. Thunderstorm activity is influenced also by fluctuations of the atmospheric electricity, modulated by the sun.  相似文献   

9.
Pollen diagrams from Joe and Niliq Lakes date to ca. 28,000 and 14,000 yr B.P., respectively. Mesic shurb tundra grew near Joe Lake ca. 28,000 to 26,000 yr B.P. with local Populus populations prior to ca. 27,000 yr B.P. Shrub communities decreased as climate changed with the onset of Itkillik II glaciation (25,000 to 11,500 yr B.P.), and graminoid-dominated tundra characterized vegetation ca. 18,500 to 13,500 yr B.P. Herb tundra was replaced by shrub Betula tundra near both sites ca. 13,500 yr B.P. with local expansion of Populus ca. 11,000 to 10,000 yr B.P. and Alnus ca. 9000 yr B.P. Mixed Picea glauca/P. mariana woodland was established near Joe Lake ca. 6000 yr B.P. These pollen records when combined with others from northern Alaska and northwestern Canada indicate (1) mesic tundra was more common in northwestern Alaska than in northeastern Alaska or northwestern Canada during the Duvanny Yar glacial interval (25,000 to 14,000 yr B.P.); (2) with deglaciation, shrub Betula expanded rapidly in northwestern Alaska but slowly in areas farther east; (3) an early postglacial thermal maximum occurred in northwestern Alaska but had only limited effect on vegetation; and (4) pollen patterns in northern Alaska and northwestern Canada suggest regional differences in late Quaternary climates.  相似文献   

10.
Five stratigraphic units and five soils of late Pleistocene to Holocene age crop out in dissected badlands on Corn Creek Flat, 30 km northwest of Las Vegas, Nevada, and at Tule Springs, nearer to Las Vegas. The record is dominantly fluvial but contains evidence of several moister, marsh-forming periods: the oldest (Unit B) dates perhaps to the middle Wisconsin, and the more widespread Unit D falls between 30,000 and 15,000 yr B.P. Unit D therefore correlates with pluvial maximum lacustrine deposits elsewhere in the Great Basin. Standing water was not of sufficient depth or extent during either period to form lake strandlines. Between 14,000 and 7200 yr B.P. (Unit E), standing surface water gradually decreased, a trend also apparent in Great Basin pluvial lake chronologies during the same period. Groundwater carbonate cementation and burrowing by cicadas (Cicadae) accompany the moist-phase units. After 7200 yr B.P., increased wind action, decreased biotic activity, and at least 25 m of water-table lowering accompanied widespread erosion of older fine-grained deposits. Based on pack-rat midden and pollen evidence, this coincides with major vegetation changes in the valley, from sagebrush-dominated steppe to lower Mohave desertscrub.  相似文献   

11.
A newly identified tephra in stratified deposits in southwestern Utah, dated 14,000 14C yr B.P., may aid in correlating late Pleistocene deposits across parts of the southern Great Basin and west-central Colorado Plateau. Geochemical analyses of the ash suggest the tephra originated from Mono Craters, California, and most probably correlates with Wilson Creek ash #3. Because the ash is 2 mm thick 550 km from its source, the event may have been larger than others correlated to Mono Craters eruptions.  相似文献   

12.
Pollen records in the Kootenai and Fisher River drainages in western Montana reveal a fivezone sequence of Holocene vegetation change. Deposition of Glacier Peak Ash-Layer G (ca. 10,540 ± 660 yr B.P.) in the lowermost sediments (clay intermixed with pebbles) at Tepee Lake gives a minimum date for the initiation of sedimentation. Initial vegetation on the newly deglaciated terrain was dominated by Pinus (probably white bark pine) with small amounts of Gramineae, Picea and Abies, reflecting a relatively cool, moist macroclimate. Two vegetation units appear to contribute to Pollen Zone II (ca. 11,000–7100 yr B.P.): arboreal communities with pines, along with Pseudotsuga or Larix, or both, and treeless vegetation dominated by Artemisia. Pollen Zone II represents an overall warmer macroclimate than occurred upon ice withdrawal. After ca. 7100 yr B.P. (Pollen Zone III) diploxylon pines became a major pollen contributor near both Tepee Lake and McKillop Creek Pond, indicating an expansion of xerophytic forest (P. contorta and P. ponderosa) along with an increase in the prominence of Pseudotsuga menziesii or Larix occidentalis, or both. Artemisia briefly expanded coverage near Tepee Lake concomitant with the Mazama ashfall ca. 6700 yr B.P. A short-term climatic trend with more available water began after ca. 4000 yr B.P. as Abies (probably A. grandis) along with Picea engelmannii became a more regular component of the forest surrounding both sites. Emergence of the modern macroclimate is indicated primarily with the first regular appearance of Tsuga heterophylla in the pollen record by ca. 2700 yr B.P., synchronous with the development of western hemlock forest within the same latitudes in northern Idaho and northeastern Washington.  相似文献   

13.
Postglacial climatic conditions were inferred from cores taken from Big Lake in southern British Columbia. Low concentrations of nonarboreal pollen and pigments near the base of the core suggest that initial conditions were cool. Increases in both aquatic and terrestrial production suggest warmer and moister conditions until 8500 cal yr B.P. Hyposaline diatom assemblages, increases in nonarboreal pollen, and increased concentrations of pigments suggest the onset of arid conditions from 8500 to 7500 cal yr B.P. Slightly less arid conditions are inferred from 7500 until 6660 cal yr B.P. based on the diatoms, small increases and greater variability in biogenic silica and pigments, and higher percentages of arboreal pollen. At 6600 cal yr B.P., changes in diatoms, pigments, biogenic silica, and organic matter suggest that Big Lake became fresh, deep, and eutrophic until 3600 cal yr B.P., when water levels and nutrients decreased slightly. Our paleoclimatic inferences are similar to pollen-based studies until 6600 cal yr B.P. However, unlike these studies, our multiple lines of evidence from Big Lake imply large changes in effective moisture since 6000 cal yr B.P.  相似文献   

14.
Interbedded, organic-rich terrestrial and marine sediments exposed along the eastern coastal lowland of Vancouver Island contain an almost continuous record of middle Wisconsin vegetation and climate. The record has been interpreted largely from palynostratigraphic studies at three sites and supported by a study of modern pollen spectra from the three major biogeoclimatic zones of the extant vegetation. Radiocarbon dates from a variety of organic materials in the middle Wisconsin beds reveal that the fossil pollen spectra span an interval ranging from approximately 21,000 yr B.P. to more than 51,000 yr B.P. The spectra are divided into eight major pollen zones encompassing the Olympia Interglaciation and early Fraser Glaciation geologicclimate units of the Pacific Northwest. The Olympia Interglaciation extended from before 51,000 yr B.P. to ca. 29,000 yr B.P. and was characterized by a climate similar to present. During the early Fraser Glaciation, from 29,000 years ago to approximately 21,000 yr B.P., climate deteriorated until tundra like conditions prevailed. These pollen sequences are correlative with those of coastal British Columbia and partly with those from Olympic Peninsula, but apparently are not comparable with events in the Puget Lowland.  相似文献   

15.
Pollen and macrofossil analyses of a core spanning 26,000 yr from Davis Lake reveal late Pleistocene and Holocene vegetational patterns in the Puget Lowland. The core ranges lithologically from a basal inorganic clay to a detritus gyttja to an upper fibrous peat and includes eight tephra units. The late Pleistocene pollen sequence records two intervals of tundra-parkland vegetation. The earlier of these has high percentages of Picea, Gramineae, and Artemisia pollen and represents the vegetation during the Evans Creek Stade (Fraser Glaciation) (ca. 25,000–17,000 yr B.P.). The later parkland interval is dominated by Picea, Tsuga mertensiana, and Gramineae. It corresponds to the maximum ice advance in the Puget Lowland during the Vashon Stade (Fraser Glaciation) (ca. 14,000 yr B.P.). An increase in Pinus ontorta pollen between the two tundra-parkland intervals suggests a temporary rise in treeline during an unnamed interstade. After 13,500 yr B.P., a mixed woodland of subalpine and lowland conifers grew at Davis Lake during a period of rapid climatic amelioration. In the early Holocene, the prolonged expansion of Pseudotsuga and Alnus woodland suggests dry, temperate conditions similar to those of present rainshadow sites in the Puget Lowland. More-mesic forests of Tsuga eterophylla, Thuja plicata, and Pseudotsuga, similar to present lowland vegetation, appeared in the late Holocene (ca. 5500 yr B.P.).  相似文献   

16.
Speleothem carbon and oxygen isotopic records from Onondaga Cave, south-central Missouri, and Beckham Creek Cave, north-central Arkansas, are compared with the Cupola Pond and Oldfield Swamp pollen series from southeastern Missouri and the Rodgers Shelter and Modoc Shelter vertebrate biostratigraphic sequences from central Missouri and southwestern Illinois. Similar, and roughly contemporaneous, shifts between deciduous forest and steppe indicators throughout the Holocene are revealed in each database. These independent proxies record steppe conditions between approximately 9000 and 1500 cal yr B.P. A shift toward lighter speleothem carbon may reflect a change from warm and dry to cool and dry conditions between 4500 and 3000 yr B.P. The sensitive response of speleothem δ13C to changes in vegetation emphasizes their importance as paleoclimate records in an area containing few other millenial-scale climate proxies.  相似文献   

17.
Pollen and plant macrofossils preserved in lake sediment from Lake West Okoboji, Dickinson County, Iowa, indicate how the vegetation of that area changed during the late glacial and postglacial. A closed coniferous forest, dominated by spruce and larch trees, produced the Picea-Larix pollen assemblage zone. Fir trees were a minor constituent of this forest; pine trees were probably absent. Black ash trees increased in abundance at Lake West Okoboji and by 13,500 yr ago were an important constituent of the forest. The sediment accumulation rate and the pollen influx were low throughout this time. Birch and alder pollen peaked in abundance approximately 11,800 yr ago. Pollen influx increased rapidly as birch and alder replaced coniferous trees on the uplands. A deciduous forest, containing abundant oak and elm trees, replaced the birch-alder-coniferous forest. This forest inhabited northwestern Iowa from approximately 11,000 to 9000 yr B.P. Nonarboreal species became prevalent between approximately 9000 and 7700 yr B.P. as prairie began to replace deciduous forest on the uplands. Charred remains of Amorpha canescens and other upland species attest to the presence of prairie fires as an aid in establishing prairie and destroying the forest. The pollen influx declined. The warmest, driest part of the postglacial occurred in northwestern Iowa from approximately 7700 to 3200 yr ago. Lake level fell 9 to 10 m, and prairie extended to the edge of the lake. Wet-ground weeds inhabited areas near lake level which were alternately flooded, then dry. Pollen influx was approximately 100 grains/cm2/yr during the driest time in this dry interval.Deciduous trees, particularly oaks, returned after approximately 3200 yr B.P. Prairie continued to occupy the uplands but trees were more common in the lowlying wet areas. Settlement by Europeans in northwestern Iowa about 1865 is marked by an increase in weed pollen. Macrofossil deposition changed in 1910 in response to the stabilization of lake level.  相似文献   

18.
Two approximately 5‐ to 6‐km drainage segments on Black Mesa preserve unusually complete sequences of late Quaternary alluvium and soils. Radiocarbon‐ and tree‐ring‐dated alluvial and soil stratigraphy suggests entrenched paleoarroyos were beginning to aggrade at about >24,260, 11,070, 9660, 8800, 7060, 3500, 2140, and 1870 14C yr B.P. Using the quantity of sediment removal from post‐A.D. 1900 arroyos as analogue, at least 77–200% of total valley alluvium has been removed and replaced by younger sediments during an estimated 11 late Pleistocene and Holocene erosion epicycles. Given that most (59%) of the 150 recorded prehistoric sites in the two study areas occur on valley floors where only about 3% of surface alluvium predates Lolomai phase Basketmaker II occupation (˜1900–1600 yr B.P.), it may be inferred that pre‐Lolomai phase Basketmaker II sites which may have been located along washes have been removed or buried by fluvial erosion. Identification of five buried hearths in alluvial sections, including White Dog and Lolomai phase Basketmaker II sites (dating about 3500 and 1870 14C yr B.P., respectively) and one possible Early Archaic site, supports this conclusion. © 2005 Wiley Periodicals, Inc.  相似文献   

19.
Shallowly buried archaeological sites are particularly susceptible to surface and subsurface disturbance processes. Yet, because cultural deposition often operates on short time scales relative to geologic deposition, vertical artifact distributions can be used to clarify questions of site formation. In particular, patterns in artifact distributions that cannot be explained by occupation histories must be explained by natural processes that have affected sites. Buried only 10–50 cm beneath the ground surface for 10,450 14C yr, the Folsom component at Barger Gulch Locality B (Middle Park, Colorado) exhibits many signs of post‐depositional disturbance. Through examination of variation in the vertical distribution of the artifact assemblage, we are able to establish that only a Folsom component is present. Using vertical artifact distributions, stratigraphy, and radiocarbon dating, we are able to reconstruct the series of events that have impacted the site. The Folsom occupation (˜10,450 14C yr B.P.) was likely initially buried in a late‐Pleistocene eolian silt loam. Erosion brought the artifacts to rest on a deflation surface at some time prior to 9400 14C yr B.P. A mollic epipedon formed in sediments that accumulated between 9400 and 7000 14C yr B.P. Some time after 5200 14C yr B.P., this soil was partially truncated, and artifacts that had previously dispersed upward created a secondary lag at its upper contact. This surface was buried again and artifact dispersal continued. © 2005 Wiley Periodicals, Inc.  相似文献   

20.
A sequence of radiocarbon-dated buried trees, buried soils, a carbonate zone, and a molluscan fauna from Carnegie Canyon indicate that between 3200 and 2600 yr B.P. the climate of west-central Oklahoma was drier than today. A high water table accompanied a period of moister climate 2000 to 1000 yr B.P. The water table dropped after 1000 yr B.P. due to a change toward dry conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号