首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The instability of electrostatic ion cyclotron waves to low frequency density modulations is considered and nonlinear equations are derived which describe its development in terms of a coherent four wave interaction. A dispersion relation for the linear phase of the instability is obtained and threshold conditions for marginal stability determined. It is shown, using data from recent optical observations, that the conditions necessary for the instability to occur in the auroral plasma would probably be satisfied and that modulational frequencies in agreement with the observations are obtained for plausible wave amplitudes. The nonlinear development of the instability is then studied and it is shown that substantial modulation can occur. It is suggested therefore that this instability could lead to the development of a strongly turbulent state.  相似文献   

2.
Kinetic Alfven waves (KAWs) driven by the diamagnetic drift instability that is excited by the density inhomogeneity in low-β plasmas, such as plasmas in the auroral region, are investigated by adopting the particle aspect analysis and loss-cone distribution function. The results obtained in this paper indicate that the propagation and evolution of kinetic Alfven waves decrease and the kinetic Alfven wave excitation becomes not easier with increasing loss-cone index J. But the spatial scales of the perpendicular perturbation driving kinetic Alfven waves have a decreasing tendency with the larger values of J, which perhaps is in relation with the decreasing width of loss-cone. A single hump appears in the plots of the growth rate of the instability when J=2. But the hump cannot emerge when J=0 or J=1. The density inhomogeneity of ions plays an important role in driving KAWs and it cannot be ignored. KAWs can be easier driven and KAWs can propagate and evolve faster with the increasing level of density inhomogeneity. However, the range of the perpendicular wave number of the wave instability decreases, namely, the longer the scale of perpendicular disturbance the easier the excitation of KAW. As the density inhomogeneity increases, the tendency of numerical solutions of the dispersion relation is similar to that obtained by the kinetic theory and Maxwellian distribution function (Duan and Li, 2004). But the profiles of the plots of numerical solutions are different. This means that the velocity distribution function of particles is important for KAW driven in magnetoplasmas, especially in the active regions of the magnetosphere, such as auroral region, and plasma sheet boundary.  相似文献   

3.
The electrostatic ion-cyclotron instability (EICI) in low β (ratio of plasma to magnetic pressure), anisotropic, inhomogeneous plasma is studied by investigating the trajectories of the particles using the general loss-cone distribution function (Dory-Guest-Harris type) for the plasma ions. In particular, the role of the loss-cone feature as determined by the loss-cone indices, in driving the drift-cyclotron loss-cone (DCLC) instability is analysed. It is found that for both long and short wavelength DCLC mode the loss-cone indices and the perpendicular thermal velocity affect the dispersion equation and the growth rate of the wave by virtue of their occurrence in the temperature anisotropy. The dispersion relation for the DCLC mode derived here using the particle aspect analysis approach and the general loss-cone distribution function considers the ion diamagnetic drift and also includes the effects of the parallel propagation and the ion temperature anisotropy. It is also found that the diamagnetic drift velocity due to the density gradient of the plasma ions in the presence of the general loss-cone distribution acts as a source of free energy for the wave and leads to the generation of the DCLC instability with enhanced growth rate. The particle aspect analysis approach used to study the EICI in inhomogeneous plasma gives a fairly good explanation for the particle energisation, wave emission by the wave–particle interaction and the results obtained using this particle aspect analysis approach are in agreement with the previous theoretical findings using the kinetic approach.  相似文献   

4.
We have studied the stability of the electrostatic electron cyclotron wave in a plasma composed of hydrogen, oxygen and electrons. To conform to satellite observations in the low latitude boundary layer we model both the ionic components as drifting perpendicular to the magnetic field. Expressions for the frequency and the growth rate of the wave have been derived. We find that the plasma can support electron cyclotron waves with a frequency slightly greater than the electron cyclotron frequency ω ce ; these waves can be driven unstable when the drift velocities of both the ions are greater than the phase velocity of the wave. We thus introduce another source of instability for these waves namely multiple ion beams drifting perpendicular to the magnetic field.  相似文献   

5.
A general expression for the tensor of the dielectrical susceptibility in an anisotropic plasma with particle drifts is derived, and the dispersion equation is found for waves propagating in arbitrary direction with respect to the mean magnetic field. The dispersion equation is solved for the case of electromagnetic ion‐cyclotron waves. It is found that in the plasma of the auroral magnetosphere strong plasma instability may occur so that the value of the growth rate of the waves is of the order of the wave frequency. Besides, the plasma instability is excited at less values of the wave number if the magnetospheric altitude becomes larger.  相似文献   

6.
We present numerical simulations of kinetic Alfvén waves (KAWs) and inertial Alfvén waves (IAWs) applicable to the solar wind, the solar corona, and the auroral regions, respectively, leading to the formation of coherent magnetic structures when the nonlinearity arises from ponderomotive effects and Joule heating. The nonlinear dynamical equation satisfies the modified nonlinear Schrödinger equation. The effect of nonlinear coupling between the main KAW/IAW and the perturbation, producing filamentary structures of the magnetic field, has been studied. Scalings in the spectral index of the power spectrum at different times have been calculated. These filamentary structures can act as a source for particle acceleration by wave?–?particle interaction because the KAWs/IAWs are mixed modes and Landau damping is possible.  相似文献   

7.
Dispersion relation, resonant energy transferred, growth rate and marginal instability criteria for the electrostatic ion-cyclotron wave with general loss-cone distribution in low-β anisotropic, homogeneous plasma in the auroral acceleration region are discussed by investigating the trajectories of the charged particles. Effects of the parallel electric field, ion beam velocity, steepness of the loss-cone distribution and temperature anisotropy on resonant energy transferred and growth rate of the instability are discussed. It is found that the effect of the parallel electric field is to stabilize the wave and enhance the transverse acceleration of ions whereas the effect of steepness of loss-cone, ion beam velocity and the temperature anisotropy is to enhance the growth rate and decrease the transverse acceleration of ions. The steepness of the loss-cone also introduces a peak in the growth rate which shifts towards the lower side of the perpendicular wave number with the increasing steepness of the loss-cone.  相似文献   

8.
A rigorous theoretical investigation has been made on multi-dimensional instability of obliquely propagating electrostatic dust-ion-acoustic (DIA) solitary structures in a magnetized dusty electronegative plasma which consists of Boltzmann electrons, nonthermal negative ions, cold mobile positive ions, and arbitrarily charged stationary dust. The Zakharov-Kuznetsov (ZK) equation is derived by the reductive perturbation method, and its solitary wave solution is analyzed for the study of the DIA solitary structures, which are found to exist in such a dusty plasma. The multi-dimensional instability of these solitary structures is also studied by the small-k (long wave-length plane wave) perturbation expansion technique. The combined effects of the external magnetic field, obliqueness, and nonthermal distribution of negative ions, which are found to significantly modify the basic properties of small but finite-amplitude DIA solitary waves, are examined. The external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes are found to play a very important role in changing the instability criterion and the growth rate of the unstable DIA solitary waves. The basic features (viz. speed, amplitude, width, instability, etc.) and the underlying physics of the DIA solitary waves, which are relevant to many astrophysical situations (especially, auroral plasma, Saturn’s E-ring and F-ring, Halley’s comet, etc.) and laboratory dusty plasma situations, are briefly discussed.  相似文献   

9.
Using particle aspect approach, the effect of multi-ions densities on the dispersion relation, growth rate, perpendicular resonant energy and growth length of electromagnetic ion cyclotron wave with general loss-cone distribution function in hot anisotropic multi-ion plasma is presented for auroral acceleration region. It is observed that higher He+ and O+ ions densities enhance the wave frequency closer to the H+ ion cyclotron frequency and growth rate of the wave. The differential heating of He+ ions perpendicular to the magnetic field is enhanced at higher densities of He+ ions. The waves require longer distances to achieve observable amplitude by wave-particle interactions mechanism as predicted by growth length. It is also found that electron thermal anisotropy of the background plasma enhances the growth rate and reduces the growth length of multi-ions plasma. These results are determined for auroral acceleration region.  相似文献   

10.
《Planetary and Space Science》2007,55(14):2113-2120
The shear-driven electrostatic ion-cyclotron instability (EICI) is studied using the loss-cone distribution function by particle aspect analysis. The effect of the loss-cone distribution on the dispersion relation and growth rate of weak shear-driven EICI is studied. The whole plasma is considered to consist of resonant and non-resonant particles. The wave is assumed to propagate obliquely to the static magnetic field. It is found that the frequency of the EICI is Doppler shifted due to the transverse inhomogeneous flow in the direction of the magnetic field. It is also found that for anisotropic plasma the critical velocity shear needed to excite EICI depends upon the loss-cone distribution index (J). With the increasing values the loss-cone distribution indices (J), the critical value of normalized velocity shear needed to generate EICI in anisotropic plasma, decreases and is of the order of the weak shear. The loss-cone distribution acts as a source of free energy and generates the weak shear-driven EICI at longer perpendicular perturbations. It also lowers the transverse and parallel energy of the resonant ions. The study may explain the frequently observed EICI in the auroral acceleration region.  相似文献   

11.
In recent spacecraft observations, coherent microscale structures such as electrostatic solitary waves are observed in various regions of the magnetosphere. The Geotail spacecraft observation has shown that these solitary waves are associated with high energy non-thermal electrons flowing along the magnetic field. The solitary structures are generated as a result of a long time evolution of coherent nonlinear trapping of electrons as found in bump-on-tail, bi-stream and Buneman instabilities. It is noted that these solitary waves can be generated at distant regions far away from the spacecraft locations, because these trapped electrons, or electron holes, are drifting much faster than the local thermal plasmas. Some of the solitary waves are accompanied by perpendicular electric fields indicating that two-or three-dimensional potential structures are passing by the spacecraft. Depending on the local plasma parameters, these multi-dimensional solitary structures couple with perpendicular modes such as electrostatic whistler modes and lower-hybrid modes. In a long time evolution, these perpendicular modes are dissipated via self-organization of small solitary potentials, leading to formation of one-dimensional potential troughs as observed in the deep magnetotail. The above dissipative small-scale processes are reproduced in particle simulations, and they can be used for diagnostics of electron dynamics from spacecraft observation of multi-dimensional solitary waves in various regions of the magnetosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Excitation of electron cyclotron waves and whistlers by reflected auroral electrons which possess a loss-cone distribution is investigated. Based on a given magnetic field and density model, the instability problem is studied over a broad region along the auroral field lines. This region covers altitudes ranging from one quarter of an Earth radius to five Earth radii. It is found that the growth rate is significant only in the region of low altitude, say below the source region of the auroral kilometric radiation. In the high altitude region the instability is insignificant either because of low refractive indices or because of small loss cone angles.  相似文献   

13.
《Planetary and Space Science》1999,47(8-9):1111-1118
Particle aspect analysis is extended for kinetic Alfven waves in an inhomogeneous magnetoplasma in the presence of a general loss-cone distribution function. The effect of finite Larmor radius is incorporated in the finite temperature anisotropic plasma. Expressions for the field-aligned current, perpendicular current (to B), dispersion relation, particle energy and growth rate are derived and effects of steepness of loss-cone distribution and plasma density inhomogeneity are discussed. The treatment of the kinetic Alfven wave instability is based on the assumption that the plasma consists of resonant and non-resonant particles. It is assumed that resonant particles support the oscillatory nature of the wave. The excitation of the wave is treated by the wave particle energy exchange method. The applicability of the investigation is discussed for auroral acceleration phenomena. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

14.
P. K. Shukla  G. Feix 《Solar physics》1989,123(1):117-125
Nonlinear interaction of finite-amplitude Alfvén waves with non-resonant finite-frequency electrostatic and stationary electromagnetic perturbations is considered. This interaction is governed by a pair of coupled equations consisting of nonlinear Schrödinger equation for the Alfvén wave envelope and an equation for the plasma slow response that is driven by the ponderomotive force of the Alfvén wave packets. The modulational instability of a constant amplitude Alfvén pump is investigated and some new results for the growth rate of the instability are presented. It is found that a possible stationary state of the modulated Alfvén wave packets could lead to localized structures. The relevance of our investigation to the solar atmosphere is discussed.  相似文献   

15.
Using plasma parameters from a typical stormtime ionospheric energy balance model, we have investigated the effects of plasma turbulence on the auroral magnetoplasma. The turbulence is assumed to be comprised of electrostatic ion cyclotron waves. These waves have been driven to a nonthermal level by a geomagnetic field-aligned, current-driven instability. The evolution of this instability is shown to proceed in two stages and indicates an anomalous increase in field-aligned electrical resistivity and cross-field ion thermal conductivity as well as a decrease in electron thermal conductivity along the geomagnetic field. In addition, this turbulence heats ions perpendicular to the geomagnetic field and hence leads to a significant ion temperature anisotropy.  相似文献   

16.
Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves and the nonlinear behaviour is governed by the nonlinear Burger's equation.  相似文献   

17.
The energetics of the stabilization of Farley-Buneman (FB) waves by three-wave interaction is studied. Considering decay processes of three FB waves in an open system, which are supposed to be called “quasi-decay processesŔ, it is shown, that during wave stabilization the direct energy transfer between the waves, which is essential for the stabilization of instabilities by normal decay processes in closed plasma systems, is less effective. According to the estimates, a decreasing growth rate of a FB wave, and thus a possible stabilization of the FB instability, may occur as a consequence of the change of the speed of energy transfer from an external electric field, which is caused by the action of two other waves.  相似文献   

18.
The energetics of the excitation of the Farley-Buneman instability is considered, which is recently observed in the auroral and equatorial E regions of the Earth's ionosphere at altitudes between 100 km and 120 km. In the magnetic field of the Earth the Farley-Buneman instability is excited under the condition of a strong enough external electric field in the case of ion-neutral collisions with frequencies much larger than the ion gyrofrequency and electron-neutral collisions with frequencies much below the electron gyrofrequency. It is shown that the linear increase of the wave amplitudes is caused by a small disbalance between the processes of nonlinear energy pumping into the wave from an external electric field and the energy loss because of the collisions of the electrons and ions with the neutral particles. During the nonlinear energy pumping energy of the external electric field is transferred into a nonlinear current of second order, which is connected with the oscillating motion of the electrons in the wave. The oscillating electron motion takes place perpendicular to wave propagation. From the estimations follows that the energy pumped into a Farley-Buneman wave during one period of pulsation is much larger than the wave energy itself. A new and simply to understand derivation of the anomalous diffusion coefficient is presented, related to the study of the behaviour of a test wave with frequency much above the frequencies of the Farley-Buneman turbulence in developed stage can cause an additional macroscopic nonlinear Pedersen current directed along the external electric field. It is found that the nonlinear Pedersen current can reach the order of the usual Pedersen current and should contribute to the effective heating of the ionospheric plasma.  相似文献   

19.
A generation mechanism for 1–30 Hz waves of the second category, observed near the plasmapause by Taylor and Lyons (1976), is suggested in terms of a resonant electron instability. The instability arises because of the resonant interaction between the ring current electrons outside the plasmapause and the ordinary mode drift waves. The instability can generate waves in the frequency range from 0.45 to 35.0 Hz in the region between L = 4.5 and 5.5. The instability can also explain satisfactorily the other properties such as no changes in the proton distributions, the direction of the wave magnetic field and the localization of the region of wave activity, associated with these waves.  相似文献   

20.
Kinetic Alfven waves are examined in the presence of electron and ion beam and an inhomogeneous magnetic field with bi-Maxwellian distribution function. The theory of particle aspect analysis is used to evaluate the trajectories of the charged particles. The expressions for the field-aligned currents, perpendicular currents (with respect to B 0), dispersion relation and growth/damping rate with marginal instability criteria are derived. The effect of electron and ion beam and inhomogeneity of magnetic field are discussed. The results are interpreted for the space plasma parameter appropriate to the auroral acceleration region of the earth’s magnetoplasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号