首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study aims at looking for the characteristic patterns of mesospheric wind over the geomagnetic storm times. For this purpose, the geomagnetic storms preceded by a sudden commencement (SSC) have been selected from January 1995 to April 1999. By using the onset of SSC as the timing mark, a superposed epoch analysis has been performed on the available neutral wind data measured with medium frequency (MF) radars at Yamagawa (31.2°N, 130.6°E) and Wakkanai (45.4°N, 141.7°E). In doing so, the length of time chosen for the superposed analysis is from 7 days before the SSC onset to 21 days after the onset; subsets of wind data are superimposed for summer and winter months, respectively. Then with harmonic analysis on the superposed winds the mean winds in both summer and winter months have been obtained. Concerning mean wind characteristics, some interesting details are the reversal heights of the summer zonal winds, which is 79–80 km at Yamagawa and 84 km at Wakkanai. Strong wavy structures with 2–4 days period are observed at both Yamagawa and Wakkanai in both summer and winter. As for storm effects, significant enhancement of eastward wind is found 5 days after SSC onset at both Yamagawa and Wakkanai in winter. Moreover, the northward wind turns southward at Wakkanai 2 days after the onset of SSC, and the southward wind lasts for several days thereafter. In summer months, the post-storm enhancement tends to be small and mainly in the eastward wind at both Yamagawa and Wakkanai.  相似文献   

2.
HF radar data during equinoctial, small IMF By conditions have enabled the ionospheric convection during the substorm growth phase and substorm pseudobreakup to be studied in both hemispheres. This has revealed both conjugate and non-conjugate convection behaviour during the substorm growth phase before and after the pseudobreakup onset. The nightside convection pattern is found to respond promptly to the southward turning of the interplanetary magnetic field (IMF) which impacts on the dusk flank of the magnetosphere due to an inclined phase front in the IMF in the case study presented. The subsequent interhemispheric observations of nightside convection are controlled by the IMF By polarity. The time scale for the response to changes in the IMF By component is found to be a little longer than for Bz, and the full impact of the IMF By is not apparent in the nightside convection until after substorm pseudobreakup has occurred. The pseudobreakup itself is found to result in a transitory suppression in the ionospheric electric field in both hemispheres. This flow suppression is very similar to that observed in HF radar observations of full substorm onset, with the exception of a lack of subsequent poleward expansion.  相似文献   

3.
Auroral and airglow emissions over Eureka (89° CGM) during the 1997/98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to 1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward) convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100/150 m/s) when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.  相似文献   

4.
A study of the geomagnetic storm of July 13–14, 1982, and its ionospheric response is presented using the low-latitude magnetic index, Dst, and interpreted using solar wind interplanetary data: proton number density, solar wind flow speed, interplanetary magnetic field southward component B Z , and solar wind dynamic pressure. The F2 region structure response to the geomagnetic storm was studied using foF2 data obtained during the storm from a network of various ionosonde stations. Our results appear to show simultaneous abrupt depletion of foF2 that occurred at all latitudes in both the East Asian and African/European longitudinal zone during the period: 18:00–19:00 UT on July 13 and is as result of an abrupt increase in the dynamic pressure between 16:00 and 17:00 UT. The dynamic pressure increased from 3.21 to 28.07 nPa within an hour. The aforementioned abrupt depletion of foF2 simultaneously resulted in an intense negative storm with peak depletion of foF2 at about 19:00 at all the stations in the East Asian longitudinal zone. In the African/European longitudinal zone, this simultaneous abrupt depletion of foF2 resulted in intense negative storm that occurred simultaneously at the low latitude stations with peak depletion at about 20:00 UT on July 13, while the resulting negative storm at the mid latitude stations recorded peak depletion of foF2 simultaneously at about 2:00 UT on July 14. The present results indicate that most of the stations in the three longitudinal zones showed some level of simultaneity in the depletion of foF2 between 18:00 UT on July 13 and 2:00 UT on July 14. The depletion of foF2 during the main phase of the storm was especially strongly dependent on the solar wind dynamic pressure.  相似文献   

5.
The main causes of the main phases of geomagnetospheric storms (D st min = ?(37?226) nT) have been studied using a cluster analysis in the form of the nearest neighbor method. Weak, moderate, strong and severe storms (samples) related to the IMF B Z component have been distinguished based on the two-dimensional (with respect to the IMF B Z component and D st index) scale cluster classification of storm main phases. The correlation clustering of 32 interrelated physical processes characterizing each main phase made it possible to determine that interrelated physical processes included the common part of the internal structure for all samples. The studied samples of storm main phases are characterized by different physical development levels, depending on the event scale. The presence of a common part indicates that magnetospheric activity mostly depends on the IMF B Z and B Y components and the coupling functions between them, as well as on the total IMF B value during the main phases of storms of all D st index scales. It has been established that the closest relationships are typical of D st (V 2 B S ) and D st (VB S ), where B S is the IMF southward component, and V is the solar wind velocity. Substorm activity (AE) generated by V 2 B S and VB S is only substantial during the main phases of weak and moderate storms, whereas grouping with respect to the velocity V only shows substantial activity during severe magnetic storms. The role of the Akasofu parameter (?) proved to be less pronounced. It has been indicated that, in a first approximation, it is preferred to use the V 2 B S and VB S coupling functions in order to predict the D st index and estimate the injection function Q during the main phases of geomagnetospheric storms.  相似文献   

6.
2010.0年中国及邻近地区地磁场   总被引:1,自引:0,他引:1       下载免费PDF全文
本文通过对中国地区地磁场的球冠谐和分析和曲面样条分析,建立了2010.0年代的"中国地磁参考场球冠谐和模型"和"中国地磁参考场曲面样条模型".得到如下结论:"2010.0年代中国地磁参考场球冠谐和模型"描述的各地磁要素空间分布与"2005.0年代中国地磁参考场球冠谐和模型"较相似,但局部略有变化.比如对于磁偏角D和东向分量Y大致可理解为负值区域增强;磁倾角I在我国华北、华南和东北大部大面积正异常区消失了,但在我国西北部大面积的负异常区仍然维持;总强度F和垂直分量Z整体的负异常分布仍然维持,新疆西部局部地区和东南沿海地区局部的正异常分布则略有变化;变化最大的是水平分量H和北向分量X的空间分布,在2010.0年代,东南地区出现了大范围的正异常区,而且在中国北部出现了一条东西条带状的正异常区,似乎可认为是2005.0年代存在于太平洋的正异常区向西移动扩大的结果."2010.0中国地磁参考场曲面样条模型"描述的磁偏角D和东向分量Y相对较为曲折,最显著的异常位于蒙古境内,其次为滇东北地区、东北及华北大部、新疆等地区;磁倾角I和垂直分量Z相对较为平缓,最显著的异常存在于蒙古境内,其次的异常在内蒙满洲里附近;总强度F、水平分量H和北向分量X最为显著的异常位于满洲里附近,其次的主要异常区位于新疆地区、京津附近、滇东北地区.  相似文献   

7.
The response of the dayside ionosphere to changes in polarity of the interplanetary magnetic field was observed by two independent techniques. The signatures were seen in the 630.0 nm red-line emission, measured by a meridian scanning photometer at Ny-Ålesund on Svalbard, and also in the line-of-sight plasma velocities monitored by the Finland CUTLASS SuperDARN radar. A time difference of some 6 to 8 min occurred between the responses of the two techniques, with the flows being first to respond. In the present case study, the longer delay in the optics suggests that ion precipitation controls the auroral emission.  相似文献   

8.
We present data from conjugate SuperDARN radars describing the high-latitude ionospheres response to changes in the direction of IMF By during a period of steady IMF Bz southward and Bx positive. During this interval, the radars were operating in a special mode which gave high-time resolution data (30 s sampling period) on three adjacent beams with a full scan every 3 min. The location of the radars around magnetic local noon at the time of the event allowed detailed observations of the variations in the ionospheric convection patterns close to the cusp region as IMF By varied. A significant time delay was observed in the ionospheric response to the IMF By changes between the two hemispheres. This is explained as being partially a consequence of the location of the dominant merging region on the magnetopause, which is 8/12RE closer to the northern ionosphere than to the southern ionosphere (along the magnetic field line) due to the dipole tilt of the magnetosphere and the orientation of the IMF. This interpretation supports the anti-parallel merging hypothesis and highlights the importance of the IMF Bx component in solar wind-magnetosphere coupling.  相似文献   

9.
本文对磁宁静时的123个动压变化事件(不包含激波事件)进行了统计研究.研究表明,在白天侧(9~15MLT)同步轨道磁场z分量对太阳风动压增大、减小事件具有较强的正响应,而在夜侧(21~3MLT)响应明显减弱,响应幅度具有明显的磁地方时分布.对动压增大事件的平均响应幅度在午前最大,而对动压减小事件的平均响应幅度在午后达到最大.在白天侧,同步轨道磁场z分量响应幅度与太阳风动压上下游均方差有较好的线性正相关,两者比值随磁地方时具有明显的分布变化;对于同样的动压变化白天侧响应明显强于夜侧.地磁指数SYM-H响应幅度对太阳风动压上下游均方差具有明显的依赖关系,统计结果显示磁层压缩较强时,两者相关性较好.在白天侧,地磁指数响应幅度与同步轨道磁场z分量响应幅度具有明显的线性相关,晨昏侧相关性减弱,夜侧无明显相关.  相似文献   

10.
The results of numerical modeling of the geomagnetic secular variation by the method of the Giant Gaussian Process (GGP) are presented and compared with the information derived from the presentday databases for paleointensity. The variances of the positions of the virtual geomagnetic pole (VGP) calculated from the synthetic and experimental data (Brunhes epoch, effusive rocks) are nearly similar, which supports the validity of the theoretical model. The average value of the virtual axial geomagnetic dipole (VADM) calculated from the PINT world database on paleointensity and the Sint-2000 model is lower than VADM calculated by the GGP model; at the same time, the estimates based on the archaeomagnetic data give the VADM value slightly above the model prediction. The largest difference is observed in the variances of VADM, which is for all the three databases noticeably higher than the value calculated from the GGP model. Most probably, this is due to the contribution of the neglected measurement errors of VADM.  相似文献   

11.
Summary The total ozone response to strong major geomagnetic storms (Ap≥60) in winter along the 50° N latitudinal circle is studied. The results add to the recent results of Laštovička et al. (1992) obtained for European middle latitudes (∼50°N) and to the results of Mlch (1994). A significant response of total ozone is only observed in winter under high solar activity/E-phase of QBO conditions (E-max) and seems to be caused by geomagnetic storm-induced changes of atmospheric dynamics. There are two sectors along latitude 50°N, which are sensitive to forcing by geomagnetic storms both in total ozone and the troposphere — north-eastern Atlantic-European and eastern Siberia-Aleutian sectors. The total ozone response under E-max conditions manifests itself mainly as a large decrease in the longitudinal variation of ozone after the storm, which means an increase of ozone in Europe. The observed effects in total ozone consist in redistribution, not production or loss of ozone.  相似文献   

12.
The responses of the Vorticity Area Index (VAI) at 500 mb to large geomagnetic disturbances and to magnetic sector boundary crossings are evaluated for the periods 1947–57 and 1963–74, during which time the geomagnetic response to sector structure were known to be distinctly different. Results indicate that the nature of the VAI response to geomagnetic disturbances is markedly similar between the two subsets. The response does not vanish even when only those geomagnetic disturbances not related to sector boundary passage are used in the analysis, which suggests that enhanced geomagnetic activity can independently influence the lower atmosphere. Unlike the geomagnetic disturbance-related effects the sector-related effects have varied with time in a very complex manner. In view of this it is concluded that geomagnetic disturbances, whose effects have shown pronounced consistency, may prove a better solar signal in future sun-weather studies.  相似文献   

13.
2001~2007年北京地区地磁变化分析与地震预测研究   总被引:1,自引:1,他引:0  
2001~2007年北京地区地磁测量工作,取得了大量可靠的资料。应用这些资料,分析了2001~2007年北京地区地磁变化,研究了震磁前兆信息,获得了有意义的震磁前兆,在北京地区的地震监测预报工作中具有积极作用,产生了一定实效。  相似文献   

14.
We present the results of studies of the subauroral and mid-latitude ionosphere variations in the north-eastern region of Asia. We used the data from network of vertical and oblique-incidence sounding ionosondes and optical measurements. Long-term experiments on the radio paths Magadan–Irkutsk and Norilsk–Irkutsk were carried out within the period 2005–2007. Vertical sounding stations operated in standard regime. Observation of airglow near Irkutsk was provided by the zenith photometer that measured intensities of 557.7 and 630.0 nm atomic oxygen emissions. The results may be summarized as follows. (1) Large daytime negative disturbances are observed during the main and recovery phases mainly at high latitudes, whereas the positive disturbances observed during the main phase at mid latitudes. The disturbances changed their sign between Yakutsk and Irkutsk. (2) During the main and recovery storm phases the fall of foF2 associated with the equatorward wall of the main ionospheric trough is observed in the afternoon and evening. (3) Fluctuations of the electron density more intensive at mid latitudes during the storm main phase are observed during all considered periods. They are classed as traveling ionospheric disturbances (TID). Such sharp gradients of electron density are responsible for the strong changes in the characteristics of the radio wave propagation, particularity MOF. (4) A large-scale ionospheric disturbance is noted at the meridional chain of ionosonds in December 2006 as the sharp increase of foF2. It appears in the evening in the minimum of Dst at high latitude and propagate to equator. (5) A maximum of 630 nm emission above Irkutsk corresponds to the foF2 increase. (6) The obtained experimental data on the net of vertical and oblique-incidence sounding with high time resolution show that such net is the effective facility to study the conditions of the radio wave propagation and can be used for the diagnostic of the ionosphere.  相似文献   

15.
We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Troms and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Ålesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened field lines for the observed negative IMF By. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating, northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward Bz, and explain their morphology in the context of previous theoretical work.  相似文献   

16.
Time changes in transfer functions of short period geomagnetic variations in 28 years from 1960 through 1987 are studied, systemically and in detail in this paper. The results indicate that: (1) It is evident that seasonal and secular changes in the transfer functionsA at exist the Guangzhou Geomagnetic observatory. The characteristics for seasonal changes are large in summer and smaller in winter with main cycles of 12 and 6 months. The characteristic for secular change is a descend with a rate of 0.0025 per year. The seasonal and secular changes in transfer functionsB are not evident. (2) The direction of Parkinson vector at Guangzhou geomagnetic observatory is clearly affected by the ocean, and is associated with coastal effect. (3) The values of the transfer function A and B are related to geomagnetic activity ata=0.05. Secular change is not related to geomagnetic activity, maybe it is affected in a great measure by earth conductivity change. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica sinica,13, 480–488, 1991. This study is part supported by Chinese Joint Seismological Science Fundation.  相似文献   

17.
We availed hourly data of four middle and high cut-off rigidity neutron monitors recorded over 21 years and then discussed various measures of the CR variability and simplified estimates of the CR anisotropy in relation to the Dst time history. The correlation of Dst with the prehistory of CR variability at these cut-offs is shown. A different distribution of the CR indices for 24 h before the sharp Dst decreases in comparison with that for geomagnetically quiet periods is found. The relation of CR variability with the solar wind speed appeared but neither with the solar wind density nor with the Bz component of the interplanetary magnetic field. The multiple regression of Dst with the prehistory of CR variability resulted to be significant, suggesting that the parameters describing CR variability/anisotropy are potentially useful to be implemented into the schemes of forecasting of geomagnetic activity, performed with interplanetary medium data obtained before their arrival at the Earth (e.g. at the L1 point).  相似文献   

18.
Spatial-temporal and spectral features of ground geomagnetic pulsations in the frequency range of 1–5 mHz at the initial phase of a strong magnetic storm of the 24th cycle of solar activity (August 5–6, 2011, with a Dst-variation in the storm maximum of ?110 nT) are analyzed. Large opposite in sign amplitudes of variations in IMF parameters (from ?20 to +20 nT) at a high velocity of the solar wind (~650 km/s) accompanied by intense bursts in solar-wind density (up to ~50 cm?3) were distinctive feature of interplanetary medium conditions causing the storm. Geomagnetic Pi3 pulsations global in longitude and latitude and in-phase in the middle and equatorial latitudes were found. The onset of pulsation generation was caused by a pulse of dynamic pressure of the solar wind (~20 nPa), i.e., by a considerable compression of the magnetosphere. The maximum (2–3 mHz) in the amplitude spectrum of near-equatorial pulsations coincided with the maximum of pulsations in the daytime polar cap. After the next jump of the dynamic pressure of the solar wind (~35 nPa), an additional maximum appeared in the pulsation spectrum in the frequency band of ~3.5–4.5 mHz. Global pulsations suddenly stopped after a sharp decrease in the solar-wind dynamic pressure and corresponding extension of the magnetosphere. The obtained results are compared with the time dynamics of the position and shape of the plasmapause.  相似文献   

19.
Ionospheric effects of a large number (51) of severe geomagnetic storms are studied using total electron content (TEC) and VHF/UHF scintillation data from Calcutta, situated near the northern crest of equatorial ionization anomaly and equatorial spread-F (ESF) data from Kodaikanal. The susceptibility of the equatorial ionosphere to develop storm time plasma density irregularities responsible for ESF and scintillation is found to be largely modulated by the local times of occurrences of main and recovery phases as seen in the Dst index. While inhibition of premidnight scintillation for lower TEC values compared to the quiet day averages is omnipresent, occurrence of scintillation for enhancements of TEC is largely dependent on initiation time and amplitude of the said deviations. An overall reduction in threshold values of h′F for observing storm induced ESF and scintillation compared to reported quiet time values is noted. The results are discussed in terms of storm time variabilities in electric fields, neutral wind system and composition changes.  相似文献   

20.
The data on geomagnetic reversals, organic changes, and lower-mantle plume magmatism in the Phanerozoic are collected and correlated. No direct relationship is revealed between the geomagnetic reversals, plumes, and biozones. However, the frequency of geomagnetic reversals is found to correlate to the frequency of biozonal alterations. We relate this inconsistency to the coupling of the two processes, which are mutually independent, with the long-term changes in the Earth’s rotation. The plumes are formed at the core-mantle boundary and, thus, the reversals should have a different source. We hypothesize that the change in the geomagnetic polarity is due to the nonuniform rotation of the inner core relative to the mantle in combination with the changes in the axial tilt of the Earth’s rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号