共查询到16条相似文献,搜索用时 78 毫秒
1.
低渗致密砂岩渗透率应力敏感性试验研究 总被引:6,自引:3,他引:6
储层岩石中孔隙流体压力的变化会引起有效应力发生变化,进而导致渗透率的改变,引发储层岩石渗透率应力敏感现象。以试验研究了不同围压下渗透率随孔隙流体压力的变化规律,试验包含了老化处理和升降内压4个回路,每个回路是在围压不变降低和增加孔隙流体压力下实现的,采用稳态法采集每个测试点的数据。试验结果表明,渗透率随着孔隙流体压力的降低而减小,随着孔隙流体压力的增加而增加;在低围压下渗透率的变化幅度较大,在高围压下,则变化幅度较小;在不同围压回路下,净应力相等的点对应的渗透率不相等;渗透率在随孔隙流体压力的变化中呈现出“台阶式”变化。根据Bernabe的模型计算了渗透率有效应力系数,结合Bernabe的观点分析计算结果发现渗透率呈“台阶式”变化是微裂缝随应力的变化而发生变形的表现。对试验岩样进行了储层岩石应力敏感性评价,结果表明,该低渗致密砂岩储层表现为中等应力敏感。 相似文献
2.
有效应力对裂缝型低渗透砂岩油藏压力响应的影响 总被引:2,自引:4,他引:2
为了研究裂缝孔隙型低渗油藏中流体在双重介质之间的渗流规律及其影响,建立了双重介质间流体窜流的数学模型,并利用拉氏变换数值反演方法给出近似解析解;通过数值计算,研究窜流压力的动态特征,分析储容系数及窜流系数对压力响应的影响;通过压敏试验研究了有效应力对双重介质低渗油藏渗流能力的影响。研究结果表明:储容系数主要决定双重介质之间发生窜流现象的早晚,储容系数越大,发生窜流的时间越晚;储容系数越小,发生窜流的时间越早。窜流系数主要决定双重介质之间发生窜流压力的大小,窜流系数越大,发生窜流的压力越小;窜流系数越小,发生窜流的压力越大。有效应力对裂缝型低渗透油藏的渗流能力影响很大,有效应力的增加能够大大降低裂缝型油藏渗透率和孔隙度,以致降低储层的储容系数和窜流系数,从而影响双重介质间窜流压力的动态特征。因此,在裂缝型低渗透砂岩油藏开采中,保持压力、防止储层伤害是非常重要的。 相似文献
3.
为探讨深层高压低渗砂岩油藏储层的应力敏感问题,将取自渤海湾盆地东濮凹陷的深层低渗油藏样品进行了液体、气体应力敏感性实验;研究中以渗透率损害系数、渗透率损害率、不可逆渗透率损害率作为应力敏感性评价指标。研究结果表明,研究区深层高压低渗砂岩油藏储层为弱应力敏感,沙三段样品渗透率损害系数、渗透率损害率均高于沙二段样品,沙三段储层应力敏感性高于沙二段储层应力敏感性。气体应力敏感性实验的渗透率损害率整体高于液体应力敏感性实验的渗透率损害率,气体、液体应力敏感性实验所测得的不可逆渗透率损害率基本一致。 相似文献
4.
5.
构造煤渗透率对温度变化响应规律的试验研究 总被引:1,自引:0,他引:1
针对含瓦斯构造煤渗透率与温度变化关系,利用自主研发的含瓦斯煤岩热-流-固耦合三轴渗流试验装置,开展不同应力条件下含瓦斯构造煤原煤样的渗透率与温度变化的试验研究。试验结果表明:(1)在试验温度变化过程中,构造煤样渗透率随温度升高而降低,渗透率与温度变化呈现负指数函数分布规律;(2)在试验温度变化过程中,构造煤渗透率损失率与有效应力符合Boltzmann分布,渗透率损失率存在有效应力门槛值大约为4.515 MPa。渗透率变化主要分为渗透率加速变化与平稳变化两个阶段,构造煤样渗透率从加速阶段过渡到平稳变化温度大约为45 ℃;(3)在温度21~80 ℃范围内,渗透率敏感性系数数量级为10-2,温度变化对构造煤样渗透率影响不显著。同时,有效应力的增加使得温度敏感性系数降低。 相似文献
6.
含瓦斯煤孔隙率和有效应力影响因素试验研究 总被引:1,自引:0,他引:1
以孔隙率基本定义和力学平衡原理为出发点,充分考虑由煤层瓦斯的吸附膨胀和解吸收缩、温度效应的热胀冷缩和煤体骨架受孔隙瓦斯压力的压缩共同引起的本体变形,建立了在压缩条件下(扩容前)的含瓦斯煤孔隙率动态演化模型和以吸附热力学参数及瓦斯压力表达的有效应力方程,并分别根据现场实测孔隙率数据和含瓦斯煤三轴应力试验数据,对所建立的理论模型进行了验证。结果表明,理论计算值与实测资料和试验结论一致性较好,理论模型拟合精度较好,误差不大,所得结论对煤层气开采和矿井瓦斯灾害防治具有一定的指导意义。 相似文献
7.
气固耦合作用下温度对煤瓦斯渗透率影响规律的实验研究 总被引:4,自引:1,他引:4
为得到温度对煤瓦斯渗透率的影响规律, 在实验室通过改装三轴渗透仪, 进行了不同温度条件下煤瓦斯的渗透率测定实验。实验结果表明, 在不同温度下, 渗透率随有效应力的减小均呈二次抛物线趋势, 即渗透率先减小后增大。在卸载初期, 温度较低时煤瓦斯渗透率下降梯度比高温时大, 渗透率值较高; 卸载后期, 较高温度时煤瓦斯渗透率上升梯度比低温时大, 渗透率值大。由实验可知, 煤层气开采过程中, 对于不同温度, 煤瓦斯渗透率的变化关系均具有典型煤层气开采的三阶段主导作用特征。有效应力、气体吸热和煤固体受热是影响煤体渗透率的重要因素。在卸载初期, 煤固体受热膨胀及有效应力对渗透率起主导作用, 卸载中后期, 气体滑脱和气体吸热对渗透率起主导作用。实验分析后认为, 开采煤层气时采用先压裂后注热的方式将有助于提高煤层气的产量。 相似文献
8.
有效应力对保德区块煤储层渗透率影响研究 总被引:3,自引:0,他引:3
通过有效应力单因素影响保德区块煤岩气体渗流实验,分析了煤岩渗透率应力敏感性以及割理压缩系数变化特征.结果表明:保德区块煤储层渗透率与有效应力呈负指数函数关系;煤层埋深越深,煤岩渗透率变化幅度越小,渗透率应力敏感性下降。渗透率损害系数的线性函数拟合相关系数较低,应力敏感系数的负指数函数拟合相关系数较高,应力敏感系数比渗透率损害系数更具规律性。在高有效应力阶段,煤岩割理压缩系数更趋近于常数,低有效应力阶段,割理压缩系数应视为变量。 相似文献
9.
洞室和围岩温度对泄洪洞衬砌混凝土温度和温度应力影响研究 总被引:4,自引:1,他引:4
以溪洛渡无压泄洪洞为研究对象,采用三维有限单元方法对不同洞室环境温度和围岩温度情况下的施工过程进行仿真模拟,通过比较底板、边墙和顶拱不同衬砌部位的最高温度、最大内表温差、最低温度、早期和冬季最大拉应力等,对洞室环境温度和围岩温度的变化对泄洪洞衬砌混凝土温度和温度应力,以及温度裂缝发生、发展与控制的影响进行分析。结果表明,洞室气温和围岩温度对衬砌混凝土的温度场和应力场均有明显的影响。在冬季施工衬砌混凝土更容易产生早期裂缝,夏季施工时既要防止早期裂缝,也要注意防止冬季裂缝。围岩温度低时,衬砌围岩侧混凝土拉应力明显增大,但对表面和中心的应力影响很小,因而对温度裂缝的发生影响很小。研究成果为隧洞工程衬砌混凝土的设计和施工提供有价值的参考。 相似文献
10.
11.
砂岩三轴循环加卸载条件下的渗透率研究 总被引:6,自引:0,他引:6
渗透率是地下工程的流-固耦合分析中的一个关键因素。对多孔红砂岩进行了三轴压缩试验,在不同变形阶段实施了轴向应力循环加卸载,并在试验全过程中测量轴向渗透率,得到了试样破坏全过程的渗透率演化规律。从平均应力和循环加卸载对渗透率的影响等两方面进行了深入分析,结果表明,(1)随着轴向变形的增加,初始压密阶段和弹性变形试样渗透率均匀减小;进入塑性变形阶段,渗透率与轴向变形的曲线逐渐趋于水平,低围压条件下渗透率略有增加。(2)轴向加载使骨架颗粒被压缩,引起孔隙减小,造成渗透率减小;采用经验公式定量描述了渗透率和平均应力之间的关系。(3)轴向应力循环加卸载过程中,骨架颗粒的不可恢复变形引起渗透率产生不可恢复现象。(4)峰值后渗透率只发生少许突跳,说明对于多孔砂岩,孔隙和裂隙对渗透率的影响相当,且渗透率的突跳程度随着围压的升高而降低。 相似文献
12.
利用20 MN伺服控制高温高压岩体三轴试验机进行了长石细砂岩的渗透率试验,研究了恒定三轴压力和常温至600℃条件下砂岩渗透率变化特征。试验表明,随着温度增加,长石细砂岩渗透率变化规律表现为5阶段特征:①低温段,随温度升高渗透率略有下降;②阈值温度前段,达到阈值温度后,渗透率急剧增大,产生一个突跃,增加了65倍;③阈值温度后段,随着温度的继续升高,渗透率出现下降;④稳定段,渗透率达到谷值后不再下降,并稳定在一个较高水平,是室温渗透率的8倍;⑤高温段,渗透率重新增大。通过对长石细砂岩的细观结构变化及声发射事件(AE events)计数率分析后认为:渗透率的阶段性变化规律主要与内部矿物颗粒之间及其内部因局部热应力集中而诱发产生的微裂缝的开闭有关;高温条件下的长石细砂岩渗透率二次剧烈变化则主要与砂岩中部分矿物晶体颗粒成分在高温环境下的熔融、重结晶等现象有关。 相似文献
13.
为了探究有效应力对高煤级煤储层渗透率的控制作用及其应力敏感性的各向异性,对5块高煤级煤样进行了覆压孔渗实验,揭示了有效应力对煤储层渗透率的控制机理。以3.5 MPa模拟原始地层压力发现,煤岩在平行主裂隙和层理面方向具有最高的初始渗透率,垂直层理面方向初始渗透率最低;有效应力从3.5 MPa增加到15.5 MPa的过程中,渗透率呈现出良好的幂函数降低趋势;渗透率伤害/损失的各向异性表明平行主裂隙方向渗透率伤害率和损失率最大,且不同方向应力敏感性受裂隙的宽度及其展布方向的控制;裂隙压缩系数随应力的增加呈现降低趋势,但由于高煤级煤岩压缩难度大,裂隙压缩系数的各向异性不明显。有效应力对渗透率控制的实质为通过减小煤储层孔裂隙体积降低渗透率,从而对各个方向上的渗透率均造成较大的不可逆伤害。 相似文献
14.
考虑基质收缩效应的煤层气应力场-渗流场耦合作用分析 总被引:2,自引:0,他引:2
在煤层气的初级生产过程中,为了获取较高的生产率,需要降低储层压力,储层压力下降对于煤层气的渗透率具有两个相反的效应:(1)储层压力下降,有效应力增加,煤层裂隙压缩闭合,渗透率降低;(2)煤层气解吸,煤基质收缩,煤层气流动路径张开,渗透率升高。Shi和Durucan、Palmer-Mansoori以及Gray等都建立了包含了基质收缩效应以及有效应力的影响的渗透率模型,其模型都基于以下两个关键假设:煤岩体处于单轴应变状态以及竖向应力恒定。为了检验上述两个假设的合理性,建立了一个考虑基质收缩效应以及渗流场-应力场耦合作用下的煤层气流动模型,对煤层气初级生产过程中渗透率的变化进行了耦合分析。分析结果表明:单轴应变的假设具有合理性,而竖向应力是随指向生产井的应变梯度的变化而变化的,其对于渗透率的变化具有重要影响,因此,竖向应力恒定的假设可能导致渗透率预测出现误差;上述渗透率模型都可能低估煤层气初级生产过程中渗透率的变化。 相似文献
15.
为研究煤层气在排采过程中不同煤阶煤储层渗透率动态变化规律,利用煤岩三轴应力应变(基质收缩膨胀)测试系统,对褐煤、气煤和无烟煤样开展了有效应力与基质收缩双重效应物理模拟实验。固定轴压和围压不变,改变气体平衡压力,模拟开发过程中储层压力变化特征,测试其动态渗透率。利用实验结果,分析了不同煤阶煤岩在排采过程中动态渗透率反弹特征,并对比分析煤岩动态渗透率改善效果的差异性。研究表明:气体平衡压力从5 MPa降至1 MPa过程中,在有效应力和基质收缩双重效应作用下,褐煤样的归一化渗透率依次为1. 00、0. 60、0. 57、0. 57、0. 52,气煤样依次为1.00、0. 64、0. 50、0. 54和0. 55,无烟煤样依次为1.00、0. 74、0. 58、0. 50和0. 56。随气体平衡压力下降,中阶及高阶煤样动态渗透率先下降后上升,整体呈不对称“V”型变化规律,但拐点略有不同;低阶煤样动态渗透率呈先下降后基本稳定的趋势,整体呈斜“L”型变化规律。在有效应力和基质收缩双重效应影响下,中阶及高阶煤样动态渗透率改善效果优于低阶煤样。 相似文献
16.
为研究煤层气在排采过程中不同煤阶煤储层渗透率动态变化规律,利用煤岩三轴应力应变(基质收缩膨胀)测试系统,对褐煤、气煤和无烟煤样开展了有效应力与基质收缩双重效应物理模拟实验。固定轴压和围压不变,改变气体平衡压力,模拟开发过程中储层压力变化特征,测试其动态渗透率。利用实验结果,分析了不同煤阶煤岩在排采过程中动态渗透率反弹特征,并对比分析煤岩动态渗透率改善效果的差异性。研究表明:气体平衡压力从5 MPa降至1 MPa过程中,在有效应力和基质收缩双重效应作用下,褐煤样的归一化渗透率依次为1.00、0.60、0.57、0.57、0.52,气煤样依次为1.00、0. 64、0.50、0.54和0.55,无烟煤样依次为1.00、0.74、0.58、0.50和0.56。随气体平衡压力下降,中阶及高阶煤样动态渗透率先下降后上升,整体呈不对称“V”型变化规律,但拐点略有不同;低阶煤样动态渗透率呈先下降后基本稳定的趋势,整体呈斜“L”型变化规律。在有效应力和基质收缩双重效应影响下,中阶及高阶煤样动态渗透率改善效果优于低阶煤样。 相似文献