首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The biodegradation behavior of nonylphenol ethoxylates (NPEOs) in estuary sediment of Yangtze River, China, was investigated. NPEOs were readily degraded in the estuary sediment under both aerobic and anaerobic conditions. The highest biodegradation rate constants for the aerobic biodegradation and anaerobic biodegradation were 0.333 and 0.194 day−1, respectively. Anaerobic biodegradation of NPEOs in estuary sediment was enhanced under sulfate-reducing or nitrate-reducing conditions. The biodegradation constants increased by 23.4 and 56.7% in sulfate-adding treatment and nitrate-adding treatment, respectively. NPEOs were biodegraded through the terminal oxidative pathway in estuary sediment under aerobic conditions while these compounds were biodegraded through the non-oxidative pathway under anaerobic conditions. Estrogenic intermediates were formed during NPEO biodegradation under both aerobic and anaerobic conditions. Both treatments reached their highest estrogenicities on day 21. Short-chain nonylphenol ethoxycarboxylates (NPECs), which were feasibly mobile, were only formed under aerobic conditions.  相似文献   

2.
The biodegradation of purified radiolabelled membrane lipids from a methanogenic bacterium and a pseudomonad were investigated in mangrove, beach and high marsh marine sediments under aerobic and anaerobic conditions. The effect of organic matter on the amount and rate of degradation was also examined by supplementing beach sediments with humic acids. In aerobic sediments, CO2 was the major product of lipid degradation while under anaerobic conditions both CO2 and CH4 were major end products and the overall rates were reduced (up to 40%) relative to aerobic conditions. Total bacterial numbers increased during all incubations with the largest increases occurring in anaerobic sediments supplemented with humic acids. No lipid degradation occurred in aerobic or anaerobic sediments treated with formaldehyde or autoclaving. In low organic beach sediments, the ester-linked phospholipid of the pseudomonad was degraded much more rapidly than the diphytanyl glycerol diether of the methanogen with 69% of the phospholipid degraded in 96 hours versus only 4% of the methanogen lipid. Lipid degradation in both aerobic and anaerobic sediments was highly correlated to organic matter content with increasing amounts of organic matter inhibiting degradation. Long incubations (75 days) of the diphytanyl glycerol ether resulted in 51% degraded to CO2 in low (0.5%) organic mangrove sediments while only 9% was mineralized in high (10.8%) organic marsh sediments. Physicochemical sorption of membrane lipids to the organic matrix is proposed as a mechanism which protects membrane lipids from microbial attack and degradation.  相似文献   

3.
Trimethylbenzene (TMB), as a constituent of gasoline, is often expected to be used as a conservative tracer in anaerobic BTEX-contaminated groundwater site to correct for attenuation due to dispersion, dilution and sorption along a flow path. To evaluate the suitability of using TMB as a tracer and to better understand biodegradability of TMB in contaminated groundwater by gasoline under anaerobic conditions, laboratory microcosms were conducted with mixed nitrate/iron/sulfate electron-acceptor amendments, using aquifer materials collected from Canadian Forces Base (CFB), Borden, Ontario, Canada. The results showed that under denitrifying conditions, biodegradation of 1,3,5-TMB, 1,2,4-TMB and 1,2,3-TMB were relatively slow and after 204 days of incubation approximately 27, 24, and 16% of the initial concentrations, respectively, were degraded in the microcosms. Under sulfate-reducing conditions, TMB isomers were recalcitrant. In contrast, significant biodegradation of TMB was observed under iron-reducing conditions. 1,3,5-TMB, 1,2,4-TMB and 1,2,3-TMB were degraded to 44, 47, and 24% of initial concentrations with first-order biodegradation rate constants of 0.003, 0.006 and 0.013 d−1, respectively. This study indicates that TMB biodegradation is insignificant under nitrate and sulfate-reducing conditions but significant under iron-reducing conditions. Therefore, the use of TMB as a tracer for interpreting removal of other biodegradable gasoline constituents such as BTEX requires caution, especially in the presence of iron-reducing conditions.  相似文献   

4.
《Applied Geochemistry》2002,17(4):387-398
Chemical characteristics of grain coatings in a Coastal Plain sandy aquifer on the Eastern Shore of Virginia were investigated where sediments have been exposed to distinct groundwater redox conditions. Dissolved O2 was 5.0 to 10.6 mg L−1 in the regionally extensive aerobic groundwater, whereas in a narrow leachate plume it was only <0.001 to 0.9 mg L−1. The amount of dissolved Fe in the aerobic groundwater was only 0.005 to 0.01 mg L−1, but it was 12 to 47 mg L−1 in the anaerobic zone. The amount of extractable Fe was an order of magnitude higher for the aerobic sediments than for the anaerobic sediments indicating that reductive dissolution removed the oxide coatings. The capacity for anion sorption on the sediment surfaces, as indicated by the sorption of 35SO42-, was an order of magnitude higher in the aerobic vs. anaerobic sediments. The presence of anaerobic groundwater did not significantly alter the amount of extractable Al oxides on the surface of the sediments, and those coatings helped to maintain a high surface area. The removal of the Fe oxides from the grain surfaces under anaerobic conditions was solely responsible for the significant reduction of SO4 sorption observed. This loss of capacity for anion sorption could lead to more extensive transport of negatively charged constituents such as some contaminant chemicals or bacteria that may be of concern in groundwater.  相似文献   

5.
《Applied Geochemistry》2001,16(7-8):659-718
The literature has been critically reviewed in order to assess the attenuation processes governing contaminants in leachate affected aquifers. Attenuation here refers to dilution, sorption, ion exchange, precipitation, redox reactions and degradation processes. With respect to contaminants, focus is on dissolved organic matter, xenobiotic organic compounds, inorganic macrocomponents as anions and cations, and heavy metals. Laboratory as well as field investigations are included. This review is an up-date of an earlier comprehensive review. The review shows that most leachate contamination plumes are relatively narrow and do not in terms of width exceed the width of the landfill. The concept of redox zones being present in the plume has been confirmed by the reported composition of the leachate contaminated groundwater at several landfills and constitutes an important framework for understanding the behavior of the contaminants in the plume as the leachate migrates away from the landfill. Diverse microbial communities have been identified in leachate plumes and are believed to be responsible for the redox processes. Dissolved organic C in the leachate, although it appears to be only slowly degradable when the volatile organic acids are gone, apparently acts as substrate for the microbial redox processes. Several xenobiotic organic compounds have been found to be degradable in leachate contaminated groundwater, but degradation rates under anaerobic redox conditions have only been determined in a few cases. Apparently, observations in actual plumes indicate more extensive degradation than has been documented in the laboratory. The behavior of cations in leachate plumes is strongly influenced by exchange with the sediment, although the sediment often is very coarse and sandy. Ammonium seems to be subject to anaerobic oxidation, but the mechanisms are not yet understood. Heavy metals do not seem to constitute a significant pollution problem at landfills, partly because the heavy metal concentrations in the leachate often are low, and partly because of strong attenuation by sorption and precipitation. Although complexation of heavy metals with dissolved organic matter is significant, the heavy metals are in most cases still strongly attenuated in leachate-polluted aquifers. The information available on attenuation processes has increased dramatically during the last 15 a, but the number of well-documented full scale leachate plumes are still few and primarily from sandy aquifers. Thus, the diversity of attenuation processes in leachate plumes is probably not yet fully understood. Apparently, the attenuation processes in leachate plumes may for many contaminants provide significant natural remediation, limiting the effects of the leachate on the groundwater to an area usually not exceeding 1000 m from the landfill.  相似文献   

6.
Chloroaromatics in groundwater: chances of bioremediation   总被引:1,自引:0,他引:1  
. The potential for biodegrading of mono-, di- and trichlorobenzenes in a contaminated aquifer in Bitterfeld (Saxony-Anhalt) was tested both in the laboratory and using on-site column experiments. Under the prevailing anaerobic conditions, the reductive dechlorination of 1,4-dichlorobenzene (1,4-DCB) takes place very slowly. Under aerobic conditions the indigenous micro-organisms are able to mineralize monochlorobenzene (MCB) and 1,4-DCB. The degradation rates for the other two isomeric dichlorobenzenes and for 1,2,4-trichlorobenzene (1,2,4-TCB) under aerobic conditions are significantly lower. Indications were found that once the oxygen has been consumed, Fe(III) species can be used as alternative electron acceptors.  相似文献   

7.
用红树林的底泥通过富集培养得到在好氧或厌氧条件下能完全矿化吲哚的细菌,并对降解过程及中间代谢产物进行了鉴定。此研究中,吲哚化合物是培养液中的唯一碳和能量来源,而厌氧条件包括有产甲烷和硫酸盐还原。结果表明,不论在哪种条件下,吲哚噪降解过程分二步敖基化反应,分别发生在2和3位上,形成氧化吲哚和靛红。同时,1、2或3位上的甲基替代使1—甲基吲哚,2—甲基吲哚和3—甲基吲哚的降解受到严重抑制。显然,杂环类芳香族化合物的代谢有其共同点,同时不同替代会完全改变有机物的可降解程度。  相似文献   

8.
Laboratory extraction experiments and field observations were employed to determine the relative mobility of 239,240pu and 241Am from lake sediments under aerobic and anaerobic conditions. Laboratory investigations show that under aerobic conditions 241Am is more readily extracted from Lake Michigan sediments than is 239,240Pu. Under anaerobic conditions, the extractability of plutonium and americium does not increase significantly relative to aerobic conditions. Field studies indicate that neither element is recycled from the sediment to the overlying water column during anaerobic conditions attendant with thermal stratification. The adsorption of these elements onto sediments does not appear to be correlated with extractable iron, manganese, and organic compounds such as humic and fulvic acids.  相似文献   

9.
The sorption behavior and solid-phase associations of phosphorus (P) in fine-grained sediments (<63 μm) from two upstream tributaries and one downstream main stem site of the Spoon River in west-central Illinois were characterized to better understand phosphorus bioavailability in this agriculturally dominated watershed. The P sorption affinities, as indicated by linear distribution coefficients (K d), of all sediments were 330–5,150 L/kg, and negatively correlated with equilibrium phosphorus concentration (EPCo) values, which ranged between 0.2 and 2.2 μM. pH values measured at the conclusion of the sorption experiments varied only slightly (7.45–8.10) but were nonetheless strongly positively correlated to EPCo values, and negatively correlated to K d values, suggesting the importance of pH to the observed sorption behavior. K d values were generally lower and EPCo values higher at the main stem site than at the upstream tributary sites, suggesting dissolved reactive P (DRP) bioavailability (specifically orthophosphate) increased downstream. The solid phase associations of P were operationally assessed with the streamlined SEDEX (sedimentary extraction) procedure, and most sediment P (≥50%) was released during the step designed to determine iron oxide–associated P. On average, 70–90% of the total sediment P pool was potentially bioavailable, as estimated by the sum of the iron oxide-, authigenic carbonate-, and organic-associated P fractions. Considerable calcium was also extracted from some sediments during the step designed to specifically remove iron oxide–associated P. It is hypothesized that the severe drought conditions that persisted between April and October, 2005 allowed authigenic carbonates (perhaps partly amorphous) to accumulate, and that these carbonates dissolved during the iron oxide extraction step. The extensive benthic algal populations also present may have aided carbonate precipitation, which under more normal hydrologic conditions would be periodically flushed downstream and replaced by fresh sediment. This suggests antecedent hydrologic conditions played a dominant role in the P sorption and solid phase associations identified.  相似文献   

10.
An oil-refining plant site located in southern Taiwan has been identified as a petroleum-hydrocarbon [mainly methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and xylenes (BTEX)] spill site. In this study, groundwater samples collected from the site were analyzed to assess the occurrence of intrinsic MTBE biodegradation. Microcosm experiments were conducted to evaluate the feasibility of biodegrading MTBE by indigenous microorganisms under aerobic, cometabolic, iron reducing, and methanogenic conditions. Results from the field investigation and microbial enumeration indicate that the intrinsic biodegradation of MTBE and BTEX is occurring and causing the decrease in MTBE and BTEX concentrations. Microcosm results show that the indigenous microorganisms were able to biodegrade MTBE under aerobic conditions using MTBE as the sole primary substrate. The detected biodegradation byproduct, tri-butyl alcohol (TBA), can also be biodegraded by the indigenous microorganisms. In addition, microcosms with site groundwater as the medium solution show higher MTBE biodegradation rate. This indicates that the site groundwater might contain some trace minerals or organics, which could enhance the MTBE biodegradation. Results show that the addition of BTEX at low levels could also enhance the MTBE removal. No MTBE removal was detected in iron reducing and methanogenic microcosms. This might be due to the effects of low dissolved oxygen (approximately 0.3 mg/L) within the plume. The low iron reducers and methanogens (<1.8×103 cell/g of soil) observed in the aquifer also indicate that the iron reduction and methanogenesis are not the dominant biodegradation patterns in the contaminant plume. Results from the microcosm study reveal that preliminary laboratory study is required to determine the appropriate substrates and oxidation-reduction conditions to enhance the biodegradation of MTBE. Results suggest that in situ or on-site aerobic bioremediation using indigenous microorganisms would be a feasible technology to clean up this MTBE-contaminated site.  相似文献   

11.
反硝化条件下苯生物降解的微环境研究   总被引:5,自引:2,他引:5       下载免费PDF全文
李东艳  孔惠 《地球科学》2000,25(5):493-497
探讨了厌氧微环境中苯的生物降解.接种物来自北京郊区的稻田土.结果表明, 在富集培养和转移培养微环境中, 苯和甲苯的降解与硝酸盐还原作用同时发生.甲苯比苯更易降解, 甲苯的存在促进了苯的降解.这是一例反硝化条件下苯能被生物降解的研究   相似文献   

12.
Anaerobic biodegradation of hydrocarbons, using a variety of terminal electron acceptors (TEAs), is increasingly being reported both in laboratory studies and in the field. Of all the petroleum hydrocarbons, benzene is considered the most problematical due to its high toxicity and relatively high aqueous solubility. These, combined with its peculiarly stable structure, mean that it has long been considered recalcitrant in all but aerobic conditions. There is now a small, but growing, literature to suggest that this may not in fact be the case. We present an assessment of the field, encompassing reviews up to 1997 and original papers published since then. It appears that benzene is indeed degraded anaerobically, but that organisms capable of doing so are not ubiquitous. In addition, benzene degradation may be competitively inhibited by the presence of more readily degraded compounds such as toluene. Certainly, the occurrence and rate of benzene attenuation under anaerobic conditions is far more site-specific than for other benzene, toluene, ethylbenzene and xylenes (BTEX) compounds. We discuss a mathematical method for modelling redox-dependent, differential degradation rates.  相似文献   

13.
Numerous potentially toxic compounds are entering Louisiana’s inshore and nearshore coastal environments. To a large degree there is insufficient information for predicting the fate and effect of these materials in aquatic environments. Studies documenting the impact of petroleum hydrocarbons entering Louisiana coastal wetlands are summarized. Also included are research findings on factors affecting the persistence of petroleum hydrocarbons and other toxic organics (pentachlorophenol (PCP), 2,4-dichlorophenoxyacetic acid (2,4-D), creosote, etc.) in sediment-water systems. Sediment pH and redox conditions have been found to play an important role in the microbial degradation of toxic organics. Most of the hydrocarbons investigated degrade more rapidly under high redox (aerobic) conditions although there are exceptions (e.g., 1,1,1-trichloro-2,2-bis(4-chlorophenyl) (DDT) and polychlorobiphenyls (PCBs)). Some of these compounds, due to their slow degradation in anaerobic sediment, may persist in the system for decades.  相似文献   

14.
To date, evidence for the degradation of benzene under anaerobic conditions has been established only in few studies under field and laboratory conditions. Recently, we demonstrated the mineralization of benzene under sulfate-reducing conditions in a large-scale column experiment at a field site by balancing electrons (Vogt et al. in Biodegradation, 2007, in press). Here, from a modelling approach, kinetic Monod parameters are estimated for the degradation of benzene in the columns, Monod kinetics proved useful to simulate benzene concentrations at the column outflow. The uncertainty of the obtained parameters is determined in a sensitivity analysis. A total mass of degraded benzene of 23 g or 80% of the total influx over a period of three months was calculated. The estimated maximum utilization rate was calculated to be around 70 times lower than from aerobic benzene degradation experiments.  相似文献   

15.
Sediments from the Aquia aquifer in coastal Maryland were collected as part of a larger study of As in the Aquia groundwater flow system where As concentration are reported to reach levels as high as 1072 nmol kg−1, (i.e., ∼80 μg/L). To test whether As release is microbially mediated by reductive dissolution of Fe(III) oxides/oxyhydroxides within the aquifer sediments, the Aquia aquifer sediment samples were employed in a series of microcosm experiments. The microcosm experiments consisted of sterilized serum bottles prepared with aquifer sediments and sterilized (i.e., autoclaved), artificial groundwater using four experimental conditions and one control condition. The four experimental conditions included the following scenarios: (1) aerobic; (2) anaerobic; (3) anaerobic + acetate; and (4) anaerobic + acetate + AQDS (anthraquinone-2,6-disulfonic acid). AQDS acts as an electron shuttle. The control condition contained sterilized aquifer sediments kept under anaerobic conditions with an addition of AQDS. Over the course of the 27 day microcosm experiments, dissolved As in the unamended (aerobic and anaerobic) microcosms remained constant at around ∼28 nmol kg−1 (2 μg/L). With the addition of acetate, the amount of As released to the solution approximately doubled reaching ∼51 nmol kg−1 (3.8 μg/L). For microcosm experiments amended with acetate and AQDS, the dissolved As concentrations exceeded 75 nmol kg−1 (5.6 μg/L). The As concentrations in the acetate and acetate + AQDS amended microcosms are of similar orders of magnitude to As concentrations in groundwaters from the aquifer sediment sampling site (127-170 nmol kg−1). Arsenic concentrations in the sterilized control experiments were generally less than 15 nmol kg−1 (1.1 μg/L), which is interpreted to be the amount of As released from Aquia aquifer sediments owing to abiotic, surface exchange processes. Iron concentrations released to solution in each of the microcosm experiments were higher and more variable than the As concentrations, but generally exhibited similar trends to the As concentrations. Specifically, the acetate and acetate + AQDS amended microcosm typically exhibited the highest Fe concentrations (up to 1725 and 6566 nmol kg−1, respectively). The increase in both As and Fe in the artificial groundwater solutions in these amended microcosm experiments strongly suggests that microbes within the Aquia aquifer sediments mobilize As from the sediment substrate to the groundwaters via Fe(III) reduction.  相似文献   

16.
The unintended release of coal ash to the environment is a concern due to the enrichment of contaminants such as arsenic (As) and selenium (Se) in this solid waste material. Current risk assessments of coal ash disposal focus on pH as the primary driver of leaching from coal ash. However, redox speciation of As and Se is a major factor for their mobilization potential and has received much less attention for risk assessments, particularly in disposal scenarios where coal ash will likely be exposed to microbially-driven redox gradients. The aim of this study was to demonstrate the differences of aerobic and anaerobic conditions for the leaching of As and Se from coal ash. Batch sediment-ash slurry microcosms were performed to mimic an ash spill scenario and were monitored for changes in As and Se speciation and mobilization potential. The results showed that the dissolved As concentrations were up to 50 times greater in the anaerobic microcosms relative to the aerobic microcosms during the two week incubation. This trend was consistent with As redox speciation determined by X-ray absorption spectroscopy, which indicated that 55% of the As in the solid phase at the end of the experiment was present as As(III) (a more leachable form of arsenic relative to As(V)). In the aerobic microcosms, only 13% of the As was As(III) and the rest was As(V). More than half of the Se was present as Se(IV) in the original fly ash and in the aerobic microcosms, while in the anaerobic microcosms Se was gradually transformed to less soluble Se(0) species. Likewise, dissolved Se concentrations were up to 25 times greater in the aerobic microcosms relative to anaerobic conditions. While the overall observations of As and Se mobilization potential from coal ash were consistent with expectations for aqueous and solid phase speciation of these elements, the findings directly show the relevance of these processes for coal ash disposal. These results highlight the need to select appropriate environmental parameters to include in risk assessments as well as provide potential geochemical monitoring tools through the use of dissolved Se/As ratios to determine the redox conditions of ash storage and spill sites.  相似文献   

17.
微生物参与铁氧化物矿物的还原性溶解是高砷地下水形成的关键过程,其中具有砷还原功能的微生物如何参与含水层砷释放的生物地球化学过程亟待研究.利用从江汉平原典型高砷含水层中厌氧条件下分离出的四株细菌(Citrobacter sp.JH-1、Clostridium sp.JH-6、Exiguobacterium sp.JH-13、Paenibacillus sp.JH-33),通过室内厌氧模拟培养实验,查明其砷、铁还原能力,并通过分别与铁氧化物矿物及原位沉积物共同培养,探究原位含水层微生物参与的砷释放机理.结果表明:四株细菌均具有厌氧条件下砷、铁还原功能,Citrobacter sp.JH-1砷还原能力最强,96 h内还原的As(Ⅴ)浓度为2.22 μmol/L.其中Citrobacter sp.JH-1不仅可在厌氧和有氧条件下还原溶液中的As(Ⅴ),还可在厌氧条件下还原溶液中的Fe(Ⅲ)和无定型的水铁矿,在与含水层沉积物共培养12 d后,沉积物中铁与砷的释放量分别为510 mg/kg及1 150 μg/kg.江汉平原含水层中的原位微生物兼具砷/铁还原功能,在厌氧条件下可还原沉积物中的铁氧化物矿物并促进砷的释放,为深入揭示高砷地下水成因机理与地下水砷污染的防控提供重要科学依据.   相似文献   

18.
季风性波动引起的降雨、径流和排泄过程会引发浅层地下水系统周期性氧化还原动态变化,从而对地下水系统中有害组分的迁移转化产生影响。为探讨氧化还原动态过程对沉积物中砷(As)和氟(F)释放的影响,本研究选择河北白洋淀地区沉积物样品,利用发酵罐作为反应器,建立氧化还原动态实验体系,并监测动态变化过程中实验体系各组分含量的变化。结果表明,碱性和还原环境均有利于地下水中As、F的富集。还原阶段较高的pH条件有利于溶液中F-的解吸,且体系中有机物降解会产生大量HC03-和C032-,与F-发生竞争吸附而有利于F-的富集。对于溶液中As的富集,一方面是由于还原条件下体系中的As以As(III)为主,受沉积物的吸附作用较弱,从而有利于As被释放到溶液中;另一方面是因为还原阶段较高的pH也会使反应体系中As和沉积物间的吸附作用被减弱,造成As的解吸附。由于实验所用沉积物砷含量较低,不同S042-浓度条件对氧化还原动态过程中As、F迁移的影响不明显。总之,氧化还原动态变化过程会强烈影响地下水系统中砷、氟的富集。  相似文献   

19.
Radiolabelled assays and compound-specific stable isotope analysis (CSIA) were used to assess methyl tert-butyl ether (MTBE) biodegradation in an unleaded fuel plume in a UK chalk aquifer, both in the field and in laboratory microcosm experiments. The 14C-MTBE radiorespirometry studies demonstrated widespread potential for aerobic and anaerobic MTBE biodegradation in the aquifer. However, δ13C compositions of MTBE in groundwater samples from the plume showed no significant 13C enrichment that would indicate MTBE biodegradation at the field scale. Carbon isotope enrichment during MTBE biodegradation was assessed in the microcosms when dissolved O2 was not limiting, compared with low in situ concentrations (2 mg/L) in the aquifer, and in the absence of O2. The microcosm experiments showed ubiquitous potential for aerobic MTBE biodegradation in the aquifer within hundreds of days. Aerobic MTBE biodegradation in the microcosms produced an enrichment of 7‰ in the MTBE δ13C composition and an isotope enrichment factor (ε) of −1.53‰ when dissolved O2 was not limiting. However, for the low dissolved O2 concentration of up to 2 mg/L that characterizes most of the MTBE plume fringe, aerobic MTBE biodegradation produced an enrichment of 0.5-0.7‰, corresponding to an ε value of −0.22‰ to −0.24‰. No anaerobic MTBE biodegradation occurred under these experimental conditions. These results suggest the existence of a complex MTBE-biodegrading community in the aquifer, which may consist of different aerobic species competing for MTBE and dissolved O2. Under low O2 conditions, the lower fractionating species have been shown to govern overall MTBE C-isotope fractionation during biodegradation, confirming the results of previous laboratory experiments mixing pure cultures. This implies that significant aerobic MTBE biodegradation could occur under the low dissolved O2 concentration that typifies the reactive fringe zone of MTBE plumes, without producing detectable changes in the MTBE δ13C composition. This observed insensitivity of C isotope enrichment to MTBE biodegradation could lead to significant underestimation of aerobic MTBE biodegradation at field scale, with an unnecessarily pessimistic performance assessment for natural attenuation. Site-specific C isotope enrichment factors are, therefore, required to reliably quantify MTBE biodegradation, which may limit CSIA as a tool for the in situ assessment of MTBE biodegradation in groundwater using only C isotopes.  相似文献   

20.
This study evaluated three types of pharmaceuticals and personal care products (methylparaben, ibuprofen and triclosan) at concentration levels of 300, 500, 1000 and 2000 µg/L by implementing batch tests using anaerobic processes and granular biomass. The study aimed to identify the mechanisms of biodegradation and sorption in the degradation of these compounds. The inoculum was granular sludge from a laboratory-scale anaerobic reactor. The characterization results of the inoculum showed an anaerobic biomass with high activity, good sedimentation and a high percentage of organic matter. The results of the removal of the pollutants showed high degradation percentages for methylparaben (close to 99%), with negligible sorption in the sludge. The results also showed insignificant ibuprofen sorption but removal close to 0%. Triclosan showed high biomass sorption and low biodegradation. In addition, at the concentrations tested, none of the compounds had a negative or inhibitory effect on the microbial populations of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号