首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss the features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).  相似文献   

2.
There have been several reports of exotic nuclear fragments, with highly unusual charge to mass ratio, in cosmic ray experiments. Although there exist experimental uncertainties which make them, at best, only candidate `exotic' events, it is important to understand what they could be, if they are eventually confirmed. Among other possible explanations, some authors have interpreted them to be lumps of strange quark matter (strangelets).A major problem with such an interpretation is that to reach the earth's surface, they must possess an unusually high penetrability through the terrestrial atmosphere. We show that a recently proposed mechanism for the propagation of strangelets through the earth's atmosphere, together with a proper account of charge capture and ionisation loss, would solve this problem. We also argue that this could lead to viable strategies for definitive detection of strange quark matter in cosmic ray flux using aground based large area array of passive detectors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The temperature of the atomic matter in the Universe is held to that of the cosmic background radiation until decoupling at   z ∼ 100  . After this, it cools faster than the radiation [  ∝ (1 + z )2  rather than  (1 + z )  ] and would have fallen to about 20 mK today if astrophysical feedback processes had not heated up the interglactic medium. We show how the derivative of the Compton coupling equation helps numerically to follow the decoupling process.  相似文献   

4.
研究了磁场对奇异星模型中夸克直接Urca过程的中微子能量损失率的影响,首先改进了弱场条件下的近似计算方法,这一方法可以推广到其他弱作用过程.在甚强磁场下,严格地计算Urca过程的中微子能量损失率,结果显示辐射率强烈地依赖于磁场,与磁场的二次方成正比,更重要的是对温度的依赖关系不同于弱场及没有磁场时的情形.  相似文献   

5.
早期中子星和夸克物质   总被引:1,自引:0,他引:1  
夸克禁闭的解除与夸克物质的存在一直是物理学家极感兴趣的问题。尽管理论上已指出在超高温或超高密的条件下可以有夸克物质存在,但是由于地面实验室的条件所限,目前还不能通过实验证实这一点.宇宙中被观测到的中子星(例如crab和Vela脉冲星)的中心密度大于4倍的核物质密度,其中心温度也可以达到10~8—10~9K,于是人们希  相似文献   

6.
The evolution of the universe from times after the recombination of the first atoms is controlled by chemistry. Chemistry can also help us to learn more about the first structures. In this paper we review the chemistry and atomic physics that are important in the time shortly after recombination, including the formation of the first structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
相对于核物质和奇异夸克物质, 仅由两味夸克构成的轻夸克物质(即ud夸克物质)有可能更稳定. 而对于由这三类物质构成的典型物质集团, 研究发现如果ud夸克物质具有较大的对称能, 那么其物质团会在特定大小(重子数$A\approx1000$)时最稳定. 在这种情况下, 就可能存在由ud夸克物质团和电子构成的致密矮星, 即ud夸克矮星. 通过进一步研究这类ud夸克矮星的结构可知: 相较于传统的由原子核和电子构成的白矮星, ud夸克矮星通常具有较小的半径, 而被正常物质覆盖的ud夸克矮星的半径则在它们之间, 这与最近观测到的质量和半径都异常小的白矮星相符.  相似文献   

8.
9.
The evolution of Gaussian quantum states in the de Sitter phase of the early universe is investigated. The potential is approximated by that of an inverted oscillator. We study the origin and magnitude of the density perturbations with special emphasis on the nature of the semiclassical limits  相似文献   

10.
A global relation ship between cosmological time and Belinskii-Khalatnikov-Lifshitz(BKL)time during the entire evolution of the Mixmaster Bianchi Ⅸ universe is used to explain why all the Lyapunov exponents are zero at the BKL time.The actual reason is that the domain of the cosmological time is finite as the BKL time runs from minus infinity to infinity.  相似文献   

11.
12.
We study the evolution of growth and decay laws for the magnetic field coherence length ξ, energy EM and magnetic helicity H in freely decaying 3D MHD turbulence. We show that with certain assumptions, self‐similarity of the magnetic power spectrum alone implies that ξt1/2. This in turn implies that magnetic helicity decays as Ht–2s, where s = (ξdiff/ξH)2, in terms of ξdiff, the diffusion length scale, and ξH, a length scale defined from the helicity power spectrum. The relative magnetic helicity remains constant, implying that the magnetic energy decays as EMt–1/2–2s. The parameter s is inversely proportional to the magnetic Reynolds number ReM, which is constant in the self‐similar regime. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Flat directions in generic supersymmetric theories can change the thermal history of the Universe. A novel scenario was proposed earlier where the vacuum expectation value of the flat directions induces large masses for all the gauge bosons and gauginos. This delays the thermalization of the Universe after inflation and solves the gravitino problem. In this article we perform a detailed calculation of the above scenario. We include the appropriate initial state particle distribution functions, consider the conditions for the feasibility of the non-thermal scenario, and investigate phase space suppression of gravitino production in the context of heavy gauge bosons and gauginos in the final state. We find that the total gravitino abundance generated is consistent with cosmological constraints.  相似文献   

14.
Exact solutions are obtained for an isotropic homogeneous universe with a bulk viscous fluid in the cosmological theory based on Lyra’s geometry. The viscosity coefficient of the bulk viscous fluid is assumed to be a power function of the mass density. Cosmological models with time dependent displacement field have been discussed for a constant value of the deceleration parameter. Finally some possibilities of further problems and their investigations have been pointed out.  相似文献   

15.
G. S. Hajyan 《Astrophysics》2001,44(3):387-392
The distributions of electrons and of electrical potential at the free surface of strange quark matter are determined within the framework of the MIT bag model. It is shown that, with allowance for the decay of quarks near the surface due to the outward escape of electrons, the electric charge density of quarks at the surface increases by a factor of 17-25, the thickness of the transitional layer decreases from 230 Fm to 15 Fm, and the field strength increases by a factor of 1.7. The difference between the chemical potentials of electrons at the surface and in deep layers decreases from 7 MeV to 0.8 MeV, which increases the limiting possible density of ordinary matter above a strange quark star.  相似文献   

16.
在模拟超新星演化时, 考虑非奇异奇异夸克相变因素,与没有考虑奇异相变的情况相比, 得到了更强的激波.这可能是奇异相变增加了星核区对流不稳定性所致. 在本文的计算环境里,一阶奇异夸克相变的结果使具有1.28 M铁星核的WW(88)模型爆发,打破了瞬发机制只能使约1.1 M铁星核模型爆发的上限,并支持了戴子高等人所作出的奇异夸克相变能提高超新星爆发机会的论断.  相似文献   

17.
Hajyan  G. S.  Alaverdyan  G. B. 《Astrophysics》2022,65(1):126-136
Astrophysics - The thermodynamic characteristics of hot β-equilibrium three-flavor quark matter with neutrino confinement are studied in terms of the local SU(3) Nambu-Jona-Lasinio (NJL)...  相似文献   

18.
The behaviour of the magnetic field of a neutron star with a superconducting quark matter core is investigated in the framework of the Ginzburg-Landau theory. We take into account the simultaneous coupling of the diquark condensate field to the usual magnetic and to the gluomagnetic gauge fields. We solve the Ginzburg-Landau equations by properly taking into account the boundary conditions, in particular, the gluon confinement condition. We found the distribution of the magnetic field in both the quark and hadronic phases of the neutron star and show that the magnetic field penetrates into the quark core in the form of quark vortices due to the presence of Meissner currents.  相似文献   

19.
Classical nucleation theory is applied to follow the thermal history of a homogeneous and isotropic universe during a first-order phase transition. The dependence of possible supercooling and reheating scenarios on the surface tension and growth velocity of bubbles is discussed.  相似文献   

20.
The physical ingredients to describe the epoch of cosmological recombination are amazingly simple and well‐understood. This fact allows us to take into account a very large variety of physical processes, still finding potentially measurable consequences for the energy spectrum and temperature anisotropies of the Cosmic Microwave Background (CMB). In this contribution we provide a short historical overview in connection with the cosmological recombination epoch and its connection to the CMB. Also we highlight some of the detailed physics that were studied over the past few years in the context of the cosmological recombination of hydrogen and helium. The impact of these considerations is two‐fold: (i) The associated release of photons during this epoch leads to interesting and unique deviations of the CosmicMicrowave Background (CMB) energy spectrum from a perfect blackbody, which, in particular at decimeter wavelength and the Wien part of the CMB spectrum, may become observable in the near future. Despite the fact that the abundance of helium is rather small, it still contributes a sizeable amount of photons to the full recombination spectrum, leading to additional distinct spectral features. Observing the spectral distortions from the epochs of hydrogen and helium recombination, in principle would provide an additional way to determine some of the key parameters of the Universe (e.g. the specific entropy, the CMB monopole temperature and the pre‐stellar abundance of helium). Also it permits us to confront our detailed understanding of the recombination process with direct observational evidence. In this contribution we illustrate how the theoretical spectral template of the cosmological recombination spectrum may be utilized for this purpose. We also show that because hydrogen and helium recombine at very different epochs it is possible to address questions related to the thermal history of our Universe. In particular the cosmological recombination radiation may allow us to distinguish between Compton y ‐distortions that were created by energy release before or after the recombination of the Universe finished. (ii) With the advent of high precision CMB data, e.g. as will be available using the PLANCK Surveyor or CMBPOL, a very accurate theoretical understanding of the ionization history of the Universe becomes necessary for the interpretation of the CMB temperature and polarization anisotropies. Here we show that the uncertainty in the ionization history due to several processes, which until now were not taken in to account in the standard recombination code RECFAST, reaches the percent level. In particular He II → He I recombination occurs significantly faster because of the presence of a tiny fraction of neutral hydrogen at z ∼ 2400. Also recently it was demonstrated that in the case of H I Lyman α photons the timedependence of the emission process and the asymmetry between the emission and absorption profile cannot be ignored. However, it is indeed surprising how inert the cosmological recombination history is even at percent‐level accuracy. Observing the cosmological recombination spectrum should in principle allow us to directly check this conclusion, which until now is purely theoretical. Also it may allow to reconstruct the ionization history using observational data (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号