首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inter-relationships between the exact footwall geometry and the rheology of thrust sheets are investigated. Deviations in the thrust fault surface from an ideal plane will induce a local heterogeneous deformation. The resulting deformation processes depend upon the rate of thrust sheet displacement, the geometry of the feature causing heterogeneous flow, the deformation conditions and the lithologies involved. Two classes of features are particularly important in causing heterogeneous deformation in thrust sheets. The first features are small perturbations on bedding planes which may be inherited sedimentary structures or produced during layer-parallel shortening; the second class of features are ramps, where the thrust sheet climbs up the stratigraphic section. Displacement over these features causes repeated, cyclic straining in the hanging-wall during movement. The strain rates associated with deformation at perturbations, ramps of different geometries and different displacement rates are estimated and used to discuss the influence of footwall geometry on the structural evolution of a thrust sheet. Particular attention is given to the range of fault rocks and deformation microstructures preserved after movement over a footwall with a complex geometry. Perturbations are suggested to be important in the localization of ramps, either because they create ‘sticking points’ near the fault tip during propagation or because they induce eventual failure in the hanging-wall after the movement over a number of these features raises the accumulated damage to a critical level. Analysis of the influence of the exact geometry of ramps on deformation processes during displacement leads to two important conclusions. Firstly, the exact geometry of ramps (i.e. the maximum dip angle and the straining distance from a flat to this maximum angle) may be used to estimate a maximum displacement rate of the thrust sheet. Secondly, the listric geometry of ramps may be an equilibrium shape adjusted to the displacement rate and the rheology of the hanging-wall. Adjustments towards the final geometry may involve the generation of shortcuts on either hanging- or footwall which reduce the imposed deformation rate in the hanging-wall during displacement.  相似文献   

2.
The northern part of the Moine Thrust Zone as exposed around the valley of Srath Beag, Sutherland was developed by thrusts propagating in the tectonic transport direction. Deformation on any particular thrust surface evolved from dominantly ductile to dominantly brittle with time.The foreland has been progressively accreted onto the overriding Moine thrust sheet by duplex formation, a process which has continuously folded the roof thrust and the rocks above its hanging-wall. Fold culminations and depression can be related to lateral ramps which may give the rocks above the hanging-wall a complex history of extensional and compressional strains normal to the transport direction.Folds within the thrust zone are laterally independent because they are controlled by short lived variations in deformation style on an evolving thrust footwall topography. Therefore there may be no correlation between structures across or along the thrust zone. This variation limits the construction of balanced cross sections as structure cannot be projected onto particular section lines.  相似文献   

3.
The evolution of minor structures during the growth of major folds and thrusts, in the Chartreuse district of the French Subalpine thrust belt, shows that each thrust evolved through a phase of distributed faulting, major thrust propagation and displacement, followed by distributed shear modification of the hanging-wall fold. Microstructural studies suggest that the distributed faulting phases, early and late in the history, were characterized by strain rates limited by diffusive mass transfer processes ( c . 10-15-10-16 s-1). Faulting whose rate is limited by DMT is too slow on its own to accommodate the regional time-averaged shortening rates for the thrust belt as a whole, implying that the slow thrusts operated in tandem with those major, fast thrusts where deformation was primarily cataclastic. Consequently each thrust anticline experienced a displacement rate cycle and an array of thrust anticlines must amplify simultaneously. These interpretations raise important issues for the dynamics of fault populations, the evolution of thrust wedges and the history of fluid migration in thrust belts.  相似文献   

4.
Deep crustal extensional faulting in the Ivrea Zone of Northern Italy   总被引:1,自引:0,他引:1  
K.H. Brodie  E.H. Rutter 《Tectonophysics》1987,140(2-4):193-212
The Ivrea Zone in Northern Italy consists of amphibolite and granulite facies metasedimentary, metabasic, and ultrabasic rocks, and is thought to represent a section through the deep continental crust. Detailed mapping of the high grade part of this zone has revealed a series of high temperature shear zones, which, after the effects of later low temperature faulting and folding have been removed, appears to accommodate extension of the sequence. The shear zones formed at temperatures similar to those at which thermal equilibration occurred in the host rocks, and locally show evidence for development under prograde conditions. These observations fit well with thermal effects calculated from a simple heat flow model for extensional faulting. In this model the effects of shear heating and displacement of cool hanging-wall rocks against hotter footwall rocks are calculated.

These observations indicate that faulting as a mode of failure may be important during extension of the lower continental crust, especially when basic rocks are the dominant components of the rock pile. A restored section through the extended lower crust as observed in the Ivrea Zone is presented, and the extent to which the features observed are able to explain seismic reflectivity of the lower crust is discussed.  相似文献   


5.
Syntectonic plutons emplaced in shallow crust often contain intermediate-to low-temperature deformation microstructures but lack a high-temperature, subsolidus deformation fabric, although the relict magmatic fabric is preserved. The Proterozoic Vellaturu granite emplaced at the eastern margin of the northern Nallamalai fold belt, south India during the late phase of regional deformation has a common occurrence of intermediate-to low-temperature deformation fabric, superimposed over magmatic fabric with an internally complex pattern. But high-T subsolidus deformation microstructure and fabric are absent in this pluton. The main crystal plastic deformation and fluid enhanced reaction softening was concentrated along the margin of the granite body. Resulting granite mylonites show Y-maximum c-axis fabric in completely recrystallized quartz ribbonds, dynamic recrystallization of perthites, and myrmekite indicative of fabric development under intermediate temperature (∼ 500–400°C). The weakly-deformed interior shows myrmekite, feldspar microfracturing and limited bulging recrystallization of quartz. The abundance of prism subgrain boundaries is indicative of continuing deformation through low-temperature (∼ 300°C). The relative rates of cooling influenced by advective heat transfer and deformation of the pluton seem to control the overall subsolidus fabric development. The rapid advective heat transfer from the interior in the early stages of subsolidus cooling was followed by slow cooling through intermediate temperature window as a well-developed phyllosilicate rich mylonitic skin around the granite body slowed down conductive heat loss. Low-T crystal plastic deformation of quartz was effected at a late stage of cooling and deformation of the shallow crustal granite body emplaced within the greenschist facies Nallamlai rocks.  相似文献   

6.
This study examines the fluid-rock interaction and thermal evolution along a thrust that juxtaposes calcite-rich marbles of high P-T metamorphic unit of the Attic-Cycladic Massif (Greece) on top of a lower-grade dolomite marble unit. The Tertiary thrust represents a major phase of tectonic movement related to the decompression of the Alpine orogen in the Hellenides. The stable isotope signatures of the thrust plane and adjacent sections of the footwall and hanging wall rocks are characterized by significant carbon and oxygen isotope depletions. The depletion is most pronounced in calcite, but is almost entirely missing in coexisting dolomite. The isotopic patterns in the thrust zone can be explained by the infiltration of an externally derived water-rich H2O-CO2-CH4 fluid [X C (=X CO 2+X CH 4)<0.05] at water-rock ratios on the order of 0.1 to 0.5 by weight. The fluid-induced calcite recrystallization is viewed as an important rheological control during thrusting. The temperature evolution of the footwall, hanging wall and mylonitic tectonic contact was determined by calcite-dolomite solvus thermometry. Histograms of calcite-dolomite temperatures are interpreted as indicating a heating of the footwall dolomite marble during the thrusting of the hotter upper plate. Conversely, the hanging wall marble unit was cooled during the thrusting. The calcite-dolomite thermometry of the thrust plane gives temperatures intermediate between the initial temperatures of the lower and upper marble units, and this leads to the conclusion that conductive heat transfer rather than fluid infiltration controlled the thermal evolution during thrusting. Received: 14 April 1998 / Accepted: 9 December 1998  相似文献   

7.
In the mingled mafic/felsic Halfmoon Pluton at The Neck, Stewart Island (part of the Median Batholith of New Zealand) some hornblende gabbros and diorites retain magmatic structures, whereas others show evidence of major changes in grain and inclusion shapes, and still others are amphibolite‐facies granofelses with few or no igneous relicts. These mafic to intermediate magmas crystallized in felsic magma relatively quickly, with the result that most deformation occurred at subsolidus conditions. It is suggested that mafic‐intermediate rocks with predominantly igneous microstructures spent less time in the magmatic system. The metamorphism of the mafic rocks appears to be ‘autometamorphic’, in the sense that elevated temperatures were maintained by magmatic heat during subsolidus cooling. Elevated temperatures were maintained because of repeated sheet injection and subconcordant dyke injection of hot basaltic and composite mafic‐felsic magmas, into a dominantly transtensional, km‐scale, outboard‐migrating, magmatic shear zone that operated semi‐continuously for between c. 140 and c. 130 Ma. Complete cooling occurred only when the system evolved to transpressional and the locus of magmatism migrated inboard (southward) between c. 130 and c. 120 Ma, associated with solid‐state mylonitic deformation. Intermingled granitic rocks escaped metamorphism, because they remained magmatic to lower temperatures, and experienced shorter and lower‐temperature subsolidus cooling intervals. However, the felsic rocks underwent relatively high‐temperature solid‐state deformation, as indicated by myrmekite replacing K‐feldspar and chess‐board subgrain patterns in quartz; locally they developed felsic mylonites. The felsic rocks were deformed in the solid state because of their high proportion of relatively weak minerals (quartz and biotite), whereas the mafic rocks mostly escaped subsolidus deformation, except in local high‐strain zones of hornblende‐plagioclase schist, because of their high proportion of relatively strong minerals (hornblende and plagioclase). We suggest that such contrasting microstructural features are diagnostic of long‐lived syntectonic magma transfer zones, and contrast with the more typical complex, batholith‐scale magma chambers of magmatic arcs.  相似文献   

8.
循环温度场作用下PCC能量桩热力学特性模型试验研究   总被引:5,自引:0,他引:5  
PCC能量桩是河海大学岩土所开发的一种新型能量桩技术。在常规桩基静载荷模型试验基础上,将PCC能量桩放置在南京典型砂土中,并通过导热管内水体的循环对模型桩体施加温度场,以模拟PCC能量桩在实际运行过程中的承载力特性与受力机制,PCC能量桩先加载至工作荷载(极限荷载的一半),再施加热-冷循环一次,最后加载至极限荷载,测得不同温度下PCC能量桩的荷载-位移关系曲线、桩身应力-应变关系曲线等变化规律。试验结果表明,能量桩换热过程中,热量更容易从桩体传向土体(即夏季模式的热循环);热循环及制冷循环都明显改变了桩顶位移值,且往复循环作用下产生的塑性变形不能完全恢复,其积累变形可能危害上部结构安全;桩身受温度场作用产生的热应力相对较大,且不同约束条件下其变化值有所差异;在制冷循环下,桩底部甚至可能产生较大拉应力。  相似文献   

9.
Abstract Geological relationships and geochronological data suggest that in Miocene time the metamorphic core of the central Himalayan orogen was a wedge-shaped body bounded below by the N-dipping Main Central thrust system and above the N-dipping South Tibetan detachment system. We infer that synchronous movement on these fault systems expelled the metamorphic core southward toward the Indian foreland, thereby moderating the extreme topographic gradient at the southern margin of the Tibetan Plateau. Reaction textures, thermobarometric data and thermodynamic modelling of pelitic schists and gneisses from the Nyalam transect in southern Tibet (28°N, 86°E) imply that gravitational collapse of the orogen produced a complex thermal structure in the metamorphic core. Amphibolite facies metamorphism and anatexis at temperatures of 950 K and depths of at least 30 km accompanied the early stages of displacement on the Main Central thrust system. Our findings suggest that the late metamorphic history of these rocks was characterized by high- T decompression associated with roughly 15 km of unroofing by movement on the South Tibetan detachment system. In the middle of the metamorphic core, roughly 7–8 km below the basal detachment of the South Tibetan system, the decompression was essentially isothermal. Near the base of the metamorphic core, roughly 4–6 km above the Main Central thrust, the decompression was accompanied by about 150 K of cooling. We attribute the disparity between the P–T paths of these two structural levels to cooling of the lower part of the metamorphic core as a consequence of continued (and probably accelerated) underthrusting of cooler rocks in the footwall of the Main Central thrust at the same time as movement on the South Tibetan detachment system.  相似文献   

10.
To explore planetary evolution, we provide conductive cooling profiles that account for planet size, phonon diffusivity and various internal heating scenarios. Our new analytical solution for simple cooling of spheres reveals that heat is removed from only Earth's outermost ~1000 km over geological time. Numerical models with decaying heat production show that any upward concentration of radionuclides causes high temperatures at shallow depths, forcing interior temperatures to increase with time while producing a thermal gradient that forbids lower mantle convection. Hence, differentiation drives upper mantle magmatism and tectonics, leaving a quiescent but hot deep interior, while slowly melting the core.  相似文献   

11.
The pressure-temperature-time trajectory and structural history of high-pressure rocks presently exposed in the Gran Paradiso massif provide constraints on the processes that caused their thermal evolution and exhumation. High-pressure metamorphism of the rocks is found to have culminated at temperatures around 525 °C and pressures of 12 to 14 kbar. After high-pressure metamorphism, the rocks cooled during initial decompression, while undergoing top-to-the-west shear on chlorite-bearing shear bands and larger scale shear zones. Biotite-bearing shear bands and larger shear zones related to top-to-the-east deformation affected the Gran Paradiso massif during reheating to temperatures of around 550 °C at 6 to 7 kbar. Further exhumation occurred at relatively high temperatures. A potentially viable explanation of the observed stage of reheating before final cooling and exhumation is breakoff of a subducting slab in the upper mantle, allowing advective heat transfer to the base of the crust. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00410-001-0357-6.  相似文献   

12.
The paper analyses the geometry of thin-skinned thrust zones, where the thrusts shallow out at depth and of thicker-skinned fault zones where much of the crust is involved and where the thrusts are frequently observed to become steeper downwards. In the interiors of many orogenic belts the steep dip of faults is not original but due to the folding above lower decoupling zones. The energy involved in the internal deformation of hanging-wall rocks may prohibit many faults becoming more shallow upwards. Such shallowing-upwards faults may occur in more ductile rocks to maintain compatibility between zones which have experienced different deformation intensities, but displacements on the faults are unlikely to be large.Another mechanism for producing faults which steepen downwards is proposed for the major thrusts which form the southern margin to the Himalayas. These carry large thicknesses (30 to 100 km) of crustal and upper mantle rocks to the south, causing flexuring and isostatic depression of the Indian plate. The steeply dipping thrusts are not footwall ramps; these may be some distance behind the steepened zone. This thrust-induced isostatic bending of the crust has important implications when considering regional seismic interpretations as well as thrust mechanics and kinematics.  相似文献   

13.
《Geodinamica Acta》2013,26(5):267-282
The interaction of distinct geologic processes involved during late orogenic extensional exhumation history of the metamorphic units in the Eastern Rhodope is refined by new and reviewing 40Ar/39Ar geochronological and structural data. Minerals with different closure temperatures from metamorphic rocks investigated in this study are combined with those from magmatic and ore-forming hydrothermal rocks in two late stage metamorphic domes – the Kesebir-Kardamos and the Biala reka-Kehros domes. The 38-37 Ma muscovite and biotite cooling ages below 350°-300°C characterize basement metamorphic rocks that typified core of the Kesebir-Kardamos dome, constraining their exhumation at shallow crustal levels in the footwall of detachment. These ages are interpreted as reflecting last stage of ductile activity on shear zone below detachment, which continued to operate under low-temperature conditions within the semi-ductile to brittle field. They are close to and overlap with existing cooling ages in southern Bulgaria and northern Greece, indicating supportively that the basement rocks regionally cooled between 42-36 Ma below temperatures 350°-300°C. The spatial distribution of ages shows a southward gradual increase up structural section, suggesting an asymmetrical mode of extension, cooling and exhumation from south to the north at latitude of the Kesebir-Kardamos dome. The slightly younger 36.5-35 Ma crystallization ages of adularia in altered rocks from the ore deposits in the immediate hanging-wall of detachments are attributed to brittle deformation on high-angle normal faults, which further contributed to upper crustal extension, and thus constraining the time when alteration took place and deformation continued at brittle crustal levels. Silicic dykes yielded ages between 32-33 Ma, typically coinciding with the main phase of Palaeogene magmatic activity, which started in Eastern Rhodope region in Late Eocene (Priabonian) times. The 40Ar/39Ar plateau ages from the above distinct rock types span time interval lasting approximately ca. 6 Ma. Consequently, our geochronologic results consistently indicate that extensional tectonics and related exhumation and doming, epithermal mineralizations and volcanic activity are closely spaced in time. These new 40Ar/39Ar age results further contribute to temporal constraints on the timing of tectonic, relative to ore-forming and magmatic events, suggesting in addition that all above mentioned processes interfered during the late orogenic extensional collapse in the Eastern Rhodope region.  相似文献   

14.
汪洋  姬广义 《地球学报》2007,28(4):324-334
为更好理解燕山带的构造,作者在燕山地区开展了构造填图.在近年的构造填图中于辽宁省绥中县永安堡地区识别出大型的构造窗,其原始的逆掩推覆构造系统上盘由太古宇片麻岩及上覆岩系组成,而下盘由强烈韧性变形的张家口组火山岩系组成.填图结果表明,永安堡地区并不是一个张家口组岩层形成的宽缓向斜,也不是大型古火山机构.燕山地区在早白垩世张家口组火山岩喷发之后仍然存在强烈的区域挤压变形作用.基于野外观察和填图工作,我们认为国内已发表的地质图件未能真实反映燕山带的区域构造基本特征.  相似文献   

15.
Many high-temperature–low-pressure (high- T –low- P ) metamorphic terranes show evidence for peak mineral growth during crustal thickening strain increments at pressures near the maximum attained during the heating–cooling cycle. Such terranes are not readily explained as the conductive response to crustal thickening since the resulting Moho temperatures would greatly exceed the crustal liquidus and because heating due to conductive equilibration on length scales appropriate to lithospheric-scale strains must greatly outlast the deformation. Consequently, high- T –low- P metamorphism may be generated during crustal thickening only when significant heat is advected within the crust, as for example may occur during the segregation of granitic melts. We show that without the addition of asthenospheric melts and at strain rates appropriate to continental deformation the conditions required for significant lower crustal melting during deformation are only likely to be attained if heat flow into the lower crust during crustal thickening is increased substantially, for example, by removing the mantle part of the lithosphere. A simple parameterization of lithospheric deformation involving the vertical strain on the scale of the crust, c, and the lithosphere, 1 respectively, allows the potential energy of the evolving orogen to be readily evaluated. Using this parameterization we show that an important isostatic consequence of the deformation geometries capable of generating such high- T –low- P metamorphism during crustal thickening (with c1) is an imposed upper limit to crustal thicknesses which is much lower than for homogeneous deformations (fc= f1) for the same initial lithospheric configuration.  相似文献   

16.
玉东-玛东构造带位于塔里木盆地,是在中寒武统膏盐层上滑脱的大规模褶皱冲断带,内部发育多种断层相关褶皱。目前对此构造带的研究,多关注了构造带的局部以及断裂变形。本文根据断层相关褶皱理论,利用地震资料,分析了玉东-玛东构造带内构造样式上的差异性,并通过二维构造正演模拟,建立了典型构造样式的运动学模式。认为研究区内玉东、玛东、塘北3个分区,具有不同的构造样式。玉东地区主要发育和铲式逆断层相关的断弯褶皱,玛东、塘北地区则发育断层突破的滑脱褶皱,突破断层在玛东地区为铲式断裂,而在塘北地区为坪-坡-坪式断裂。根据上奥陶统变形特征及其顶面不整合面之上的地层年代,认为玉东-玛东构造带的变形始于晚奥陶世,主要断裂及其相关褶皱形成于晚奥陶世末期。玉东地区在晚奥陶世早期,形成基底-盖层的低幅褶皱,在晚奥陶世末,形成铲式断裂及断弯褶皱;玛东和塘北地区变形发生在上奥陶统沉积之后,经历了滑脱褶皱和断层突破阶段。通过对比分析认为,断层相关褶皱样式的差异,与膏盐层岩性、厚度,上奥陶统岩性、厚度及构造转换作用有关。本研究有助于完善对塔里木盆地早古生代末期构造变形及演化的认识。  相似文献   

17.
Abstract An inverted metamorphic gradient associated with the northern mylonite zone of the Cheyenne belt, a deeply eroded Precambrian suture in southern Wyoming, has been documented within metasedimentary rocks of the Early Proterozoic Snowy Pass Supergroup. Metamorphic grade in the steeply dipping supracrustal sequence increases from the chlorite through the biotite, garnet, and staurolite zones both stratigraphically and structurally upward toward the northern mylonite zone. A minimum temperature increase of approximately 100° C over a km-wide zone is required for this transition. Parallelism of inverted isograds with the trace of the northern mylonite zone implies a genetic relationship between deformation associated with that zone and the inverted metamorphic gradient within the Snowy Pass Supergroup. Field evidence together with microstructural and petrofabric analysis indicate northward thrusting of amphibolite-grade rocks over rocks of the Snowy Pass Supergroup along the northern mylonite zone. Mineral equilibria and garnet-biotite geothermometry on synkinematic mineral assemblages within the Snowy Pass metasedimentary rocks indicate deformation at minimum temperatures of 480° C and pressures of 350–400 MPa (3°5–4°0 kbar). This implies tectonic burial or upper plate thickness of 13–15 km. The narrow character of metamorphic zonation and microtextures within the Snowy Pass Supergroup which indicate late synkine-matic growth of garnet and staurolite, preclude rotation of pre-existing isograds by folding as a mechanism for development of the inverted gradient. Conductive transport of heat from the upper into the lower plate across the originally low-angle thrust is insufficient to produce the necessary temperatures in the lower plate. Shear heating is considered insufficient to produce the observed metamorphic transition unless high shear stresses are postulated. Up-dip advection of metamorphic fluids is a feasible, but unproven, mechanism for heat transport. The possibility that rapid uplift due to stacking of several thrust sheets may have played a role in preserving the inverted metamorphic gradient cannot be evaluated at present.  相似文献   

18.
Pressure-temperature (P-T) paths have been calculated from pelitesand amphibolites of several major Acadian structures in west-centralNew Hampshire by using both inclusion thermobarometry and differentialthermodynamics (the Gibbs method). P-T paths calculated forrocks exposed in the Orfordville and Bronson Hill anticlinoriaare ‘clockwise’ and show 1–2.5 kb of exhumationwith 30–100 C of heating. Because this type of path ischaracteristic of the lower plate of overthrust terranes, theserocks are interpreted to be (para)autochthonous. P-T paths forrocks exposed in an intervening synclinorium (the Hardscrabblesynclinorium) show isothermal loading of 1–3 kb followedby possible isobaric cooling. This behavior is characteristicof rocks occupying a middle-plate structural position withina multiple thrust package, and so these rocks are interpretedto be allochthonous. The interpretation that the Hardscrabblerocks are allochthonous differs from previous models, but betterexplains the petrologic data and is consistent with the stratigraphicand structural data on which other models have been based. Correlation of the P-T paths with deformational events throughkinematic and textural analysis indicates that during nappestage deformation, the synclinorial rocks were transported westward,and that the anticlinorial and synclinorial rocks were buriedto depths of 25–30 and 20–25 km respectively. Theexhumation with heating recorded by the anticlinorial samplesoccurred during the dome stage of deformation, and differentiallyuplifted the anticlinorial rocks relative to the synclinorialrocks; this differential uplift may have been accommodated throughreactivation of early thrust faults with normal movement sense.P-T paths of the Hardscrabble synclinorium rocks are suggestiveof a relatively elevated initial geothermal gradient for theirpre-nappe source terrane, which is interpreted to have beenbetween the Kearsarge-Central Maine basin and the Bronson Hillparautochthon.  相似文献   

19.
An analytical solution to describe the transient temperature distribution in a geothermal reservoir in response to injection of cold water is presented. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. Results show that heat loss to the confining rock layers plays a vital role in slowing down the cooling of the reservoir. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be profound on the results.  相似文献   

20.
In northwest Spain thrust sheets occur in an arcuate fold belt. The fault style consists of an array of thrusts, merging downdip into a single décollement surface. Most of the thrust sheets were initiated as thrusts cutting across flat lying beds. Folds above the hanging-wall ramps and some minor structures indicate that the body of the nappes has been subjected to an inhomogeneous simple shear parallel to bedding (y = 1.15), with slip concentrated along bedding planes. This allows the rocks forming the nappe to remain unstrained. At the base of the nappes a thin zone of deformed rock exists. The thrust sheets die out laterally against an anticline-syncline couple, oblique to the thrust direction. A geometrical analysis shows that if anticline and syncline axes are oblique, the thrust sheet was emplaced with a rotational movement, which can be evaluated. As deformation progressed two sets of folds were formed: a circumferential set, following the arc, and a radial set. An arcuate trace of the thrust structures remains after unfolding the radial folds. With a rotational emplacement, the displacement vector for successive points has a progressively greater length, and forms a progressively lower angle with the thrust. The main thrust units are broken into several slices with rotational movements, so that each unit was curved as it was being emplaced, producing a first tightening of the arc. Later folding increased the arc curvature to its present shape. The palaeomagnetic data available support the above conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号