首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sea surface height (SSH) as measured by satellites has become a powerful tool for oceanographic and climate related studies. Whereas in the open ocean good accuracy has been achieved, more energetic dynamics and a number of calibration problems have limited applications over continental shelves and near the coast. Tidal ranges in the Southwestern Atlantic (SWA) continental shelf are among the highest in the world ocean, reaching up to 12 m at specific locations. This fact highlights the relevance of the accuracy of the tidal correction that must be applied to the satellite data to be useful in the region. In this work, amplitudes and phases of tidal constituents are extracted from five global tide models and three regional models and compared to the corresponding harmonics estimated from coastal tide gauges (TGs) and satellite altimetry data. The Root Sum Square (RSS) of the misfit of the common set of the five tidal constituents solved by the models (M2, N2, S2, K1 and O1) is higher than 18 cm close to the coast for two of the regional models and higher than 24.5 cm for the rest of the models considered. Both values are too high to provide an accurate estimation of geostrophic non-tidal currents from satellite altimetry in the coastal region. On the other hand, the global model with the highest spatial resolution has a RSS lower than 4.5 cm over the continental shelf even when the non-linear M4 overtide is considered. Comparison with in-situ current measurements suggests that this model can be used to de-tide altimetry data to compute large-scale patterns of SSH and associated geostrophic velocities. It is suggested that a local tide model with very high resolution that assimilates in-situ and satellite data should meet the precision needed to estimate geostrophic velocities at a higher resolution both close to the coast and over the Patagonian shelf.  相似文献   

2.
Seasonal variations in the biomass (Chl a) and primary production (14C-method) of phytoplankton were studied during 12 months of 2005 in the three Ethiopian Rift Valley Lakes (ERVL) Ziway, Awassa and Chamo. Chl a showed an average value of 40, 20, and 30 mg m−3 for the three lakes, respectively. Integrated areal primary production for the total phytoplankton (g C m−2 d−1) varied 2-fold in the three lakes but on different levels, from 0.67–1.8 in L. Ziway, 1.8–4.6 in L. Awassa, and 1.0–2.6 in L. Chamo. The overall photosynthetic efficiency of utilizing photosynthetically active radiation by the phytoplankton on molar basis (mmol C mol of photons−1) resulted in an average value of 1.4 for L. Ziway, 3.5 for L. Awassa and 1.6 for L. Chamo. Among the different factors regulating phytoplankton primary productivity, light penetration and nutrients were the most important in the three lakes. The seasonal variations of incident radiation (most values between 5 and 7 E m−2 h−1) and water temperature (most values between 22 and 24 °C) were small and unlikely to result in the marked differences in phytoplankton primary production. Although relative increase in nutrient concentrations occurred following the rainy periods, the major algal nutrients were either consistently low (nitrate and/or silicate) or high (phosphate and/or ammonium) and remained within a narrow range for most of the study period in all the three lakes. Consequently, phytoplankton biomass and primary production seem to be maintained more by nutrient regeneration or turnover (facilitated by high temperature) than by allochthonous nutrient input. This would be coupled with wind-induced mixing that would play an important role in determining hydrographic characteristics (water column structure) and the associated redistribution of nutrients and phytoplankton, the availability of light and subsequently the spatial (vertical) and temporal patterns of phytoplankton production in these three ERVL. Phytoplankton production (PP) is regarded as a good predictor of fish yield in lakes and seasonal measurements of PP is a prerequisite for good such estimates.  相似文献   

3.
We examined the effects of freshwater flow and light availability on phytoplankton biomass and production along the Louisiana continental shelf in the region characterized by persistent spring–summer stratification and widespread summer hypoxia. Data were collected on 7 cruises from 2005 to 2007, and spatially-averaged estimates of phytoplankton and light variables were calculated for the study area using Voronoi polygon normalization. Shelf-wide phytoplankton production ranged from 0.47 to 1.75 mg C m−2 d−1 across the 7 cruises. Shelf-wide average light attenuation (kd) ranged from 0.19–1.01 m−1 and strongly covaried with freshwater discharge from the Mississippi and Atchafalaya Rivers (R2=0.67). Interestingly, we observed that the euphotic zone (as defined by the 1% light depth) extended well below the pycnocline and to the bottom across much of the shelf. Shelf-wide average chlorophyll a (chl a) concentrations ranged from 1.4 to 5.9 mg m−3 and, similar to kd, covaried with river discharge (R2=0.83). Also, chl a concentrations were significantly higher in plume versus non-plume regions of the shelf. When integrated through the water-column, shelf-wide average chl a ranged from 26.3 to 47.6 mg m−2, but did not covary with river discharge, nor were plume versus non-plume averages statistically different. The high integrated chl a in the non-plume waters resulted from frequent sub-pycnocline chl a maxima. Phytoplankton production rates were highest in the vicinity of the Mississippi River bird's foot delta, but as with integrated chl a were not statistically different in plume versus non-plume waters across the rest of the shelf. Based on the vertical distribution of light and chl a, a substantial fraction of phytoplankton production occurred below the pycnocline, averaging from 25% to 50% among cruises. These results suggest that freshwater and nutrient inputs regulate shelf-wide kd and, consequently, the vertical distribution of primary production. The substantial below-pycnocline primary production we observed has not been previously quantified for this region, but has important implications about the formation and persistence of hypoxia on the Louisiana continental shelf.  相似文献   

4.
Seasonal and event scale variations in the distribution and growth of phytoplankton in different hydrographic regions of the continental shelf are compared and evaluated in terms of floristic composition and the evolution of density and nutrient structure across the shelf. Annual cycles of phytoplankton biomass inshore of the 1000-m isobath are characterized by a March maximum and a July minimum. Cross-shelf biomass gradients usually increase in an offshore direction, a phenomenon that is most pronounced during March and April when biomass is high, diatoms dominate, and growth rate is light limited. This is a consequence of the combined effects of growth along the stratified side of the shelf-break front and offshore transport of biomass produced nearshore. We estimate that about 90% of the diatom biomass produced during the February to April bloom period (35% of annual production) is exported from shelf to slope water. Similar but less-pronounced gradients develop during summer due to the development of a chlorophyll maximum layer below the pycnocline where growth rate is also light limited. Production and loss are more tightly coupled under these conditions and about 9% of the biomass produced during May to October appears to be exported (5% of annual production). Export during the diatom bloom period is balanced mainly by nitrate inputs from the Gulf of Maine and adjacent slope water while summer export may be balanced by anthropogenic nitrogen input. The latter could be coupled with biomass export by ammonium remineralization and nitrification in the cold pool of the mid-shelf region. In general, export is greatest when diatoms dominate, growth is light limited, and biomass distributions are physically forced. Export is lowest when nanoplankton dominate, growth is nitrogen limited, and biomass distributions are controlled by grazing.The shelf-break front plays a key role, influencing patterns of phytoplankton growth, biomass distributions, and shelf export. During the diatom bloom period, the development of stratification in nutrient-rich offshore water between storm events results in high growth rates and biomass near the surface on the shelf side of the front. Under these conditions, biomass accumulates in the mid-shelf region on a time scale of days to weeks. Export occurs during wind events with net export from the shelf occurring on a time scale of weeks to months. Blooms also develop along the shelf side of the front during summer but below the pycnocline. Most of the summer export of biomass probably takes place here with accumulation and export occurring on a time scale of hours to days. While this export is small compared to export during the diatom bloom period, it may be critical to the prevention of anoxic events such as that of 1976.  相似文献   

5.
The European Union Water Framework Directive (WFD), a new regulation aiming to achieve and maintain a clean and well-managed water environment, refers to phytoplankton as one of the biological quality elements that should be regularly monitored, and upon which the reference conditions of water quality should be established. However, the use of phytoplankton as a biological quality element will result in several constraints, which are analyzed in this article with examples from Portuguese waters. Specifically, the establishment of reference conditions of water quality may be difficult in some water bodies for which no historical data exists. The sampling frequency proposed for phytoplankton monitoring does not seem suitable to assess phytoplankton succession, and may preclude the detection of algal blooms. Finally, the use of chlorophyll a as a proxy of phytoplankton biomass and abundance has been proposed by some authors, but it may overlook blooms of pico- and small nanophytoplankton, and overestimate the importance of large microphytoplankton. Furthermore, most studies in Portugal have used only inverted microscopy for phytoplankton observation and quantification; this method does not permit the distinction between autotrophic and heterotrophic cells, especially in samples preserved with Lugol's solution, and does not allow the observation of smaller-sized cells. Finally, some techniques, such as remote sensing and chemotaxonomic analysis, are proposed to be used as supplements in phytoplankton monitoring programs.  相似文献   

6.
Mean daily streamflow records from 44 river basins in Romania with an undisturbed runoff regime have been analyzed for trends with the nonparametric Mann‐Kendall test for two periods of study: 1961–2009 (25 stations) and 1975–2009 (44 stations). The statistical significance of trends was tested for each station on an annual and seasonal basis, for different streamflow quantiles. In order to account for the presence of serial correlation that might lead to an erroneous rejection of the null hypothesis, a trend‐free prewhitening was applied to the original data series. The regional field significance of trends is tested by a bootstrap procedure. Changes in the streamflow regime in Romania are demonstrated. The main identified trends are an increase in winter and autumn streamflow since 1961 and a decrease in summer flow since 1975. The streamflow trends are well explained by recent changes in temperature and precipitation that occurred in the last 50 years. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO(3) and SiO(4) concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH(4) and PO(4) in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally > 9 microL(-1) in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO(4) in the most productive southern waters and it seldom decreased to limiting levels ( approximately 0.1 microM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained > 3.5 mg L(-1) at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH(4) and PO(4) and an increase in bottom DO. In contrast, there were an increase in chl a and NO(3), and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

8.
《Marine pollution bulletin》2009,58(6-12):313-324
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO3 and SiO4 concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH4 and PO4 in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally >9 μg L−1 in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO4 in the most productive southern waters and it seldom decreased to limiting levels (∼0.1 μM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained >3.5 mg L−1 at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH4 and PO4 and an increase in bottom DO. In contrast, there were an increase in chl a and NO3, and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

9.
《国际泥沙研究》2016,(2):181-193
The Assu Incised Valley(AIV) is a new example of an incised-valley system located on the Brazilian Equatorial continental shelf.This valley extends over 40 km from the present-day shoreline to the shelf break,in a passive margin setting,on a shallow(~70 m),narrow(43 km) and flat(?1) shelf,with mixed carbonate-siliciclastic sedimentation and a low terrigenous sediment supply.To investigate the morphology of the incised valley and the surrounding shelf area,we analyzed LandSat images and bathymetric,shallow seismic and sedimentological data.The results indicate that the AIV is a coastal-plain incised valley.The incision was mainly forced by the magnitude of the last fall in sea level,which created the specific geometry of valley,atypically widening landward due to lithological and structural control.The AIV is a broad N-S-trending valley with a negative relief of approximately 12 m below the mean shelf topography and low-angle valley walls(~3°),surrounded by a highly planar shelf.The valley is asymmetric in cross-section and subdivided into three segments along the shelf:the landward segment is wide(up to 8 km),shallow( 9 m deep),and 25 km long;the middle segment is narrow(2 km wide),only slightly deeper than the inner segment( 15 m deep) and 10 km long;the outer segment is very narrow( 1 km),has incised relief up to 30 m deep and is 8 km long.The incised valley changes near the shelf break abruptly to a deeper(300 m) and wider submarine canyon(3 km).The three valleysegments are bounded by transfer faults of W-E orientation.In addition,the accommodation-space response to the last deglacial sea-level rise provided a 30 m thick sedimentary fill above a Pleistocene/Holocene regional unconformity and a morphologically controlled stratigraphic organization.The antecedent valley topography controls the sedimentation and hydrodynamics of the modern shelf.Furthermore,the morphology of the AIV is a key example of the control of the bedrock on valley incision and infill response to the last fall and rise in sea level on narrow,shallow and low-gradient shelves.  相似文献   

10.
Saanich Inlet is a highly productive temperate fjord with the capability to record inter-annual patterns of water-column primary production in undisturbed laminated sediments. We investigated spatial and temporal variations in primary productivity, total and size-fractionated phytoplankton chl a, dissolved nutrients, temperature and salinity at the head and mouth of Saanich Inlet from May 2005 to November 2006. New primary productivity was also measured from May to October 2006. During the growing season (spring, summer and fall), primary productivity was 1.5 times higher at the mouth than at the head of Saanich Inlet and, averaged across stations, total productivity was 460 g C m−2 y−1. Average new productivity was 53% and 58% of total primary productivity at the head and mouth of the inlet, respectively, and during the growing season micro-phytoplankton (>20 μm; mainly diatoms) was the most abundant size-class of phytoplankton. These rates of primary production are as high as or higher than those measured in other fjords, possibly because of a tidally-driven fortnightly gravity exchange that supplies nutrients to surface waters that enhance biological production when nutrients would otherwise be limiting. This exchange delivers nutrients at least as far inland as the head station, while nutrients associated with an eddy near the mouth may be the cause of even higher productivity there. We discuss the impact of these nutrient sources to Saanich Inlet on the records of paleoproduction generated from two Ocean Drilling Program cores extracted from this fjord, and suggest that the fortnightly exchange buffers variations in nutrient supply occurring on sub-decadal or decadal scales.  相似文献   

11.
12.
Long-term patterns in riverine nutrient flux in the lower Mississippi River were examined in relationship to spatial and temporal patterns in surface nutrient concentrations, chlorophyll, and primary productivity in the outflow region in the northern Gulf of Mexico. A retrospective analysis of dissolved inorganic nutrient fluxes based on USGS water quality data and US Army Corps of Engineers discharge data from the 1950s to mid-2004 showed an increase in river-borne dissolved inorganic nitrogen (DIN) flux after 1967. Flux of DIN peaked in the early 1980s and has since fluctuated and shown a general decreasing trend since the early 1990s. Records for total phosphorus (total P) fluxes beginning in mid-1974 exhibited a variable but slight increasing trend up to 2004. The increase in fluxes during the 1970s and into the 1980s can be attributed to increases in both nutrient concentrations and river discharge. DIN concentrations since the 1980s have shown a decreasing trend. Total P concentrations exhibited large fluctuations, with no consistent long-term trend. Dissolved organic nitrogen (DON) concentrations and orthophosphate (Ortho P) peaked in the 1980s, declined relative to DIN and remained relatively low. DIN:Ortho P ratios were consistently well above the Redfield N:P ratio of 16:1. DIN:Total P ratios were variable and lower, fluctuating around the Redfield 16:1 value. Both DIN:Ortho P and DIN:Total P ratios were weakly, but significantly, correlated with river discharge and fluctuations were largely a reflection of higher DIN concentrations during high-discharge events. DIN:Ortho P ratios in surface waters of the outflow region adjacent to the birdfoot delta were higher in spring, consistent with seasonal variation in riverine DIN:Ortho P ratios. The seasonal signal diminished with increasing distance to the west of the delta, indicating a selective removal of DIN or source of Ortho P along the shelf. DIN fluxes and SeaWiFS satellite-derived chlorophyll showed seasonally elevated values during the first half of the year followed by generally lower values in late summer and fall. This seasonal signal diminished from east to west. The observed relationship between DIN flux and chlorophyll was consistent with ship-based observations of a linkage between riverine nutrient inputs and productivity. Long-term trends in river discharge were correlated with the Multivariate ENSO (El Niño Southern Oscillation) Index (MEI) (r=−0.281, p<0.0001), evidence that river discharge was influenced by global climatic trends.  相似文献   

13.
The results of long-term observations are used to analyze the seasonal and year-to-year variations of the abundance and biomass of planktonic algae in connection with the seasonal dynamics of water level in the Kuibyshev Reservoir. The dynamics of level regime in the reservoir in combination with climate conditions are a determining factor for phytoplankton development. The adverse effects of eutrophication (in particular, water blooming) can be reduced by maintaining an optimal water level in the reservoir—not below the normal water level (53 m BS) in the summer.  相似文献   

14.
The results are presented of an intensive study of phytoplankton assemblage carried out in the Berounka River above its confluence with the Vltava River (Czech Republic) in the period 2002–2007. The annual and interannual changes of phytoplankton development (based on high frequency of sampling) and their relation to hydrological conditions and concentrations of main nutrients are analysed. A marked decline of nutrient concentrations was observed during the period 1996–2007. The annual mean values of total P decreased from 0.43 mg L−1 to 0.16 mg L−1, those of N-NO3 from 4.6 mg L−1 to 1.5 mg L−1 and N-NH4 from 1.9 mg L−1 to 0.04 mg L−1. Despite this, the phytoplankton biomass remained at a high level. The seasonal mean values of chlorophyll-a ranged from 51.0 μg L−1 to 116.8 μg L−1 in the same time period. An obviously stronger relationship was found of the phytoplankton biomass and pattern of its development to the variation of flow rates than to the existing level of nutrient concentrations. A significantly decreasing relationship (R2 = 0.384, P < 0.001) of chlorophyll-a to flow rates and a significantly increasing relationship (R2 = 0.359, P < 0.001) of chlorophyll-a to water temperatures were found, based on monthly mean values for the seasonal period 2002–2007. The results obtained indicate a remarkable increase of phytoplankton biomass and its prolongated occurrence in watercourses, which can be expected due to the consequences of the predicted climate change (i.e. higher occurrence of summer droughts and low precipitation amounts accompanied by a substantial drop of flow rates, increase of air and water temperatures), as described in the respective scenarios for the territory of the Czech Republic. Simulations by the regional climate models HIRHAM and RCAO and emission scenario SRES indicated the increase of air temperature by 2.5–5 °C, decrease of precipitation amount by 6–25% and decline of flows by 14–43% in the Berounka River for the scenario period 2071–2100.  相似文献   

15.
16.
The importance of phytoplankton as a characteristic ecosystem component is closely connected with its position in the hierarchical ecosystem structure. Because of the relations to the levels below and above, phytoplankton biomass and composition integrate characteristic properties of the ecosystem. The information content of these parameters has been demonstrated for data from a tenyear-monitoringseries in the western branch of the Oder-estuary. Over all, phytoplankton species composition in coastal waters is closely correlated with salinity and temperature, biomass concentration first of all with the trophic level. Cyanobacterial blooms are attributable to physical processes and are not necessarily indicators for eutrophication.  相似文献   

17.
Song X  Huang L  Zhang J  Huang X  Zhang J  Yin J  Tan Y  Liu S 《Marine pollution bulletin》2004,49(11-12):1036-1044
Environmental factors, phytoplankton biomass (Chl a) and primary production of two water areas in Daya Bay (Dapeng'ao Bay and Aotou Bay) were investigated during the transition period from spring to summer. Chl a ranged from 3.20 to 13.62 and 13.43 to 26.49 mg m(-3) in Dapeng'ao Bay and Aotou Bay respectively, if data obtained during red tides are excluded. Primary production varied between 239.7 and 1001.4 mg Cm(-2) d(-1) in Dapeng'ao Bay. The regional distribution of Chl a and primary production were mostly consistent from spring to summer in both bays. Seasonal transition characters have been found in Daya Bay from spring to summer, including high values of DO, nitrate and silicate. Size structures of phytoplankton and its primary production do not change very much from spring to summer, with micro-phytoplankton dominating and contributing about 50% of the whole. In Daya Bay, phytoplankton is limited by nitrogen in spring, and by phosphate in summer. Artificial impacts are evident from high temperature effluent from nuclear power stations, aquaculture and sewage. During the investigation, a red tide occurred in Aotou Bay, with a maximum Chl a of 103.23 mgm(-3) at surface and primary production of 2721.9 mg Cm(-2) d(-1) in the red tide center. Raised water temperature and nutrient supply from land-sources help to stimulate annual red tides.  相似文献   

18.
太湖浮游植物功能群季节演替特征及水质评价   总被引:3,自引:3,他引:3  
2013年10月-2015年7月对太湖分季节共进行8次采样,以分析太湖浮游植物功能群组成、时空变化及其理化影响因子.结果显示:调查期间共鉴定出20组功能群,其中主要代表性功能群11组,分别为M、Y、C、J、P、S1、D、H1、T、MP、W1.两年的数据显示太湖浮游植物功能群的季节演替变化明显,其中富营养水体的代表性功能群M、C、Y组在各季节均占优势.RDA分析显示,以M、C功能群为主的夏、秋季功能群分布主要受到透明度的影响;以Y功能群为主的春季功能群分布主要是受到总氮浓度的影响.Pearson相关性分析显示基于功能群计算的Q指数和Shannon-Wiener指数与水温、氨氮浓度存在显著关系,两种评价方法之间也呈显著正相关.对比Q指数、Shannon-Wiener指数以及TLI指数3种水质评价方法,发现Q指数评价方法能更好地反映水体的营养状态.综上所述,功能群能直观反映太湖浮游植物季节演替特征,更能客观指示太湖水质状况.  相似文献   

19.
Seasonal variation in water column conditions in the upper Gulf of Thailand (UGoT) was analyzed by considering four major factors including surface heat flux, freshwater discharge, tidal and wind stirrings. The coincidence of surface heat loss, low river discharge and strong wind resulted in vertical well-mixing in December. Strong stratification developed in September and October due to large river discharge and moderate heat flux. Strong surface heating in April and May has a potential to generate strong stratification, although not as large as that in September and October due to low river discharge. Although no factors are prominent during January and March, and June and August, weak to moderate stratification results, because the influences of river discharge and surface heating are still larger than those of tidal and wind stirrings. The results of water column analysis based on monthly average data agree well with analyses derived from cruise data in the same months. Most analytical results correspond to the distributions of temperature and salinity from field observations. Disagreement, however, was found in December 2003 (cruise CU-2) when stratification in some small regions occurs in the distribution of water properties, but the water column analysis suggests vertical well-mixing. This phenomenon is triggered by non-uniform distribution of freshwater over UGoT, which is related to river discharge, monsoonal wind and current. Compared to a previous study regarding surface chlorophyll dynamics, water column conditions may be used to explain the occurrence of phytoplankton bloom in this region.  相似文献   

20.
Summary Reitan's data on precipitable water vapour over about 45 stations of the U.S.W.B. network are correlated with altitude and average station temperature values. Computations are carried out following a simple proposed model which is found to be obeyed with reasonably good approximation on average monthly and seasonal scales.Contribution of the Centro-Nucleazione Aerosoli of the National Research Council of Italy,Rome, Via Vettore 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号