共查询到20条相似文献,搜索用时 15 毫秒
1.
Two 24-h surveys were conducted in St. Andrew Bay, Florida, during spring and neap tides to describe the tidal and non-tidal circulation patterns and to determine the factors that affect these patterns. In particular, the effect of tidal forcing in modulating such circulation patterns was explored. Observed velocities were fitted to diurnal and semidiurnal harmonics separating tidal motions from sub-tidal motions. Residual flows were compared with an analytic model that allowed variations in the relative contributions from Coriolis acceleration and friction using the Ekman number. A solution with an Ekman number of 0.04 resembled the observations best and indicated that the hydrodynamics were governed by pressure gradient, Coriolis and friction. Locally, advective accelerations became important around headlands in sub-estuaries in the system. The consistency of the mean pattern from October to March suggests that tides play a minor role in modulating the exchange flow. Deviations from the long-term mean are mainly caused by wind-driven coastal setup and setdown. 相似文献
2.
The response of the Chesapeake Bay to river discharge under the influence and absence of tide is simulated with a numerical model. Four numerical experiments are examined: (1) response to river discharge only; (2) response to river discharge plus an ambient coastal current along the shelf outside the bay; (3) response to river discharge and tidal forcing; and (4) response to river discharge, tidal forcing, and ambient coastal current. The general salinity distribution in the four cases is similar to observations inside the bay. Observed features, such as low salinity in the western side of the bay, are consistent in model results. Also, a typical estuarine circulation with seaward current in the upper layer and landward current in the lower layer is obtained in the four cases. The two cases without tide produce stronger subtidal currents than the cases with tide owing to greater frictional effects in the cases with tide. Differences in salinity distributions among the four cases appear mostly outside the bay in terms of the outflow plume structure. The two cases without tide produce an upstream (as in a Kelvin wave sense) or northward branch of the outflow plume, while the cases with tide produce an expected downstream or southward plume. Increased friction in the cases with tide changes the vertical structure of outflow at the entrance to the bay and induces large horizontal variations in the exchange flow. Consequently, the outflow from the bay is more influenced by the bottom than in the cases without tide. Therefore, a tendency for a bottom-advected plume appears in the cases with tide, rather than a surface-advected plume, which develops in the cases without tide. Further analysis shows that the tidal current favors a salt balance between the horizontal and vertical advection of salinity around the plume and hinders the upstream expansion of the plume outside the bay. 相似文献
3.
The residual circulation over the continental slope, and in particular, its vertical structure, is analysed by means of an idealised hydrodynamic model. The model is based on the depth-dependent shallow-water equations under uniform along-isobath conditions and is forced by a prescribed meridional density gradient and tidal velocities. By means of expansion in the small Rossby number solutions are analysed for conditions representative for the continental slopes off the Hebrides and in the Bay of Biscay. The steady solution at zeroth order consists of a linear density-driven flow. At order a tidally rectified flow is found and a stationary flow due to self-interaction of the zeroth-order density-driven flow. At order 2 the leading-order effect of the interaction between the zeroth-order density-driven flow and the tides is found: the ‘interaction current’. The solutions up to and including order 2 constitute an along-isobath steady slope current which is comparable to field data. The slope current and the accompanying cross-shelf circulation depend strongly on the shelf and flow characteristics. For the Hebridean case the density forcing predominates, but for the Biscay case the tidal effects are of the same order of magnitude as the density effects. Under those conditions the interaction current is significant which implies that linear superposition of density and tidal effects differs from the non-linear combination of both. It is also shown that the depth-average of the interaction current differs essentially from the solution obtained from a depth-averaged model. 相似文献
4.
Seasonal variation in the transverse and layered structure of estuarine circulation in Ariake Bay, Japan was investigated by box model analysis using monthly salinity data from 1990 to 2000. Two-layered gravitational estuarine circulation was intensified from autumn to spring (vertically well mixed season) accompanied by a small river discharge. Two-layered circulation was weakened accompanying the transversely segregated cyclonic circulation in the upper layer during summer (stratified season) with a large river discharge. Such seasonal variation in the transverse and layered structure of estuarine circulation is because the bay width of Ariake Bay (20 km) is narrower than the external Rossby deformation radius (235 km) but wider than the internal Rossby deformation radius (3–5 km). 相似文献
5.
Modelling of hydrodynamics and cohesive sediment transport in Tanshui River estuarine system,Taiwan 总被引:2,自引:0,他引:2
A laterally averaged two-dimensional numerical model is used to simulate hydrodynamics and cohesive sediment transport in the Tanshui River estuarine system. The model handles tributaries as well as the main stem of the estuarine system. Observed time series of salinity data and tidally averaged salinity distributions have been compared with model results to calibrate the turbulent diffusion coefficients. The overall model verification is achieved with comparisons of residual currents and salinity distribution. The model reproduces the prototype water surface elevation, currents and salinity distributions. Comparisons of the suspended cohesive sediment concentrations calculated by the numerical model and the field data at various stations show good agreement. The validated model is applied to investigate the tidally averaged salinity distributions, residual circulation and suspended sediment concentration under low flow conditions in the Tanshui River estuarine system. The model results show that the limit of salt intrusion in the mainstem estuary is located at Hsin-Hai bridge in Tahan Stream, 26 km from the River mouth under Q75 flow. The null point is located at the head of salt intrusion, using 1 ppt isohaline as an indicator. The tidally averaged sediment concentration distribution exhibits a local maximum around the null point. 相似文献
6.
Data from time series of transects made over a tidal period across a section of the upper Chesapeake Bay, USA, reveal the influence of lateral dynamics on sediment transport in an area with a deep channel and broad extents of shallower flanks. Contributions to lateral momentum by rotation (Coriolis plus channel curvature), cross channel density gradients and cross channel surface slope were estimated, and the friction and acceleration terms needed to complete the balance were compared to patterns of observed lateral circulation. During ebb, net rotation effects were larger because of river velocity and reinforcement of Coriolis by curvature. During flood, stratification was greater because of landward advection of strong vertical density gradients. Together, the ebb intensified lateral circulation and flood intensified stratification focused sediment and sediment transport along the left side of the estuary (looking seaward). The tendency for greater stratification on flood and net sediment flux toward the left-hand shoal are contrary to more common models which, in the northern hemisphere, predict greater resuspension on flood and move sediment toward the right-hand shoal. These tidal asymmetries interact with the lateral circulation to focus net sediment flux on the left side of the estuary, and to produce net ebb directed sediment transport at the surface of the same order of magnitude as net flood directed sediment transport at the bottom. 相似文献
7.
A three-dimensional primitive-equation model is used to simulate the Long Island Sound (LIS) outflow for a 1-year (2001) period. The model domain includes LIS and New York Bight (NYB). Tidal and wind forcing are included, and seasonal salinity and temperature variations are assimilated. The model results are validated with the HF radar, moored acoustic Doppler current profiler (ADCP), and ferry-based ADCP observations. The agreement between simulated and observed flow patterns generally is very good. The difference in seasonal mean currents between the model and moored ADCP is about 0.01 m/s; the correlation of dominant velocity fluctuations between the model and HF radar is 0.83; and the difference in mean LIS transport between the model and shipboard ADCP is about 5%. However, the model predicts a prominent tidally generated headland eddy not supported by the HF radar observation. The model sensitivity study indicates that the tides, winds, and ambient coastal front all have important impact on the buoyant outflow. The tides and winds cause stronger vertical mixing, which reduces the surface plume strength. The ambient coastal front, on the other hand, tends to enhance the plume. 相似文献
8.
Systematic westerly biases in the southern hemisphere wintertime flow and easterly equatorial biases are experienced in the Météo-France climate model. These biases are found to be much reduced when a simple parameterization is introduced to take into account the vertical momentum transfer through the gravity waves excited by deep convection. These waves are quasi-stationary in the frame of reference moving with convection and they propagate vertically to higher levels in the atmosphere, where they may exert a significant deceleration of the mean flow at levels where dissipation occurs. Sixty-day experiments have been performed from a multiyear simulation with the standard 31 levels for a summer and a winter month, and with a T42 horizontal resolution. The impact of this parameterization on the integration of the model is found to be generally positive, with a significant deceleration in the westerly stratospheric jet and with a reduction of the easterly equatorial bias. The sensitivity of the Météo-France climate model to vertical resolution is also investigated by increasing the number of vertical levels, without moving the top of the model. The vertical resolution is increased up to 41 levels, using two kinds of level distribution. For the first, the increase in vertical resolution concerns especially the troposphere (with 22 levels in the troposphere), and the second treats the whole atmosphere in a homogeneous way (with 15 levels in the troposphere); the standard version of 31 levels has 10 levels in the troposphere. A comparison is made between the dynamical aspects of the simulations. The zonal wind and precipitation are presented and compared for each resolution. A positive impact is found with the finer tropospheric resolution on the precipitation in the mid-latitudes and on the westerly stratospheric jet, but the general impact on the model climate is weak, the physical parameterizations used appear to be mostly independent to the vertical resolution. 相似文献
9.
The relation between tidal flow asymmetry and net transport of sediment in the semidiurnal regime has been extensively described. This study reveals that in the diurnal regime, the direction of long-term net bed-load transport and resulting morphologic changes is partly determined by the phase-angle relationship of O1, K1, and M2. Simple analytical formulations of time-averaged bed-load transport were derived which separate the relative contributions of tidal asymmetry from that of residual flow with tidal stirring. In this particular case, the Red River Delta in Vietnam, transports related to tidal asymmetry are larger than those induced by the monsoon currents, and are an order of magnitude larger than those associated with topographic residual flow around the delta. Tide-induced morphologic changes dominate at water depths between 10 and 25 m, of which the patterns of erosion and deposition overlap with observed bathymetric changes. Additional observed changes that occur in more shallow water cannot be explained by tidal asymmetry and are probably related to wave action and to deposition from the buoyant river plume.Responsible Editor: Jens Kappenberg 相似文献
10.
Pablo A. Lara-Martín Eduardo González-Mazo Mira Petrovic Damià Barceló Bruce J. Brownawell 《Marine pollution bulletin》2014
This work deals with the environmental distribution of nonionic surfactants (nonylphenol and alcohol ethoxylates), their metabolites (NP, nonylphenol; NPEC, nonylphenol ethoxycarboxylates; and PEG, polyethylene glycols) and a selection of 64 pharmaceuticals in the Long Island Sound (LIS) Estuary which receives important sewage discharges from New York City (NYC). Most target compounds were efficiently removed (>95%) in one wastewater treatment plant monitored, with the exception of NPEC and some specific drugs (e.g., hydrochlorothiazide). Concentrations of surfactants (1.4–4.5 μg L−1) and pharmaceuticals (0.1–0.3 μg L−1) in seawater were influenced by tides and sampling depth, consistent with salinity differences. Surfactants levels in suspended solids samples were higher than 1 μg g−1, whereas only most hydrophobic or positively charged pharmaceuticals could be found (e.g., tamoxifen, clarithromycin). Maximum levels of target compounds in LIS sediments (PEG at highest concentrations, 2.8 μg g−1) were measured nearest NYC, sharply decreasing with distance from major sewage inputs. 相似文献
11.
To improve understanding of DOC dynamics in seasonal Mediterranean environments, rainfall, soil water, groundwater and stream water samples were taken during a 27-month period in the Can Vila catchment (northeast Spain). Using these data, we characterized DOC dynamics in the different hydrological compartments and analysed the factors affecting them. We also analysed DOC dynamics during storm events and the factors that control DOC delivery to the stream. The results show some seasonality in rainwater and soil water DOC concentrations, while no clear seasonality was observed in stream water and groundwater, where DOC dynamics were strongly related to discharge and water table variations. For storm events with several discharge peaks, the slope of the discharge–DOC concentration relationship was higher for the first peak. The rather similar dynamics of stream water DOC concentration in all floods contrast with the observed diversity of hydrological processes. This raises the question of the origin of the observed rapid DOC increase.
EDITOR M.C. AcremanASSOCIATE EDITOR K. Heal 相似文献
12.
A series of experiments was conducted to test concepts of porous flow degassing of rhyolitic magma during ascent and of the subsequent collapse of vesicles in degassed magma to form obsidian. Dense, synthetically hydrated, natural glasses were pressurized under water-saturated conditions and then decompressed to achieve a range of porosities in the presence of a tracer vapor, D2O. Rapid isotopic exchange indicative of vapor transport rather than of simple diffusion occurred at a porosity >60 vol.%, in accord with earlier gas permeability measurements on cold natural samples. In another series of experiments, natural and synthetic pumices, vesiculated by degassing to atmospheric pressure, rapidly collapsed to dense glass on repressurization to the modest pressures prevailing in lava flows. No relict bubble textures remained. These results support the hypothesis that effusive eruptions result from the syneruptive escape of gas from permeable magmatic foam, and that a process analogous to welding yields dense lavas when such foams are extruded. 相似文献
13.
14.
Yann Leredde Cléa Denamiel Elena Brambilla Christine Lauer-Leredde Frédéric Bouchette Patrick Marsaleix 《Continental Shelf Research》2007
The Gulf of Aigues-Mortes (NW Mediterranean Sea) is a midshelf zone whose scale is an intermediate between the nearshore scale (0–10 m depth) and the coastal scale (including the whole continental shelf). Its hydrodynamics is investigated for the first time. ADCP, CTD and thermosalinograph data were collected during three short cruises (HYGAM; March 6–7, 20–21, April 5–6, 2005). They were scheduled approximately every 15 days to sample the gulf circulation under different weather conditions. Moreover, the cruise data were used to validate the Symphonie model, a 3D primitive equations circulation model. The circulation features displayed by in situ data were well reproduced by Symphonie. A downscaling modelling approach was implemented, the largest scale being obtained by the replay of the MFSTEP regional model of the North-Western Mediterranean Sea. 相似文献
15.
16.
Motivated by field studies of the Ems estuary which show longitudinal gradients in bottom sediment concentration as high as O(0.01 kg/m4), we develop an analytical model for estuarine residual circulation based on currents from salinity gradients, turbidity gradients, and freshwater discharge. Salinity is assumed to be vertically well mixed, while the vertical concentration profile is assumed to result from a balance between a constant settling velocity and turbulent diffusive flux. Width and depth of the model estuary are held constant. Model results show that turbidity gradients enhance tidally averaged circulation upstream of the estuarine turbidity maximum (ETM), but significantly reduce residual circulation downstream, where salinity and turbidity gradients oppose each other. We apply the condition of morphodynamic equilibrium (vanishing sediment transport) and develop an analytical solution for the position of the turbidity maximum and the distribution of suspended sediment concentration (SSC) along a longitudinal axis. A sensitivity study shows great variability in the longitudinal distribution of suspended sediment with the applied salinity gradient and six model parameters: settling velocity, vertical mixing, horizontal dispersion, total sediment supply, fresh water flow, and water depth. Increasing depth and settling velocity move the ETM upstream, while increasing freshwater discharge and vertical mixing move the ETM downstream. Moreover, the longitudinal distribution of SSC is inherently asymmetric around the ETM, and depends on spatial variations in the residual current structure and the vertical profile of SSC. 相似文献
17.
在青藏高原东边缘沿冕宁—宜宾进行了大地电磁探测研究,剖面西起康滇地轴,向东穿过大凉山地块,终止于四川盆地.利用带地形的NLCG(非线性共轭梯度)方法对资料进行了反演,得到沿剖面的二维电性结构.康滇地轴和大凉山地块地壳中存在向上拱起的高导层(HCL),顶面埋深为10~15 km,最浅处不足10 km,厚度大约15~25 km,最小电阻率小于10 Ωm.四川盆地中下地壳不存在高导层.和该剖面北侧的石棉—乐山剖面的地壳电性结构对比分析表明,高导层在南北方向上可能连续延伸,长度大于100 km.壳内高导层的高导电性与岩石的部分熔融有关,并可能含有百分之几的含盐流体,易于流动和变形.青藏高原东部地壳内的可流动层在向东或东南方向流动过程中,由于受到四川盆地的阻挡,转向南或南南东方向,大体沿着大凉山地块的走向.在东西方向,壳内高导层自川滇地块向东运动,穿过大凉山地块西边界的安宁河断裂和则木河断裂,在大凉山地块东部,向四川盆地深部倾俯.本文对于壳内可流动层的存在及其与青藏高原东边缘的变形和地震活动性的关系进行了探讨. 相似文献
18.
Chlorine- and sulphur-bearing compounds in fumarole discharges of the La Fossa crater at Vulcano Island (Italy) can be modelled by a mixing process between magmatic gases and vapour from a boiling hydrothermal system. This allows estimating the compounds in both endmembers. Magma degassing cannot explain the time variation of sulphur and HCl concentrations in the deep endmember, which are more probably linked to reactions of solid phases at depth, before mixing with the hydrothermal vapours. Based on the P–T conditions and speciation of the boiling hydrothermal system below La Fossa, the HCl and Stot contents in the hydrothermal vapours were used to compute the redox conditions and pH of the aqueous solution. The results suggest that the haematite–magnetite buffer controls the hydrothermal fO2 values, while the pH has increased since the end of the 1970s. The main processes affecting pH values may be linked to Na–Ca exchanges between evolved seawater, feeding the boiling hydrothermal system, and local rocks. While Na is removed from water, calcium enters the solution, undergoes hydrolysis and produces HCl, lowering the pH of the water. The increasing water–rock ratio within the hydrothermal system lowers the Ca availability, so the aqueous solution becomes less acidic. Seawater flowing towards the boiling hydrothermal brine dissolves a large quantity of pyrite along its path. In the boiling hydrothermal system, dissolved sulphur precipitates as pyrite and anhydrite, and becomes partitioned in vapour phase as H2S and SO2. These results are in agreement with the paragenesis of hydrothermal alteration minerals recovered in drilled wells at Vulcano and are also in agreement with the isotopic composition of sulphur emitted by the crater fumaroles. 相似文献
19.
We examined the applicability of the critical‐source area (CSA) concept to the dairy‐grazed 192‐ha Upper Toenepi catchment and its 8·7‐ha Kiwitahi sub‐catchment, New Zealand. We evaluated if phosphorus (P) transport from land into stream is dominated by saturation‐excess (SE) and infiltration‐excess (IE) runoff during stormflow and by sub‐surface (<1·5 m depth) flows during baseflow. We measured stream flow and shallow groundwater levels, collected monthly stream, tile drain (TDA) and groundwater samples, and flow‐proportional stream samples from the Kiwitahi sub‐catchment, and determined their dissolved reactive phosphorus (DRP) and total phosphorus (TP) concentrations. In the Kiwitahi sub‐catchment, during storm events, IE contributions were significant. Contributions from SE appeared significant in the Upper Toenepi catchment. However, in both catchments, sub‐surface contributions dominated stormflow and baseflow periods. Absence of water table at the surface and the water table gradient towards the stream indicated that P transport during events was not limited to surface runoff. The dynamics of the groundwater table and the occurrence of SE areas were influenced by proximity to the stream and hillslope positions. Baseflow accounted for 42% of the annual flow in the Kiwitahi sub‐catchment, and contributed 37 and 52% to the DRP and TP loads, respectively. The P transport during baseflow appeared equally important as P losses from CSAs during stormflow. The close resemblance in P levels between groundwater and stream samples during baseflow demonstrates the importance of shallow groundwater for stream flow. In the Upper Toenepi catchment, contributions from effluent ponds (EFFs) dominated P loads. Management strategies should focus on controlling P release from EFFs, and on decreasing Olsen P concentrations in soil to minimize leaching of P via sub‐surface flow to streams. Research is needed to quantify the role of sub‐surface flow as well as to expand management strategies to minimize P transfers during stormflow and baseflow conditions. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
20.
Solute transport in rivers and streams with hyporheic zone exchange and/or in-stream storage is typically affected by the prevailing flow rate. The research reported here focuses on stream tracer experiments repeated many times along the same Austrian (Mödlingbach) and Italian (Torrente Lura) channel reaches to characterize parameter dependency on flow rate. Both groups of data sets showed an increase of storage zone area and main stream area with discharge. In either case, a strong negative correlation was obtained between storage zone residence time and flow rate. From the Mödlingbach data, no clear relationship with Q emerged for the dispersion coefficient and the dead zone ratio, whereas Torrente Lura showed a clear positive correlation of the dispersion coefficient with the flow rate and a slightly negative Q-dependency for the dead zone ratio. Mödlingbach and Torrente Lura results are presented against the background of other repeat experiments reported in literature. 相似文献