首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The freshwater budget of a tidal flat area is evaluated from long-term hydrographic time series from an observation pole positioned in a tidal channel in the Hörnum Basin (Germany). For each tidal cycle, the freshwater budget is calculated from the total imported and exported water volumes and the corresponding mean densities. The variability of the budget on a tidal scale is characterised by a period of twice the tidal period, exhibiting a minimum when the tidal flats are dry around daylight hours during the foregoing low tide, and a maximum when low tide occurs at night; enhanced evaporation on the flats at daylight hours is identified as the driving process. On the average over one year, while winter observations are missing, the freshwater budget is negative for the years 2002–2005 and positive only for 2006. The interannual mean is negative and amounts to a freshwater loss of about 2 mm day−1, although the large-scale climate in this region is humid. The results demonstrate that the bulk parametrisations for the latent and sensible heat flux between the ocean and the atmosphere must not be applied for the tidelands.  相似文献   

2.
A detailed field study was carried out on a tidal bore to document the turbulent processes and sediment entrainment which occurred. The measured bore, within the Arcins Channel of the Garonne River (France), was undular in nature and was followed by well‐defined secondary wave motion. Due to the local river geometry a collision between the Arcins channel tidal bore and the bore which formed within the main Garonne River channel was observed about 800 m upstream of the sampling site. This bore collision generated a transient standing wave with a black water mixing zone. Following this collision the bore from the main Garonne River channel propagated ‘backward’ to the downstream end of the Arcins channel. Velocity measurements with a fine temporal resolution were complemented by measurements of the sediment concentration and river level. The instantaneous velocity data indicated large and rapid fluctuations of all velocity components during the tidal bore. Large Reynolds shear stresses were observed during and after the tidal bore passage, including during the 'backward' bore propagation. Large suspended sediment concentration estimates were recorded and the suspended sediment flux data showed some substantial sediment motion, consistent with the murky appearance of the flood tide waters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
How does river hydrology and morphology change due to tidal influence? We contend that this is a question of particular consequence to many earth surface disciplines, but one that has not been adequately addressed. Previous studies have relied on gradients in channel morphology and stratigraphy to infer energy regime of channels. However, in tidal rivers geomorphology influences the energy regime while the energy regime influences morphology; thus, geomorphic and stratigraphic patterns do not fully resolve the mechanisms which lead to change. We addressed this problem by comparing measurements of hydraulic energy and channel morphology along a tidal gradient to predictions of these characteristics in the absence of tides, and attributed the differences to tidal processes. Measurements of discharge, channel area, and energy dissipation (in kJ day–1) were made over a 24·8 hour period at four sites spanning the non‐tidal to tidal freshwater Newport River, NC. We then predicted those characteristics under non‐tidal conditions using hydraulic geometry relationships and literature values from coastal plain rivers. Discharge was enhanced more than 10‐fold by tide, and this tidal effect increased from upstream to downstream along the tidal gradient. Cross‐sectional area increased three‐fold due to tide. Energy dissipation measured in the upper tidal river was four‐fold lower than predicted to occur in the absence of tide because tides decreased average velocity and discharge. Energy dissipation measured downstream was similar to that predicted to occur without tides, although there was large uncertainty in predicted values downstream. While this limited dataset does not permit us to make broad generalizations for definitive models, it does provide a proof‐of‐concept for a new approach to addressing a critical problem at the interface of fluvial and coastal morphology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Formation of subantarctic mode water in the southeastern Indian Ocean   总被引:1,自引:1,他引:1  
Subantarctic Mode Water (SAMW) is the name given to the relatively deep surface mixed layers found directly north of the Subantarctic Front in the Southern Ocean, and their extension into the thermocline as weakly stratified or low potential vorticity water masses. The objective of this study is to begin an investigation into the mechanisms controlling SAMW formation, through a heat budget calculation. ARGO profiling floats provide estimates of temperature and salinity typically in the upper 2,000 m and the horizontal velocity at various parking depths. These data are used to estimate terms in the mode water heat budget; in addition, mode water circulation is determined with ARGO data and earlier ALACE float data, and climatological hydrography. We find a rapid transition to thicker layers in the central South Indian Ocean, at about 70°S, associated with a reversal of the horizontal eddy heat diffusion in the surface layer and the meridional expansion of the ACC as it rounds the Kerguelen Plateau. These effects are ultimately related to the bathymetry of the region, leading to the seat of formation in the region southwest of Australia. Upstream of this region, the dominant terms in the heat budget are the air–sea flux, eddy diffusion, and Ekman heat transport, all having approximately equal importance. Within the formation area, the Ekman contribution dominates and leads to a downstream evolution of mode water properties.  相似文献   

5.
Field observations of tidally driven stratified flow in the sill area of Knight Inlet (British Columbia) revealed a very complicated structure, which includes solitary waves, upstream bifurcation, hydraulic jump and mixing processes. Recent observations suggest that the flow instabilities on the plunging pycnocline at the lee side of the sill may contribute to solitary wave generation through a subharmonic interaction. The present study reports on a series of numerical experiments of stratified tidal flow in Knight Inlet performed with the help of a fine resolution fully non-linear non-hydrostatic numerical model. The model reproduces all important stages of the baroclinic tidal dynamics observed in Knight Inlet. Results demonstrate that solitary waves are generated apart from the area of hydrodynamic instability. Accelerating tidal flux forms a baroclinic hydraulic jump just above the top of the sill, whereas the bifurcations and zones of shear instabilities are formed downstream of the sill. The first baroclinic mode having the largest velocity escapes from the generation area and propagates upstream, disintegrating further into a packet of solitary waves reviling the classical “non-subharmonic” mechanism of generation. The remaining part of the disturbance (slow baroclinic modes) is arrested by tidal flow and carried away to the lee side of the obstacle, where shear instability, billows and mixing processes are developed. Some sensitivity runs were performed for different value of tidal velocity.  相似文献   

6.
7.
In a tidal channel with adjacent tidal flats, along–channel momentum is dissipated on the flats during rising tides. This leads to a sink of along–channel momentum. Using a perturbative method, it is shown that the momentum sink slightly reduces the M2 amplitude of both the sea surface elevation and current velocity and favours flood dominant tides. These changes in tidal characteristics (phase and amplitude of sea surface elevations and currents) are noticeable if widths of tidal flats are at least of the same order as the channel width, and amplitudes and gradients of along–channel velocity are large. The M2 amplitudes are reduced because stagnant water flows from the flats into the channel, thereby slowing down the current. The M4 amplitudes and phases change because the momentum sink acts as an advective term during the fall of the tide, such a term generates flood dominant currents. For a prototype embayment that resembles the Marsdiep–Vlie double–inlet system of the Western Wadden Sea, it is found that for both the sea surface elevation and current velocity, including the momentum sink, lead to a decrease of approximately 2% in M2 amplitudes and an increase of approximately 25% in M4 amplitudes. As a result, the net import of coarse sediment is increased by approximately 35%, while the transport of fine sediment is hardly influenced by the momentum sink. For the Marsdiep–Vlie system, the M2 sea surface amplitude obtained from the idealised model is similar to that computed with a realistic three–dimensional numerical model whilst the comparison with regard to M4 improves if momentum sink is accounted for.  相似文献   

8.
This study focuses on the medium scale morphodynamics of the tidal flat and channel system Fedderwarder Priel, located in the Outer Weser estuary (Wadden Sea, Germany). Tidal channels and adjacent flats are highly dynamic systems whose morphologic evolution are driven by tidal, wind, and wave forcings. These coastal environments are an important ecosystem and react to changes in hydrodynamic conditions in various spatial and temporal scales. Based on annual medium-resolution digital elevation models from 1998 to 2016, we describe changes in the surface area over depth with hypsometries and use vertical dynamic trends in order to analyze and visualize the morphologic evolution of the Fedderwarder Priel and adjacent tidal channels. It is shown that several intertidal flats rise in the order of 1.3 to 5.6 cm/year. The findings indicate that the Outer Weser estuary was not in an equilibrium state for the investigated period, and tidal flats accreted with a rate exceeding mean sea level rise.  相似文献   

9.
A new depth-averaged exploratory model has been developed to investigate the hydrodynamics and the tidally averaged sediment transport in a semi-enclosed tidal basin. This model comprises the two-dimensional (2DH) dynamics in a tidal basin that consists of a channel of arbitrary length, flanked by tidal flats, in which the water motion is being driven by an asymmetric tidal forcing at the seaward side. The equations are discretized in space by means of the finite element method and solved in the frequency domain. In this study, the lateral variations of the tidal asymmetry and the tidally averaged sediment transport are analyzed, as well as their sensitivity to changes in basin geometry and external overtides. The Coriolis force is taken into account. It is found that the length of the tidal basin and, to a lesser extent, the tidal flat area and the convergence length determine the behaviour of the tidally averaged velocity and the overtides and consequently control the strength and the direction of the tidally averaged sediment transport. Furthermore, the externally prescribed overtides can have a major influence on tidal asymmetry in the basin, depending on their amplitude and phase. Finally, for sufficiently wide tidal basins, the Coriolis force generates significant lateral dynamics.  相似文献   

10.
Delta channels are important landforms at the interface of sediment transfer from terrestrial to oceanic realms and affect large, and often vulnerable, human populations. Understanding these dynamics is pressing because delta processes are sensitive to climate change and human activity via adjustments in, for example, mean sea level and water/sediment regimes. Data collected over a 40-year period along a 110-km distributary channel of the Yellow River Delta offer an ideal opportunity to investigate morphological responses to changing water and sediment regimes and intensive human activity. Complementary data from the delta front provide an opportunity to explore the interaction between delta channel geomorphology and delta-front erosion–accretion patterns. Cross-section dimensions and shape, longitudinal gradation and a sediment budget are used to quantify spatial and temporal morphological change along the Qingshuigou channel. Distinctive periods of channel change are identified, and analysis provides a detailed understanding of the temporal and spatial adjustments of the channel to specific human interventions, including two artificial channel diversions and changes in water and sediment supply driven by river management, and downstream delta-front development. Adjustments to the diversions included a short-lived period of erosion upstream and significant erosion in the newly activated channel, which progressed downstream. Channel geomorphology widened and deepened during periods when management increased water yield and decreased sediment supply, and narrowed and shallowed during periods when management reduced water yield and the sediment load. Changes along the channel are driven by both upstream and downstream forcing. Finally, there is some evidence that changing delta-front erosion–accretion patterns played an important role in the geomorphic evolution of the deltaic channel; an area that requires further investigation. © 2020 John Wiley & Sons, Ltd.  相似文献   

11.
Data from time series of transects made over a tidal period across a section of the upper Chesapeake Bay, USA, reveal the influence of lateral dynamics on sediment transport in an area with a deep channel and broad extents of shallower flanks. Contributions to lateral momentum by rotation (Coriolis plus channel curvature), cross channel density gradients and cross channel surface slope were estimated, and the friction and acceleration terms needed to complete the balance were compared to patterns of observed lateral circulation. During ebb, net rotation effects were larger because of river velocity and reinforcement of Coriolis by curvature. During flood, stratification was greater because of landward advection of strong vertical density gradients. Together, the ebb intensified lateral circulation and flood intensified stratification focused sediment and sediment transport along the left side of the estuary (looking seaward). The tendency for greater stratification on flood and net sediment flux toward the left-hand shoal are contrary to more common models which, in the northern hemisphere, predict greater resuspension on flood and move sediment toward the right-hand shoal. These tidal asymmetries interact with the lateral circulation to focus net sediment flux on the left side of the estuary, and to produce net ebb directed sediment transport at the surface of the same order of magnitude as net flood directed sediment transport at the bottom.  相似文献   

12.
This paper describes and analyses the structure and deposits of a large UK peat slide, located at Hart Hope in the North Pennines, northern England. This particular failure is unusual in that it occurred in the winter (February, 1995) and shows excellent preservation of the sedimentary structures and morphology, both at the failure scar and downstream. The slide was triggered by heavy rain and rapid snowmelt along the line of an active peatland stream flush. Detailed mapping of the slide area and downstream deposits demonstrate that the slide was initiated as a blocky mass that degenerated into a debris flow. The slide pattern was complex, with areas of extending and compressive movement. A wave‐like motion may have been set up in the failure. Within the slide site there was relatively little variability in block size (b axis); however, downstream the block sizes decrease rapidly. Stability analysis suggests the area at the head of the scar is most susceptible to failure. A ‘secondary’ slide area is thought to have only been initiated once the main failure had occurred. Estimates of the velocity of the flowing peat mass as it entered the main stream channel indicate a flow velocity of approximately 10 m s?1, which rapidly decreases downstream. A sediment budget for the peat slide estimates the failed peat mass to be 30 800 t. However, sediment delivery to the stream channel was relatively low. About 37% of the failed mass entered the stream channel and, despite moving initially as debris flow, the amount of deposition along the stream course and on the downstream fan is small (only about 1%). The efficiency of fluvial systems in transporting the eroded peat is therefore high. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The influence of river discharge on tidal damping in alluvial estuaries   总被引:2,自引:0,他引:2  
The tidal range, the difference between high water level and low water level, along an alluvial estuary can be described by Savenije's analytical equation [Journal of Hydrology 243 (2001) 205-215] analytical equation. This equation was derived from the complete St Venant equations in a Lagrangian reference frame. In the derivation of that equation the effect of river discharge was disregarded. Measurements in the Schelde Estuary show that this assumption is only valid in the lower part of the estuary, but that in the upper part the river discharge has an influence on tidal damping. In the downstream part of the estuary, where the cross-sectional area is large compared to the cross-sectional area of the river, it is correct to disregard the river discharge. However, in the upstream part of the estuary, where the cross-sectional area approaches that of the river, the fresh water discharge gains importance over the tidal flow and affects the tidal range. In this paper, the derivation of the analytical equation is expanded to include the effect of the river discharge. It is demonstrated that the river discharge can have a considerable influence on tidal damping in the upper reach of the estuary. The river discharge affects tidal damping primarily through friction. A critical point along the estuary is the point where there is a single slack, upstream of which the fresh water velocity is larger than the tidal velocity. The location of this point varies with the river discharge. From that point onwards the effect of river discharge on damping is dominant. It is the point where the estuary becomes primarily of riverine character.  相似文献   

14.
Tidal channels are ubiquitous in muddy coastlines and play a critical role in the redistribution of sediments, thus dictating the general evolution of intertidal landforms. In muddy coastlines, the morphology of tidal channels and adjacent marshes strongly depends on the supply of fine sediments from the shelf and on the resuspension of sediments by wind waves. To investigate the processes that regulate sediment fluxes in muddy coastlines, we measured tidal velocity and sediment concentration in Little Constance Bayou, a tidal channel in the Rockefeller State Wildlife Refuge, Louisiana, USA. The tidal measurements were integrated with measurements of wave activity in the bay at the mouth of the channel, thus allowing the quantification of feedbacks between waves and sediment fluxes. Results indicate that the sediment concentration in the channel is directly related to the wave height in the adjacent bay during flood and high slack water, whereas the concentration during ebb depends on local channel velocity. Moreover, the sediment flux during ebb is of the same order of magnitude as the sediment flux during the previous flood, indicating that only a small fraction of transported sediments are stored in the marsh during a tidal cycle. Finally, very low tides, characterized by high ebb velocities, export large volumes of sediment to the ocean. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We adapted Newton's law of cooling to model downstream water temperature change in response to stream‐adjacent forest harvest on small and medium streams (average 327 ha in size) throughout the Oregon Coast Range, USA. The model requires measured stream gradient, width, depth and upstream control reach temperatures as inputs and contains two free parameters, which were determined by fitting the model to measured stream temperature data. This model reproduces the measured downstream temperature responses to within 0.4 °C for 15 of the 16 streams studied and provides insight into the physical sources of site‐to‐site variation among those responses. We also use the model to examine how the pre‐harvest to post‐harvest change in daily maximum stream temperature depends on distance from the harvest reach. The model suggests that the pre‐harvest to post‐harvest temperature change approximately 300 m downstream of the harvest will range from roughly 82% to less than 1% of that temperature change that occurred within the harvest reach, depending primarily on the downstream width, depth and gradient. Using study‐averaged values for these channel characteristics, the model suggests that for a stream representative of those in the study, the temperature change approximately 300 m downstream of the harvest will be 56% of the temperature change that occurred within the harvest reach. This adapted Newton's law of cooling procedure represents a highly practical means for predicting stream temperature behaviour downstream of timber harvests relative to conventional heat budget approaches and is informative of the dominant processes affecting stream temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This study examined the thermal regime of a headwater stream within a clear‐cut. The stream had a complex morphology dominated by step–pool features, many formed by sediment accumulation upstream of woody debris. Maximum daily temperatures increased up to 5 °C after logging, and were positively associated with maximum daily air temperature and negatively with discharge. Maximum daily temperatures generally increased with downstream distance through the cut block, but decreased with distance in two segments over distances of tens of metres, where the topography indicated relatively concentrated lateral inflow. Localized cool areas within a step–pool unit were associated with zones of concentrated upwelling. Bed temperatures tended to be higher and have greater ranges in areas of downwelling flow into the bed. Heat budget estimates were made using meteorological measurements over the water surface and a model of net radiation using canopy characteristics derived from fisheye photography. Heat exchange driven by hyporheic flow through the channel step was a cooling effect during daytime, with a magnitude up to approximately 25% that of net radiation during the period of maximum daytime warming. Heat budget calculations in these headwater streams are complicated by the heterogeneity of incident solar radiation and channel geometry, as well as uncertainty in estimating heat and water exchanges between the stream and the subsurface via hyporheic exchange and heat conduction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This paper summarizes measurements of velocity along three reaches of a small mountain channel with step–pool bedforms. A one‐dimensional electromagnetic current meter was used to record velocity fluctuations at 37 fixed measurement points during five measurement intervals spanning the peak of the annual snowmelt hydrograph. Measurement cross‐sections were located upstream from a bed‐step, at the step lip, downstream from the step, and in a uniform‐gradient run. Data analyses focused on characteristics of velocity profiles, and on correlations between velocity characteristics and the potential control variables bedform type, reach gradient and flow depth. To test the hypothesis that velocity characteristics are related to channel bedform types, ANOVA and ANCOVA tests were performed for the average velocity and coefficient of variation of point velocity data. Results indicate that high frequency velocity variations correlate to some degree with both channel characteristics and discharge. Velocity became more variable as stage increased, particularly at low‐gradient reaches with less variable bed roughness. Velocity profiles suggest that locations immediately downstream from bed‐steps are dominated by wake turbulence from mid‐profile shear layers. Locations immediately upstream from steps, at step lips, and in runs are dominated by bed‐generated turbulence. Adverse pressure gradients upstream and downstream from steps may be enhancing turbulence generation, whereas favourable pressure gradients at steps are suppressing turbulence. The bed‐generated turbulence and skin friction of runs appear to be less effective energy dissipators than the wake‐generated turbulence and form drag of step–pool bedforms. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Mainstem–floodplain material exchange in the tidal freshwater reach of major rivers may lead to significant sequestration of riverine sediment, but this zone remains understudied compared to adjacent fluvial and marine environments. This knowledge gap prompts investigation of floodplain-incising tidal channels found along the banks of tidal rivers and their role in facilitating water and suspended-sediment fluxes between mainstem and floodplain. To evaluate this role, and how it evolves along the tidal river and with time, we measured water level, flow velocity, temperature, and suspended-sediment concentration (SSC) in four tidal channels along the tidal Amazon River, Brazil. Eleven deployments were made during low, rising, high, and falling seasonal Amazon discharge. Generally, channels export high-SSC water from the mainstem to the tidal floodplain on flood tides and transfer low-SSC water back to the mainstem on ebbs. Along the length of the tidal river, the interaction between tidal and seasonal water-level variations and channel–floodplain morphology is a primary control on tidal-channel sediment dynamics. Close to the river mouth, where tides are large, this interaction produces transient flow features and current-induced sediment resuspension, but the importance of these processes decreases with distance upstream. Although the magnitude of the exchange of water and sediment between mainstem and floodplain via tidal channels is a small percentage of the total mainstem discharge in this large tidal-river system, tidal channels are important conduits for material flux between these two environments. This flux is critical to resisting floodplain submergence during times of rising sea level. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
The long-term morphodynamic evolution of tidal networks on tidal flats is investigated using a two-dimensional numerical model. We explore the physical processes related to the development of the morphology and the presence of equilibrium configurations. Tidal networks are simulated over a rectangular domain representing a tidal platform, a different setting compared to estuaries (subject to riverine influence) and lagoons (offshore bars constricting the flow). In the early and middle phases of the tidal network evolution, large sediment patches with rhombus-like shape form and gradually migrate in the flood direction, even though the overall sediment flux is ebb-directed. A cross-section-averaged “equilibrium” state is asymptotically approached after about 500 years. The area and peak discharge of the lower flat cross-sections at year 500 approximately show a 1:1 relationship, which is in agreement with field observations. We also show that model results are consistent with the Q-A relationship (peak discharge Q versus cross-sectional area A), which is obtained under the assumption of a constant Chézy friction.  相似文献   

20.
不同下垫面湍流通量计算方法的比较研究   总被引:6,自引:4,他引:2       下载免费PDF全文
本文利用1990~1994年在中国内蒙古奈曼市半干旱地区沙丘和植被区下垫面观测的微气象数据,采用变分法、波文比能量平衡方法和空气动力学方法计算了7种下垫面(沙丘、草原、四种放牧强度的草地、玉米田)的湍流通量并进行了比较.结果表明:除沙丘和重度放牧草地外,三种方法计算的湍流通量在大多数时刻是比较一致的,相关性较高,能量闭合程度也较好.在用于计算植被相对茂盛下垫面的湍流通量时,变分法得到的结果更好一些.随着放牧强度的增大,地表生物量、覆盖率和植被高度相应减少,潜热和动量通量相应减小,而感热通量增大.草地等植被茂盛的下垫面能够增加垂直方向的动量输送,增加空气动力学粗糙度,减小风速,阻止地表沙粒的运动和沙丘的起伏,对防止沙漠化能起到较大作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号