首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A spatially homogeneous Bianchi type-III space-time is considered in the presence of perfect fluid source in the frame work of f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011) with the help of a special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento B 74:182, 1983). A cosmological model with an appropriate choice of the function f(T) has been constructed. The physical behavior of the model is studied.  相似文献   

3.
The exact solutions of the field equations in respect of LRS Bianchi type-I space time filled with perfect fluid in the framework of f(R,T) gravity (Harko et al., arXiv: [gr-qc], 2011) are derived. The physical behavior of the model is studied. In fact, the possibility of reconstruction of the LRS Bianchi type-I cosmology with an appropriate choice of a function f(T) has been proved in f(R,T) gravity.  相似文献   

4.
In this paper, we investigate a spatially homogeneous and anisotropic Bianchi type-V cosmological model in a scalar-tensor theory of gravitation proposed by Harko et al. (Phys. Rev. D 84:024020, 2011) when the source for energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. To obtain a determinate solution, a special law of variation proposed by Berman (Nuovo Cimento B 74:182, 1983) is used. We have also used the barotropic equation of state for the pressure and density and bulk viscous pressure is assumed to be proportional to energy density. It is interesting to note that the strings in this model do not survive. Also the model does not remain anisotropic throughout the evolution of the universe. Some physical and kinematical properties of the model are also discussed.  相似文献   

5.
Algorithms are derived for constructing five dimensional Kaluza-Klein cosmological space-times in the presence of a perfect fluid source in the framework of f(R,T) gravity theory proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). Starting from the solution of Reddy et al. (Int. J. Theor. Phys 51:3222-3227, 2012b) some classes of new solutions are generated which correspond to accelerating models of the Universe. The physical and kinematical behaviors of the models are studied.  相似文献   

6.
This paper examines the stability of the transition from the early decelerating stage of the Universe to the recent accelerating stage for the perfect fluid cosmological locally rotationally symmetric(LRS) Bianchi-I model in f(R, T) theory. To determine the solution of field equations, the idea of a timevarying deceleration parameter(DP) which yields a scale factor, for which the Universe attains a phase transition scenario and is consistent with recent cosmological observations, is used. The time-dependent DP yields a scale factor a=exp■, where β and k are respectively arbitrary and integration constants. By using the recent cons_traints(H_0 _= 73.8, and q_0 =-0.54) from Type Ia Supernova(SN Ia) data in combination with Baryonic Acoustic Oscillations(BAO) and Cosmic Microwave Background(CMB) observations(Giostri et al.), we obtain the values of β = 0.0062 and k = 0.000016 for which we have derived a cosmological model from the early decelerated phase to the present accelerating phase. By applying_ other r_ecent constraints(H_0 = 73.8, q_0 =-0.73) from SNe Ia Union data(Cunha), we obtain the values of β = 0.0036 and k = 0.000084 for which we have derived a cosmological model in the accelerating phase only. We have compared both models with experimental data. The stability of the background solution has been examined also for the metric perturbations alongside the properties of future singularities in a Universe ruled by dark energy with phantom type fluid. We demonstrate the presence of a stable fixed point with a condition of state ω <-1 and numerically affirm this is really a late-time attractor in the ghost overwhelmed Universe. Some physical and geometric properties of the model are found and examined.  相似文献   

7.
A spatially homogeneous and anisotropic Bianchi type-III space-time is considered in the presence of bulk viscous fluid containing one dimensional cosmic strings in the frame work of f(R,T) gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). To get a determinate solution of the field equations of this theory, we have used (i) a barotropic equation of state for the pressure and density and (ii) the bulk viscous pressure is proportional to the energy density. It is interesting to observe that, in this case, Bianchi type-III bulk viscous string cosmological model does not exist and degenerates into vacuum model of general relativity.  相似文献   

8.
We have constructed Locally Rotationally Symmetric Bianchi type I (LRSBI) cosmological models in the f(R,T) theory of gravity when the source of gravitation is the bulk viscous fluid. The models are constructed for f(R,T)=R+2f(T) and f(R,T)=f 1(R)+f 2(T). We found that in the first case the model degenerates into effective stiff fluid model of the universe. In the second case we obtained degenerate effective stiff fluid model as well as general bulk viscous models of the universe. Some physical and kinematical properties of the models are also discussed.  相似文献   

9.
In this paper, we search the existence of Bianchi type I cosmological model in f(R,T) gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T. We obtain the gravitational field equations in the metric formalism, and reconstruct the corresponding f(R,T) functions. Attention is attached to the special case, f(R,T)=f 1(R)+f 2(T) and two examples are assumed for this model. In the first example, we consider the unification of matter dominated and accelerated phases with f(R) gravity in anisotropic universe, and in the second instance, model of f(R,T) gravity with transition of matter dominated phase to the acceleration phase is obtained. In both cases, f(R,T) is proportional to a power of R with exponents depending on the input parameters.  相似文献   

10.
The paper deals with a spatially homogeneous and anisotropic universe filled with perfect fluid and dark energy components. We consider the f(R,T) theory according to holographic and new agegraphic dark energy in the Bianchi type I universe. In this study, we concentrate on two particular models of f(R,T) gravity namely, R+2f(T) and f(R)+λT. We conclude that the derived f(R,T) models can represent phantom or quintessence regimes of the universe.  相似文献   

11.
12.
We discuss the Bianchi type I model with perfect fluid as matter content in f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor. We obtain exact solutions of the field equations employing the anisotropic feature of spacetime for two expansion laws namely exponential and power expansions. The physical and kinematical quantities are examined for both cases in future evolution of the universe. We also explore the validity of null energy condition and conclude that our solutions are consistent with the current observations.  相似文献   

13.
14.
15.
In this paper, we have investigated Bianchi type VI h cosmological model filled with perfect fluid in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). We have obtained the cosmological models by solving the field equations. Some physical behaviors of the model are also studied.  相似文献   

16.
In this paper, a general FRW cosmological model has been constructed in f(R,T) gravity reconstruction with variable cosmological constant. A number of solutions to the field equations has been generated by utilizing a form for the Hubble parameter that leads to Berman's law of constant deceleration parameter q = m-1. The possible decelerating and accelerating solutions have been investigated. For(q 0) we get a stable flat decelerating radiation-dominated universe at q = 1. For(q 0) we get a stable accelerating solution describing a flat universe with positive energy density and negative cosmological constant. Nonconventional mechanisms that are expected to address the late-time acceleration with negative cosmological constant have been discussed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号