首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dust acoustic (DA) shock waves are investigated in a dusty plasma having a high-energy-tail electron distribution. The effects of ion streaming, charge variation and electron deviation from the Maxwellian distribution on the DA shock wave are then considered. It is shown that as the suprathermal character of the plasma is increased, the potential amplitude enhances. It is also found that the ion temperature may be destructive for the formation of DA shock waves. Their strength decreases with increasing ion streaming speed. Our results may be useful in understanding the basic nonlinear features of the DA wave propagation that may occur in space dusty plasmas, especially those including a relative motion between species (comet tails, solar wind streams, etc.).  相似文献   

2.
Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.  相似文献   

3.
The modified Kodomtsev-Petviashvili-Burger (mKP-Burger) and Kodomtsev-Petviashvili-Burger equations are derived in strongly coupled dusty plasmas containing iso-nonthermal ions; Boltzmann distributed electrons and variable dust charge. We use reductive perturbation method and discuss on solitary waves and shock waves solutions of these equations.  相似文献   

4.
A theoretical investigation is made on the formation as well as basic properties of dust-ion-acoustic (DIA) shock waves in a magnetized nonthermal dusty plasma consisting of immobile charge fluctuating dust, inertial ion fluid and nonthermal electrons. The reductive perturbation method is employed to derive the Korteweg-de Vries-Burgers equation governing the DIA shock waves. The combined effects of external static magnetic field, obliqueness, nonthermal electron distribution and dust charge fluctuation on the DIA shock waves are also investigated. It is shown that the dust charge fluctuation is a source of dissipation, and is responsible for the formation of the DIA shock waves. It is also observed that the combined effects of obliqueness, nonthermal electron distribution and dust charge fluctuation significantly modify the basic properties of the DIA shock waves. The implications of our results in space and laboratory dusty plasma situations are briefly discussed.  相似文献   

5.
A parametric survey on the propagation characteristics of the dust ion-acoustic (DIA) shock waves showing the effect of nonextesivity with nonextensive electrons in a dissipative dusty plasma system has been carried out using the reductive perturbation technique. We have considered continuity and momentum equations for inertial ions, q-distributed nonextensive electrons, and stationary charged dust grains, to derive the Burgers equation. It has been found that the basic features of DIA shock waves are significantly modified by the effects of electron nonextensivity and ion kinematic viscosity. Depending on the degree of nonextensivity of electrons, the dust ion-acoustic shock structures exhibit compression and rarefaction. The implications of our results would be useful to understand some astrophysical and cosmological scenarios like stellar polytropes, hadronic matter and quark-gluon plasma, protoneutron stars, dark-matter halos, etc., where effects of nonextensivity can play the significant roles.  相似文献   

6.
In this paper, the characteristics of the dust acoustic solitary waves in dusty plasmas are studied. The distribution of ions is nonthermal, and the nonthermal parameter is treated as a variable. The pseudo-potential method has been used to investigate the possibility of soliton formation. We show that for some values of the nonthermal parameter there is no soliton.  相似文献   

7.
Making use of the Sagdeev pseudo-potential approach, we derive the energy like equation for dust-acoustic (DA) solitary waves in a complex plasma having negatively charged cold dust, and electrons/ions featuring the Tsallis distribution. The effects of electron and ion nonextensivity on the DA soliton profile are examined. It is shown that depending on the strength of particle nonextensivity, our plasma model may admit compressive as well as rarefactive DA solitary waves. Our results complement previously published results on this problem.  相似文献   

8.
The hydrodynamic equations of positive and negative dust, Boltzmann electron and ion density distribution, and Poisson equation are used along with the reductive perturbation method to derive a cylindrical Kadomtsev-Petviashvili (CKP) equation. G′/G expansion method is used to obtain a new class of solutions. At certain condition, the solutions degenerate to solitary wave solutions. The effects of the physical parameters on the characteristics of solitary pulses are examined. The results give elucidation of the properties of dust acoustic solitary pulses in multicomponent space plasmas, particularly in interstellar dust clouds in a galactic disk and astrophysical plasma systems.  相似文献   

9.
The nonlinear propagation of dust acoustic (DA) waves in an unmagnetized dusty plasma system consisting of negatively charged mobile dust fluid, Boltzmann distributed electrons, and two-temperature nonthermally distributed ions, is rigorously investigated. The reductive perturbation method has been employed to derive the Burgers equation. The hydrodynamic equation for inertial dust grains has been used to derive the Burgers equation. The effects of two temperature nonthermally distributed ions and dust kinematic viscosity, which are found to significantly modify the basic features of DA shock waves, are briefly discussed. Our present investigation can be effectively utilized in many astrophysical situations (e.g. satellite or spacecraft observations, Saturn’s E ring, etc.), which are discussed briefly in this analysis.  相似文献   

10.
Nonlinear dust-acoustic (DA) shock waves are addressed in a nonextensive dusty plasma exhibiting self-consistent nonadiabatic charge variation. Our results reveal that the amplitude, strength and nature of the DA shock waves are extremely sensitive to the degree of ion nonextensivity. Significant differences in the potential function occur for very small changes in the value of the nonextensive parameter. Stronger is the ions correlation, more important is the charge variation induced nonlinear wave damping.  相似文献   

11.
The properties of arbitrary amplitude dust ion-acoustic (DIA) solitary waves (SWs) in a dusty plasma containing warm adiabatic ions, electrons following flat-topped velocity distribution, and arbitrarily (positively or negatively) charged immobile dust is studied by the pseudo-potential approach. The effects of ion temperature, resonant electrons, and dust number density are found to significantly modify the basic features of the DIA-SWs as well modify the parametric regime for the existence of compressive DIA-SWs. The pseudo-potential for small but finite amplitude limit is also analytically analyzed.  相似文献   

12.
Bifurcation behavior of nonlinear dust ion acoustic travelling waves in a magnetized quantum dusty plasma has been studied. Applying the reductive perturbation technique (RPT), we have derived a Kadomtsev-Petviashili (KP) equation for dust ion acoustic waves (DIAWs) in a magnetized quantum dusty plasma. By using the bifurcation theory of planar dynamical systems to the KP equation, we have proved that our model has solitary wave solutions and periodic travelling wave solutions. We have derived two exact explicit solutions of the above travelling waves depending on different parameters.  相似文献   

13.
A reductive perturbation technique is employed to solve the fluid-Poisson equations in spherical geometry describing a weakly nonlinear electron–acoustic (EA) waves in unmagnetized plasma consisting of stationary ions, cold electrons and kappa distributed hot electrons. It is shown that a variable coefficient Kadomtsev–Petviashvili (KP) equation governs the evolution of scalar potential describing propagation of EA waves. The influence of suprathermality and geometry effects on propagation of EA solitary waves is investigated. We found that when electrons evolve toward their thermodynamic equilibrium, EA solitons are generated with large amplitudes. Also it is shown that EA solitary structures can be significantly modified by transverse perturbations.  相似文献   

14.
Progress in understanding the nonlinear features of dust-acoustic waves (DAWs) which accompany a collisional strongly and weakly coupled unmagnetized dusty plasma with Boltzmann distributed electrons, ions and negatively charged dust grains is presented. By using a hydrodynamic model, the Korteweg–de Vries-Burgers (KdV-Burgers) equation is derived. The existence regions of the solitary pulses are defined precisely. Furthermore, numerical calculations reveal that, due to collisions, the DAWs damp waves and the damping rate of the waves depends mainly on the collision frequency. The collisions are found to significantly change the basic properties of the DAWs. The effects of electron-to-ion concentration ratio, and ion-to-electron temperature ratio have important roles in the behavior of the DAWs. The results may have relevance in space and laboratory dusty plasmas.  相似文献   

15.
The reductive perturbation method has been used to derive the Burgers equation for dust acoustic shock waves in unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The time-fractional Burgers equation is formulated using Euler-Lagrange variational technique and is solved using the variational-iteration method. The effect of time fractional parameter on the behavior of the shock waves in the dusty plasma has been investigated.  相似文献   

16.
The problem of nonlinear localized dust acoustic (DA) is addressed in a plasma comprising positive ions, negative ions, and mobile negatively charged dust grains. We first consider the case when the grain charge remains constant and discuss later the case when the charge variations are self-consistently included. It is found that a relative increase of the positive ion density favors the propagation of the DA solitary waves, in the sense that the domain of their admissible Mach numbers enlarges. Furthermore, electronegativity makes the dust acoustic solitary structure more spiky. When the dust grain charge Q d is allowed to fluctuate, the latter is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the variable charge DA solitary wave. Q d adopts a localized profile and becomes more negative as the number of charges Z (−) of the negative ion increases. The dust grains are found to be highly localized. This localization (accumulation) caused by a balance of the electrostatic forces acting on the dust grains becomes more effective for lower values of Z (−). An increase of Z (−) may lead to a local depletion of the negative ions from the region of the soliton’s localization. The results are useful to understand the salient features of localization of large amplitude dust acoustic waves in cosmic plasmas such as the ionospheric D-region and the mesosphere.  相似文献   

17.
A four-component dusty plasma consisting of electrons, ions, and negative as well as positive dust particles has been considered. The basic features of shock waves that may exist in such a four-component dusty plasma have been theoretically investigated by the reductive perturbation method. The implications of our results in different regions of space (viz. cometary tails, mesosphere, Jupiter’s magnetosphere, etc.) are briefly discussed.  相似文献   

18.
The behavior of quantum dust ion-acoustic (QDIA) shocks in a plasma including inertialess quantum electrons and positrons, classical cold ions and stationary negative dust grains are studied, using a quantum hydrodynamic model (QHD). The effect of dissipation due to the viscosity of ions is taken into account. The propagation of small but finite amplitude QDIA shocks is governed by the Kortoweg-de Vries-Burgers (KdVB) equation. The existence regions of oscillatory and monotonic shocks will depend on the quantum diffraction parameter (H) and dust density (d) as well as dissipation parameter (η 0). The effect of plasma parameters (d,H,η 0), on these structures is investigated. Results indicate that the thickness and height of monotonic shocks; oscillation amplitude of the oscillatory shock wave and it’s wavelength effectively are affected by these parameters. Additionally, the possibility of propagation of both compressive and rarefactive shocks is investigated. It is found that depending on some critical value of dust density (d c ), which is a function of H, compressive and rarefactive shock waves can’t propagate in model plasma. The present theory is applicable to analyze the formation of nonlinear structures at quantum scales in dense astrophysical objects.  相似文献   

19.
The Kadomtsev-Petviashvili equation in unmagnetized plasma having ions and superthermal electrons and positrons has been derived using the reductive perturbation method. The space-time-fractional Kadomtsev-Petviashvili equation is formulated applying the Euler-Lagrange variational technique and is solved using the sub-equation method. The effects of space time fractional order and superthermal parameters on the properties of obtained soliton have been investigated.  相似文献   

20.
Propagation regimes of large-amplitude dust-ion acoustic solitary wave in a dusty plasma with nonthermal electrons are analyzed by employing the Sagdeev potential technique. Two domains of the Mach numbers are defined depending on the nonthermal and plasma parameters. The two types of soliton solution are found to be exited corresponding to certain values of the nonthermal parameter. Numerical solutions are presented that illustrate the dependence of soliton characteristics on practically interesting plasma and nonthermal parameters. The findings of this investigation could be useful in understanding the detected solitary waves in space plasma in the presence of nonthermal electrons such as electrostatic solitary structures observed in Saturn’s E-ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号