首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and stability of a magnetized accretion disk are numerically examined with anomalous viscosity. The temperature, surface density and radial velocity all decrease with increasing radius r. The results show that the existence of the magnetic field B has an impact on the structure of the disk, which directly results in the variation of the growth rate and the damping rate of the unstable and stable modes. For Inward-moving mode, the magnetic field greatly enhances the instability at short wavelength and acts as a factor of stability at long wavelength. The growth rate of outward-moving unstable mode decreases, while the damping rate of thermally stable mode increases significantly owing to the magnetic field.  相似文献   

2.
The standard thin accretion disk model can explain the soft X-ray spectra of Galactic black hole systems and AGN successfully. However, there are still a few observational documents for Radiation pressure theory in X-ray novae in black hole binary systems and AGN. The luminosity in accretion onto black holes is corresponds to L>0.01L E . According to standard thin disk model, when the accretion rate is over a small fraction of the Eddington rate, L>0.01L E , the inner region of the disk is radiation-pressure-dominated and thermally unstable. However, observations of the high/soft state of black hole X-ray binaries with luminosity within (0.01L E <L<0.5L E ) show that the disk is quite stable. Thus, this contradiction shows the objection of this model and maybe it is essential to change the standard viscosity law or one of the other basic assumptions in order to get a stable disk models. In this paper, we revisit and recalculate the thermal instability with a different models of viscosity and cooling functions and show that the choosing of an arbitrary cooling and viscosity functions can affect on the stability of a general disk model and hence maybe answer to a this problem in accretion disk theory. We choose an arbitrary functions of surface density Σ and half thickness of disk H for cooling and viscosity. Also, we discuss a general disk with thermal conduction, radial force and advection. Then, we solve the equations numerically. We obtain a fourth degree dispersions relation and discuss solutions and instability modes. This analysis shows the great sensitivity of stability of disk to the form of viscosity, so there are various effective factors to stabilize the disk. For example the exist of advection and thermal conduction can effect to stability of disks also.  相似文献   

3.
4.
In this paper we investigate both the global and the local hydrodynamics of axisymmetric accretion disks around young stellar objects under the simultaneous action of viscosity, self-gravity and pressure forces. For simplicity, we take for the global model a polytropic equation of state, make the infinitely thin disk approximation and characterize the surface density and temperature profiles in the disk as power laws in the radial distance r from the protostar. We solve the problem of the general density profile of a Keplerian disk showing that self-gravity could not be an important factor for the fast formation of the rocky cores of giant gaseous planets in our solar system. Under the hypothesis that the unperturbed rotation curve of the disk is nearly Keplerian throughout the radial extent, we can estimate with our polytropic model a lower limit for the resulting masses Md(r) of stable disks up to 100 AU. These masses are in the range of the so-called minimum mass solar nebular (d/Ms ≈ 0.01–0.02).By adopting a simplified viscosity model, where the height-integrated turbulent dynamical viscosity ν is a function of the surface density σ like η ∝ σΓ, we derive in the local shearing sheet model linearized evolution equations for small density perturbations describing both a diffusion process and the propagation of acoustic density waves. We solve a special initial value problem and calculate the appropriate Green's function. The analytical solutions so obtained describe in the case Γ < 0 the successive formation of quasi-stationary ring-shaped density structures in a disk with a definite mode of maximum instability, whereas in the case Γ > Γc the density wave equation describes the propagation of an “overstable” ring-shaped acoustic density wavelet to the outer ranges of the accretion disk. Whereas the group velocity of the wave packet is subsonic, the phase velocities of individual wave crests in the wave packet are supersonic. The mode of maximum instability, the growth rate and the number of growing waves in the wavelet are controlled by Γ and α. Our present knowledge concerning turbulent viscosity in protoplanetary disks is not sufficient to decide whether or not the case Γ > Γc is realized.The suggested structuring processes in the linear theory should initiate in the non-linear regime the formation of narrow ring-shaped density shock waves moving through the protoplanetary disk. These non-linear waves could produce extremely spatially and temporally heterogeneous temperature regions in the disk. We speculate that ring-shaped density waves, excited by inner boundary conditions and which have dominated the disk's evolution at early times, are responsible both for the fast growth of dust to planetesimals and at least for the rapid accretion of the rocky cores of giant gaseous planets in the protoplanetary accretion disk (shock wave trigger hypothesis). We derive provisional scaling rules for planetary systems regarding the spacing of orbits as a function of the mass ratio of the protoplanetary disk to the protostar. However, further analytical work and linear as well as nonlinear numerical simulations of density waves excited by inner boundary conditions are needed to consolidate the results and speculations of our linear wave mechanics in the future.  相似文献   

5.
Based on the equations of the self-generated magnetic field in the q-distributed plasmas, the studies show that the magnetic field is modulationally unstable by the perturbation method and the equations have self-similar collapse solution. The anomalous magnetic viscosity of accretion disks generates from highly spatially intermittent flux of the self-generated magnetic field. In addition, the anomalous viscosity coefficient is 8 orders more than the molecular viscosity and is modified by the adjustable index q, which may preferably explain the observations.  相似文献   

6.
吴少平  吴学兵 《天文学报》1995,36(3):252-260
本文采用修正的粘滞定律及磁流体力学研究了薄吸积盘内区及外区的稳定性问题。运用微扰方法导出了色散方程,分析了四种情况下吸积盘的不稳定性,结果表明:在同时考虑磁场和修正的粘滞律时,吸积盘中存在着三种振荡模式,其中粘滞模式总是稳定的,磁声速模式(包括向里、向外传播两种模式)通常是不稳定的。这些结果为解释BL Lac天体、Seyfert星系、类星体等活动星系核的光变现象提供了理论依据。  相似文献   

7.
The orientations of the accretion disk of active galactic nuclei (AGN) and the stellar disk of its host galaxy are both determined by the angular momentum of their forming gas, but on very different physical environments and spatial scales. Here we show the evidence that the orientation of the stellar disk is correlated with the accretion disk by comparing the inclinations of the stellar disks of a large sample of Type 2 AGNs selected from Sloan Digital Sky Survey (SDSS, York et al. 2000) to a control galaxy sample. Given that the Type 2 AGN fraction is in the range of 70–90 percent for low luminosity AGNs as a priori, we find that the mean tilt between the accretion disk and stellar disk is ~ 30 degrees (Shen et al. 2010).  相似文献   

8.
Models of the protosatellite accretion disk of Saturn are developed that satisfy cosmochemical constraints on the volatile abundances in the atmospheres of Saturn and Titan with due regard for the data obtained with the Cassini orbiter and the Huygens probe, which landed on Titan in January 2005. All basic sources of heating of the disk and protosatellite bodies are taken into account in the models, namely, dissipation of turbulence in the disk, accretion of gaseous and solid material onto the disk from the feeding zone of Saturn in the solar nebula, and heating by the radiation of young Saturn and thermal radiation of the surrounding region of the solar nebula. Two-dimensional (axisymmetric) temperature, pressure, and density distributions are calculated for the protosatellite disk. The distributions satisfy the cosmochemical constraints on the disk temperature, according to which the temperature at the stage of the satellite formation ranged from 60–65 K to 90–100 K at pressures from 10?7 to ?10?4 bar in the zone of Titan’s formation (according to estimates, r = 20–35R Sat). Variations of the basic input parameters (the accretion rate onto the protosatellite disk of Saturn from the feeding zone of the planet ?; the parameter α characterizing turbulent viscosity of the disk; and the mass concentration ratio in the solid/gas system) satisfying the aforementioned temperature constraint are found. The spectrum of models satisfying the cosmochemical constraints covers a considerable range of consistent parameters. A model with a rather small flux of ? = 10?8 M Sat/ yr and a tenfold depletion of Saturn’s disk in gas due to gas scattering from the solar nebula is at one side of this range. A model with a much higher flux of ? = 10?6 M Sat/yr and a hundredfold decrease in opacity of the disk matter owing to decreased concentration of dust particles and/or their agglomeration into large aggregates and sweeping up by planetesimals is at the other side of the range.  相似文献   

9.
The standard thin accretion disk model predicts that the inner regions of alpha model disks, where radiation pressure is dominant, are thermally and viscously unstable. However, observations show that the bright X-ray binaries and AGN accretion disks, corresponding to radiation-pressure thin disks, are stable. In this paper, we reconsider the linear and local instability of accretion disks in the presence of a toroidal magnetic field. In the basic equations, we consider physical quantities such as advection, thermal conduction, arbitrary viscosity, and an arbitrary cooling function also. A fifth order diffusion equation is obtained and is solved numerically. The solutions are compared to non-magnetic cases. The results show that the toroidal magnetic field can make the thermal instability in radiation pressure-dominated slim disks disappear if ? m ≥0.3. However, it causes a more thermal instability in radiation pressure alpha disks without advection. Also, we consider the thermal instability in accretion disks with other values of the viscosity and obtain a general criterion for thermal instability in the long-wavelength limit and in the presence of a toroidal magnetic field.  相似文献   

10.
The stability of an isothermal, magnetized and causally limited viscosity accretion disk is examined in this paper. We find that the viscous modes are always stable throughout the disk, and the magneto-acoustic modes are pulsationally unstable. The results show that the Mach numbers do effect the instabilities of the disk and the magnetic field enhances the instability property of the radial oscillation. Our results are useful for understanding the time variations of AGN.  相似文献   

11.
In this paper, we use a Langevin type equation with a damping term and stochastic force to describe the stochastic oscillations on the vertical direction of the accretion disk around a black hole, and calculate the luminosity and power spectral density (PSD) for an oscillating disk. Then we discuss the stochastic resonance (SR) phenomenon in PSD curves for different parameter values of viscosity coefficient, accretion rate, mass of black hole and outer radius of the disk. The results show that our simulated PSD curves of luminosity for disk oscillation have the same profile as the observed PSD of black hole X-ray binaries (BHXBs) in the lowhard state, and the SR of accretion disk oscillation may be an alternative interpretation of the persistent low-frequency quasi-periodic oscillations (LFQPOs).  相似文献   

12.
The Fabry-Perot scanning interferometer mounted on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences is used to study the distribution and kinematics of ionized gas in the peculiar galaxy Arp 212 (NGC 7625, IIIZw 102). Two kinematically distinct subsystems—the inner disk and outer emission filaments—are found within the optical radius of the galaxy. The first subsystem, at galactocentric distances r < 3.5 kpc, rotates in the plane of the stellar disk. The inner part of the ionized-gas disk (r<1.5–2 kpc) exactly coincides with the previously known disk consisting of molecular gas. The second subsystem of ionized gas is located at galactocentric distances 2–6 kpc. This subsystem rotates in a plane tilted by a significant angle to the stellar disk. The angle of orbital inclination in the outer disk increases with galactocentric distance and reaches 50° at r ≈ 6 kpc. The ionized fraction of the gaseous disk does not show up beyond this galactocentric distance, but we believe that the HI disk continues to warp and approaches the plane that is polar with respect to the inner disk of the galaxy. Hence Arp 212 can be classified as a galaxy with a polar ring (or a polar disk). The observed kinematics of the ionized and neutral gas can be explained assuming that the distribution of gravitational potential in the galaxy is not spherically symmetric. Most probably, the polar ring have formed via accretion of gas from the dwarf satellite galaxy UGC 12549.  相似文献   

13.
14.
A computation simulation of the motion of equilibrium particles in semi-detached binary systems is presented. We find that an accretion disk can be formed around the primary due to viscosity between moving particles. The calculated results are obtained for various factors and mass ratios. The results show that a part of the martter transferred from the secondary is accreted by the primary and the equilibrium mass transfer of moving particle depends on viscous factors and mass ratios.A part of the work has been performed during author's visit the Institute for Advanced Study, Princeton, N.J.  相似文献   

15.
The X-ray spectral and timing properties of ultraluminous X-ray sources (ULXs) have many similarities with the very high state of stellar-mass black holes (power-law dominated, at accretion rates greater than the Eddington rate). On the other hand, their cool disk components, large characteristic inner-disk radii and low characteristic timescales have been interpreted as evidence of black hole masses ~1000 M (intermediate-mass black holes). Here we re-examine the physical interpretation of the cool disk model, in the context of accretion states of stellar-mass black holes. In particular, XTE J1550–564 can be considered the missing link between ULXs and stellar-mass black holes, because it exhibits a high-accretion-rate, low-disk-temperature state (ultraluminous branch). On the ultraluminous branch, the accretion rate is positively correlated with the disk truncation radius and the bolometric disk luminosity, while it is anti-correlated with the peak temperature and the frequency of quasi-periodic-oscillations. Two prototypical ULXs (NGC?1313 X-1 and X-2) also seem to move along that branch. We use a phenomenological model to show how the different range of spectral and timing parameters found in the two classes of accreting black holes depends on both their masses and accretion rates. We suggest that ULXs are consistent with black hole masses ~50–100 M , moderately inefficiently accreting at ≈20 times Eddington.  相似文献   

16.
粘滞性问题一直是吸积盘理论中十分重要而又难以解决的一个基本理论问题.最近,Balbus和Hawley建议在磁化吸积盘中存在一种局域的磁流体剪切不稳定性机制,它能导致磁化吸积盘中有效的角动量转移,从而可以部分地解决磁化吸积盘中的粘滞性问题.但是Balbus-Hawley机制对非磁化吸积盘仍然是无效的.在本文中,我们研究了一种非磁化吸积盘模型,其中粘滞性机制起源于等离子体朗缪尔波湍动应力,并与标准a吸积盘模型中起源于流体或磁流体湍流的雷诺应力的粘滞性机制进行了比较.结果表明等离子体朗缪尔波湍动应力不仅对非磁化吸积盘中粘滞性的起源有重要的贡献,而且有可能是比流体湍流或磁流体湍流的雷诺应力更加有效的粘滞性起源的物理机制.  相似文献   

17.
A study is made of axisymmetric, low sonic-Mach-number flows of a viscous fluid with angular momentum outside of a black-hole. The viscosity is an eddy viscosity due to turbulence in the sheared flows. Self-similar solutions arise naturally, reducing the Navier-Stokes equations to a set of nonlinear ordinary differential equations. These equations are solved analytically for flows of constant specific angular momentum and numerically for more general flows. For flows with non-constant specific angular momentum, the momentum flux density includes a planar discontinuity which is interpreted as an accretion disc. In general, two flow regions appear on each side of the disk, corresponding to accretion onto the disk and jet-like outflows along the ±z-axes. Physical interpretations of the solutions show that these flows arise in response to point sources of axial momentum at the origin directed in the ±z-directions. The power needed to maintain this momentum input is assumed to come from the mass accretion onto the black hole.The hydrodynamic flows are generalized to include a magnetic field. In the limit of infinite electrical conductivity, the possible types of flow patterns are the same as in hydrodynamic case. The magnetic field alters the relative amounts of reversible and irreversible momentum and angular momentum transport by the flow. For a flow with turbulent viscosity, the magnetic field acts to reduce the level of the turbulence and the effective value of the eddy viscosity.  相似文献   

18.
We present some results from our submillimeter single-dish and aperture synthesis imaging surveys of protoplanetary disks using the JCMT, CSO, and Submillimeter Array (SMA) on Mauna Kea, Hawaii. Employing a simple disk model, we simultaneously fit the spectral energy distributions and spatially resolved submillimeter continuum emission from our SMA survey to constrain disk structure properties, including surface density profiles and sizes. The typical disk structure we infer is consistent with a fiducial accretion disk model with a viscosity parameter α≈0.01. Combined with a large, multiwavelength single-dish survey of similar disks, we show how these observations provide evidence for significant grain growth and rapid evolution in the outer regions of disks, perhaps due to an internal photoevaporation process. In addition, we discuss SMA observations of the disks in the Orion Trapezium (proplyds) in the context of disk evolution in a more extreme environment.  相似文献   

19.
We carry out 2.5D MHD simulations to study the interaction between a dipolar magnetic field of a T Tauri Star, a circumstellar accretion disk, and the halo above the disk. The initial disk is the result of 1D radiation hydrodynamics computations with opacities appropriate for low temperatures. The gas is assumed resistive, and inside the disk accretion is driven by a Shakura–Sunyaev-type eddy viscosity. Magnetocentrifugal forces due to the rotational shear between the star and the Keplerian disk cause the magnetic field to be stretched outwards and part of the field lines are opened. For a solar-mass central star and an accretion rate of 10?8 solar masses per year a field strength of 100 G (measured on the surface of the star) launches a substantial outflow from the inner parts of the disk. For a field strength of 1 kG the inner parts of disk is disrupted. The truncation of the disk turns out to be temporary, but the magnetic field structure remains changed after the disk is rebuilt.  相似文献   

20.
The long-time development of self-gravitating gaseous astrophysical systems (in particular, the evolution of the protoplanet accretion disk) is mainly determined by relatively fast processes of the collision relaxation of particles. However, slower dynamical processes related to force (Newton or Coulomb) interactions between particles should be included (as q-collisions) in the nonextensive kinetic theory as well. In the present paper, we propose a procedure to include the Newton self-gravity potential and the centrifugal potential in the near-equilibrium power-like q-distribution in the phase space, obtained (in the framework of nonextensive statistics) by means of the modified Boltzmann equation averaged with respect to an unnormalized distribution. We show that if the power distribution satisfies the stationary q-kinetic equation, then the said equation imposes clear restrictions on the character of the long-term force field and on the possible dependence of hydrodynamic parameters of the coordinates: it determines those parameters uniquely. We provide a thermodynamic stability criterion for the equilibrium of the nonextensive system. The results allow us to simulate the evolution of gaseous astrophysical systems (in particular, the gravitational stability of rotating protoplanet accretion disks) more adequately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号