首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gardner solitons (GSs) and double layers (DLs) of dust ion acoustic (DIA) waves in an electronegative plasma (composed of inertial positive and negative ions, Maxwellian cold electrons, non-thermal hot electrons, and negatively charged static dust) are studied. The reductive perturbation method is employed to derive the Korteweg-de Vries (K-dV), modified K-dV, and standard Gardner equations, which admits solitary wave and DLs solutions for σ around its critical value σ c (where σ c is the value of σ corresponding to the vanishing of the nonlinear coefficient of the K-dV equation). The parametric regimes for the existence of the GSs and DLs, are obtained. The basic features of DIA GSs and DLs (associated with negative structure only) are analyzed. It has been found that the characteristics of DIA GSs and DLs, are different from that of the K-dV solitons and mK-dV (mixed K-dV) solitons. The implications of our results to different space and laboratory plasma situations are discussed.  相似文献   

2.
The properties of nonplanar (cylindrical and spherical) ion-acoustic solitary waves (IA SWs) in an unmagnetized, collisionless electron-positron-ion (e-p-i) plasma, whose constituents are q-distributed electrons and positrons and inertial ions, are investigated by deriving the modified Gardner (MG) equation. The well known reductive perturbation method is employed to derive the MG equation. The basic features of nonplanar IA Gardner solitons (GSs) are discussed. It is found that the properties of nonplanar IA GSs (rarefactive and compressive) are significantly affected by the particle nonextensivity.  相似文献   

3.
Dust-ion-acoustic (DIA) waves in an unmagnetized dusty plasma system consisting of inertial ions, negatively charged immobile dust, and superthermal (kappa distributed) electrons with two distinct temperatures are investigated both numerically and analytically by deriving Korteweg–de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations along with its double layers (DLs) solutions using the reductive perturbation technique. The basic features of the DIA Gardner solitons (GSs) as well as DLs are studied, and an analytical comparison among K-dV, mK-dV, and GSs are also observed. The parametric regimes for the existence of both the positive as well as negative SWs and negative DLs are obtained. It is observed that superthermal electrons with two distinct temperatures significantly affect on the basic properties of the DIA solitary waves and DLs; and depending on the parameter μ c (the critical value of relative electron number density μ e1), the DIA K-dV and Gardner solitons exhibit both compressive and rarefactive structures, whereas the mK-dV solitons support only compressive structures and DLs support only the rarefactive structures. The present investigation can be very effective for understanding and studying various astrophysical plasma environments (viz. Saturn magnetosphere, pulsar magnetosphere, etc.).  相似文献   

4.
A rigorous theoretical investigation of nonlinear electron-acoustic (EA) waves in a plasma system (containing cold electrons, hot electrons obeying a Boltzmann distribution, and hot ions obeying a nonthermal distribution) is studied by the reductive perturbation method. The modified Gardner (MG) equation is derived and numerically solved. It has been found that the basic characteristics of the EA Gardner solitons (GSs), which are shown to exist for α around its critical value α c [where α is the nonthermal parameter, α c is the value of α corresponding to the vanishing of the nonlinear coefficient of the Korteweg-de Vries (K-dV) equation, e.g. α c ≃0.31 for μ=n h0/n i0=0.5, σ=T h /T i =10, n h0, n i0 are, respectively, hot electron and nonthermal ion number densities at equilibrium, T h (T i ) is the hot electron (ion) temperature], are different from those of the K-dV solitons, which do not exist for α around α c , and mixed K-dV solitons, which are valid around αα c , but do not have any corresponding double layers (DLs) solution. The parametric regimes for the existence of the DLs, which are found to be associated with positive potential, are obtained. The present investigations can be observed in various space plasma environments (viz. the geomagnetic tail, the auroral regions, the cusp of the terrestrial magnetosphere, etc.).  相似文献   

5.
A theoretical investigation has been made on the Dust ion-acoustic (DIA) Gardner solitons (GSs) and double layers (DLs) in electronegative plasma consisting of inertial positive and negative ions, super-thermal (kappa distributed) electrons, and negatively charged static dust. The standard reductive perturbation method is employed to derive the Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and standard Gardner equations, which admits solitary waves (SWs) and DLs solutions. It have been found that GSs and DLs exist for α around its critical value α c , where α c is the value of α corresponding to the vanishing of the nonlinear coefficient of the K-dV equation. The parametric regimes for the existence of both the positive as well as negative SWs and negative DLs are obtained. The basic features of DIA SWs and DLs are analyzed and it has been found that the polarity, speed, height, thickness of such DIA SWs and DLs structures, are significantly modified due to the presence of two types of ions and spectral index (κ) of super-thermal electrons. It has also been found that the characteristics of DIA GSs and DLs, are different from that of the K-dV solitons and mK-dV solitons. The relevance of our results to different interstellar space plasma situations are discussed.  相似文献   

6.
A theoretical investigation has been performed on the nonlinear propagation of nonplanar (cylindrical and spherical) Gardner solitons (GSs) associated with the positron-acoustic (PA) waves in a four component plasma system consisting of nonthermal distributed electrons and hot positrons, mobile cold positrons, and immobile positive ions. The well-known reductive perturbation method has been employed to derive the modified Gardner (MG) equation. The basic features (viz. amplitude, polarity, speed, etc.) of nonplanar PA Gardner solitons (GSs) have been examined by the numerical analysis of the MG equation. It has been observed that the properties of the PA GSs in a nonplanar geometry differ from those in a planar geometry. It has been also investigated that the presence of nonthermal (Cairns distributed) electrons and hot positrons significantly modify the amplitude, polarity, speed, and thickness of such PA GSs. The results of our investigation should play an important role in understanding various interstellar space plasma environments as well as laboratory plasmas.  相似文献   

7.
The Gardner equation is derived and numerically solved. This equation shows the existence of compressive and rarefactive dust-acoustic (DA) solitons with two-temperature ions beyond the K-dV (Korteweg–de Vries) limit. These may be referred to as DA Gardner solitons (DA-GSs). Here we deal with a dusty plasma, composed of negatively charged cold mobile dust fluids, inertialess Boltzmann electrons and ions with two distinctive temperatures. The basic features of the compressive and rarefactive DA solitons are identified. These solitons are found to exist beyond the K-dV limit, i.e. they exist for μ i1μ c. Here μ i1=n i10/Z d n d0, Z d is the number of electrons residing upon the dust grain surface, and n i0 (n d0) is the lower temperature ion (dust) number density at equilibrium. These DA-GSs are completely different from the K-dV solitons, because μ c (the critical value) corresponds to vanishing of the nonlinear coefficient of the K-dV equation, and μ i1μ c corresponds to K-dV solitons, with extremely large amplitude, for which the validity of the reductive perturbation method breaks down. It has been found that, depending on whether the parameter μ i1 is less than or greater than the critical value, the DA-GSs exhibit compression for μ i1>μ c and rarefaction for μ i1<μ c. The basic features of double layers with arbitrary amplitude are also briefly discussed, employing the pseudo-potential approach. The present investigation might be relevant to the electrostatic solitary structures observed in various cosmic dust-laden plasmas, such as supernova shells, Saturn’s F-ring, the ionopause of Halley’s comet, etc.  相似文献   

8.
Nonlinear propagation of dust-acoustic waves in an unmagnetized dusty plasma consisting of negatively charged mobile dust, nonextensive ions following nonextensive q-distribution and two distinct temperature superthermal electrons following superthermal kappa distribution each, is investigated by employing lower and higher order nonlinear equations, namely the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV) and the Gardner equations. The characteristic features of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two superthermal temperature electrons and ions nonextensivity on the basic characteristics of DA K-dV, mK-dV and Gardner solitons have also been investigated. It has been found that the DA Gardner solitons exhibit either negative or positive potential solitons only for q<q c where, q c is the critical value of the nonextensive parameter q. The possible applications of our results in understanding the localized nonlinear electrostatic structures existing in solar atmosphere, Saturn’s magnetosphere etc. (where the tails of the high energetic particles at different temperatures follow power-law like distribution) are also briefly discussed.  相似文献   

9.
The nonlinear propagation of ion-acoustic waves is studied in an unmagnetized collissionless electronegative plasma, whose constituents are the inertial warm positive/negative ions and q-distributed nonextensive electrons. The latter have strong impact on the linear dispersion relation. However, for nonlinear analysis, a reductive perturbation technique is employed to derive a Korteweg-de Vries (KdV) equation accounting for nonthermal electrons in nonplanar geometries. Numerically, the effects of various plasma parameters, such as, the nonextensive parameter (q), the negative-to-positive ion mass ratio (α), the electron-to-positive ion number density ratio (μ), the positive ion-to-electron temperature ratio (θ i ) and negative ion-to-electron temperature ratio (θ n ), have been examined on the nonplanar compressive/rarefactive fast ion-acoustic solitons (where the wave phase speed is taken as λ>1). The relevance of our findings involving plasma wave excitations should be useful both for space and laboratory plasmas, where two distinct groups of ions besides the electrons, are present.  相似文献   

10.
A finite amplitude linearly polarized electromagnetic wave propagating in a relativistic plasma, is found to generate the longitudinal d.c. as well as the oscillating electric field at the second harmonic. In a plasma consisting of only electrons and positrons, these fields cannot be generated.The evolution of the electromagnetic waves is governed by the non-linear Schrödinger equation which shows that the electromagnetic solitons are always possible in ultra-relativistic plasmas (electron-ion or electron-positron) but in a plasma with relativistic electrons and nonrelativistic ions, these solitons exist only if 1(KT e/meC2)<(2m i/15me);m e andm i being the electron and ion mass andT e the electron temperature. Both the d.c. electric field and the solitons provide a nonlinear mechanism for anomalous acceleration of the particles. This model has direct relevance to some plasma processes occurring in pulsars.  相似文献   

11.
In the two component relativistic plasmas subject to pressure variation of adiabatic electrons and isothermal ions, both compressive and rarefactive KdV solitons are established in a quite different physical plasma model. It is desirable to define c s in a new way to substantiate the validity of the model under relativistic effects. The corresponding mathematical condition is also determined, which is a new report of this kind. It is also interesting to report that the relativistic rarefactive solitons cease to exist below some critical ion initial streaming speed v i0 for a fixed temperature α and electron streaming speed v e0. Besides, higher initial flux v i0 of ions under constant temperature is observed to generate higher speed v i at the passage of time which causes to increase (in relativistic sense) its mass diminishing thereby the growth of soliton amplitudes.  相似文献   

12.
A new solution of the magnetospheric heat equations capable of covering the whole region from 300 km along a field line to the equatorial plane has been achieved by adapting the searching procedure of Murphy (1974). It has been found that the protonospheric heat reservoir is sufficient to maintain Te >Tn down to the height of the F2-peak electron density all through the night at mid-latitudes. Full solution of the equations has also shown that Ti >Te in the protonosphere at night and the ions constitute a significant source of heat for the electrons.  相似文献   

13.
By employing the reductive perturbation technique, nonlinear cylindrical and spherical Korteweg–de Vries Burgers (KdVB) equation is derived for ion acoustic shock waves in an unmagnetized electronegative plasma. The latter is composed of warm positive and warm negative ions as well as q-distributed nonextensive electrons. Numerically, the modified KdVB equation is solved to examine the impact of nonthermal electrons on the profiles of nonplanar fast ion acoustic shocks. With the help of experimental parameters, it is found that the variations of different quantities, like q (nonextensive parameter), α (the negative-to-positive ion mass ratio), μ (the electron-to-positive ion density ratio) and θ i (the positive ion-to-electron temperature ratio), η i0,n0 (the positive/negative ion viscosities) significantly modify the propagation characteristics of nonplanar shocks in electronegative plasmas. The relevance to a laboratory experiment is highlighted, where positive and negative ions are present.  相似文献   

14.
The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures Ti and Tn and bulk transport velocities ci and cn. The results are directly applicable to the F-region of the ionosphere where O+ - O charge is the dominant mechanism affecting ion momentum and energy transfer.  相似文献   

15.
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping rate and associated currents in homogenous plasma. Kinetic effects of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (Ti/Te) affect the dispersion relation, damping-rate and associated currents in both cases (warm and cold electron limits). The treatment of kinetic Alfven wave instability is based on the assumption that the plasma consists of resonant and non-resonant particles. The resonant particles participate in an energy exchange process, whereas the non-resonant particles support the oscillatory motion of the wave.  相似文献   

16.
Theoretically the propagation of two ion acoustic soliton interaction in a three component collisionless unmagnetized plasma which consists of electrons, positrons and cold ions, has been investigated here by employing reductive perturbation technique. In this study, q distributed electrons and Maxwell-Boltzmann distributed positrons are considered and Korteweged-de Vries (KdV) equation is derived. The KdV equation is solved to get two soliton solution by using Hirota bilinear method. The effects of the q distributed electrons on the profiles of two soliton structures and the corresponding phase shifts are investigated. It is observed that both the nonextensive parameter (q) and the ratio of positrons density and electron density (p=n p0/n e0), play a significant role in the formation and existence of two soliton and also in the nature of their phase shifts.  相似文献   

17.
Linear and nonlinear analysis are presented for an electronegative dusty plasma system. Linear analysis shows that the dispersive nature of the plasma system changes considerably due to the presence of nonthermal q-nonextensive distributed electrons. The presence of both compressive and rarefactive Sagdeev solitons is investigated and shown that the addition of even a small population of dust particles will significantly modify the large amplitude Sagdeev solitons. The coexistence of both compressive and rarefactive solitons for a certain set of parameters is also noticed in such system. The effect of variation of entropic index q, θ i (ratio of positive ion temperature to electron temperature), θ n (ratio of negative ion temperature to electron temperature) and dust particles concentration (R) is elaborated with the help of suitable parameters.  相似文献   

18.
The dissociative recombination coefficients α for capture of electrons by H3+ and H5+ ions have been determined as a function of electron temperature Te using a microwave afterglow-mass spectrometer apparatus. At ion and neutral temperatures Tu+ = Tn = 240 K, the coefficient α (H3+) is found to vary slowly with Te at first, decreasing from 1.6 × 10?7 cm3/s at Te = 240 K to 1.2 × 10?7 cm3/s at Te = 500 K, thereafter falling as Te?1 over the range 500 K ? Te, ? 3000 K. These results, which have a ± 20% uncertainty, agree satisfactorily over the common energy range (0.03–0.36 eV) with the recombination cross sections determined in merged beam measurements by Auerbach et al. At T+ = Tn = 128 K, the coefficient α(H5+) is found to be (1.8 ± 0.3) × 10?6 [Te(K)/300]?0.69 cm3/s over the range 128 K ? Te ? 3000 K, with a more rapid decrease, as Te?1, between 3000 K and 5500 K. The implications of these results for modelling planetary atmospheres and interstellar clouds are briefly touched on.  相似文献   

19.
Compressive solitons of low and high amplitudes are established in this weakly relativistic and magnetized plasma model. The assigned direction of soliton propagation to the direction of the magnetic field, supplemented by the corresponding ion initial streaming speed (v 0) determines the lower limit of the initial electron streaming speed (v 0) in its interval of existence to produce solitons for a given value of the speed of light c. Further, lower limit of c specified by the corresponding energy (or temperature) to yield relativistic compressive solitons is also predicated. Interestingly, the increased initial streaming speed of electrons is found to play less effective role in the steepening growth of amplitudes of compressive solitons due to mode one than those corresponding to the mode two.  相似文献   

20.
Dust-acoustic (DA) solitary waves are investigated in a magnetized dusty plasma comprising cold dust fluid and kappa-distributed ions and/or electrons. The influence of suprathermal particles, obliqueness, and ion temperature on the DA solitary waves is investigated. We find that only negative DA solitary waves will be excited in this model. Also it is shown that the amplitude of the DA solitary wave decreases with deviation of electrons or ions from Maxwellian distribution via decrease of κ e or κ i . The effect of the temperature of the ion decreases with the amplitude and steepness of the solitary wave front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号