首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the region of Three Gorges Reservoir (TGR) in China, there has been occurrence of several frequent earthquakes of moderate intensity since reservoir impounding occurred in 2003. These earthquakes are generally believed to be induced by reservoir impoundment and water-level variations. Usually, the geo-stress will change, when natural earthquakes occur. Following this principle, this paper adopted the rate and state theory to simulate and estimate Coulomb stress changes in the TGR region and obtained the pattern of Coulomb stress changes with time and the event sequence as well as the distribution of Coulomb stress changes in space. First, the TGR regional catalogue was analyzed and processed, leading to quantification of the magnitude of completeness and all of the parameters that are used in the stress–seismicity inversion process, including the reference seismicity rates, characteristic relaxation time, fault constitutive parameters, and stress rates. Second, the temporal evolution of the stress changes in different time windows was computed and analyzed, and it was found that there is an association between the Coulomb stress changes and rates of increase in the cumulative number of earthquakes. In addition, the earthquake occurred in November 2008 (M S = 4.1) was analyzed and attempted to simulate the distribution of stress changes in space through the stress–seismicity inversion model. The results proved that the modeled area coincides with the historical area of earthquakes that occurred after 2008. Finally, a prediction was made about the earthquake productivity rates after 2015, which showed a declining earthquake rate over time that ultimately returned to the background seismicity. This result is essentially in agreement with Omori’s law. To conclude, it is rational to use the stress-inversion method to analyze the relationship between induced earthquake seismicity and local stress changes as well as to simulate the area of earthquake occurrence and productivity rates of reservoir-induced earthquakes.  相似文献   

2.
The Mw7.5 Palu earthquake that occurred on September 28, 2018, in Indonesia caused much damage to the city of Palu. Preliminary investigations indicated that the Palu‐Koro Fault (PKF) hosted this damaging event. We calculated the seismicity before and after the 1996 Minahasa Mw7.9 earthquake and found that the seismicity on the PKF was enhanced after this earthquake. The earlier earthquake added Coulomb stress changes (?CFS) to the seismogenic fault plane. We calculated the ?CFS produced by the Palu earthquake on a specified received nodal plane; the results suggest that many aftershocks occurred in the region of increased ?CFS. This region was consistent with the region of increased seismicity. The ?CFS on neighbouring faults increased, and up to 55.282 bar of stress was observed on the PKF. Furthermore, we calculated the expected seismicity rate and found that it will require ~50 years to recover to its original level.  相似文献   

3.
Empirical laws and statistics of earthquakes are valuable as a basis for a better understanding of the earthquake cycle. In this paper we focus on the postseismic phase and the physics of aftershock sequences. Using interevent time distributions for a catalogue of Icelandic seismicity, we infer that the parameter C2 in the Omori law, often considered to represent incomplete detection of aftershocks, is at least in part related to the physics of the earthquake process. We investigate the role of postseismic pore pressure diffusion after two Icelandic earthquakes on the rate of aftershocks and what we can infer about the physical meaning of C2 from the diffusion process. Using the Mohr–Coulomb failure criterion we obtain a rate of triggered points in our diffusion model that agrees with the modified Omori law, with a value of C2 that is consistent with data. Our pore pressure diffusion model suggests that C2 is related to the process of reducing high pore pressure gradients existing across a fault zone at short times after a main shock.  相似文献   

4.
Bogdan Enescu  Kiyoshi Ito   《Tectonophysics》2005,409(1-4):147-157
By using the double-difference relocation technique, we have determined the fine structure of seismicity during the 1998 Hida Mountain earthquake swarm. The distribution of seismic activity defines two main directions (N–S and E–W) that probably correspond to the regional stress pattern. The detailed structure of seismicity reveals intense spatio-temporal clustering and earthquake lineations. Each cluster of events contains a mainshock and subsequent aftershock activity that decays according to the Omori law. The seismicity and the b-value temporal and spatial patterns reflect the evolution of the static stress changes during the earthquake swarm. About 80% of the swarm's best-relocated events occur in regions of increased ΔCFF. The smaller value of b found in the northern part of the swarm region and a larger b-value observed to the south, for the same period of time, could be well explained by the static stress changes caused by the larger events of the sequence. We argue that the state of stress in the crust is the main factor that controls the variation of b-value.  相似文献   

5.
A model for an earthquake simulation is proposed with the use of a fractal approach. Multiple generation and coalescence of shear faults in stochastic brittle media (modelled as a 2d lattice) are considered to be a source of seismicity. Dynamics of local failure events are governed by accumulation of shear defects, described in terms of continuum damage mechanics. Fractal tree structure is used as an analogue for a stress redistribution process. Energy release, caused by the non-uniform failure, is studied for a non-conservative case. Effect of various types of rocks' properties stochasticity on energy release dynamics is analysed with a utilization of multifractal formalism. The latter is shown to be an additional method for seismicity characterization.  相似文献   

6.
The 2004 Mw9.2 Sumatra and 2012 Mw8.6 Wharton Basin (WB) earthquakes provide the unprecedented opportunity to investigate stress transfer from a megathrust earthquake to the subducting plate. Comprehensive analyses of this study revealed that the 2004 earthquake excited widespread seismicity in the WB, especially in regions of calculated stress increase greater than 0.3 bars. The 2004 earthquake stressed all three rupture planes of the 2012 Mw8.6 strike‐slip mainshock and the largest Mw8.2 aftershock with mean values of Coulomb stress between 0.3 and 2.1 bars. For the 77 Mw ≥ 4 regional events since 2012, at least one nodal plane for 95% of the events, and both nodal planes for 72% of the events experienced stress increase due to the 2004 earthquake. Results of the analyses also revealed that the regional stress directions in the WB may have controlled the sub‐fault orientations of the 2012 Mw8.6 strike‐slip earthquake.  相似文献   

7.
以山东郯城1668年大地震为例,以前人地表地质调查结果为约束,利用弹性位错理论初步获取了该地震的同震破裂模型;在此基础上,基于粘弹性分层模型分析了该地震的同震和震后形变,同时以主震断层为接收断层计算了库仑应力分布,进一步讨论了地幔不同粘滞性系数对地表形变和库仑应力变化的影响。计算结果显示,该地震是一个右旋走滑为主兼有一定逆冲性质的地震,其同震位移巨大,能量释放较彻底;同震破裂造成震中郯城县西北、东北和南部部分断层库仑应力增加,而震后形变使得这些断层库仑应力进一步增加,在单县、宿迁和日照等地,地震后350 a库仑应力变化量达到+1bar-+1MPa量级;地幔粘滞性系数不同,形变量和库仑应力变化达到稳定的时间不同,但最终趋于稳定的数值基本一致。  相似文献   

8.
采用β统计对汶川地震前后鄂尔多斯块体周缘地区的地震活动率进行了空间扫描分析,并采用JiChen的震源破裂模型计算了汶川地震产生的库仑破裂应力变化,以研究鄂尔多斯块体周缘地区近期地震活动性与汶川地震应力触发作用的关系。结果发现,鄂尔多斯块体西南缘弧形断裂束的南东段与南缘渭河盆地的地震活动率在汶川地震后提高显著,其他区域的地震活动率没有明显提高,库仑破裂应力计算得到两个区域的应力变化范围分别为0.005~0.02 MPa和0.001~0.01 MPa,表明汶川地震有可能触发了这两个区域的地震活动。鄂尔多斯块体东缘的山西断陷带处于库仑破裂应力计算的应力增加区,应力变化范围为0~0.012 MPa,2009年3月以来发生的4次ML4.5~5.2级强有感至微破坏地震有可能被汶川地震所延迟触发。b值、地震能量释放率与空间相关距离SCL等地震活动性参数随时间变化扫描结果显示,该区域可能处于不断趋近高应力累积的状态,其未来大震有可能提前发生。西缘地区为应力减小区,其目前的地震活动处于正常水平状态。  相似文献   

9.
We estimated spatio-temporal evolution of Coulomb stress within the subducted Pacific slab in Hokkaido from the analysis of seismicity rate change. For this purpose we used earthquake catalog from the Institute of Seismology and Volcanology (ISV), Hokkaido University for the period 1993/4/1–2006/12/31 after relocating to compensate location errors due to the heterogeneous P- and S-wave structure beneath Hokkaido. We found that spatial pattern of Coulomb stress change inverted from the seismicity rate change is comparable with static change in Coulomb stress estimated from dislocation models. Our results and analyses reveal important insights on spatio-temporal pattern of deformation of the subducted Pacific slab in terms of Coulomb stress change. We found that the 2003 Tokachi Oki earthquake (Mw = 8.0) pervasively perturbed Coulomb stress in a regional scale with a significant impact to trigger the 2004 Kushiro Oki earthquake. The 2004 Kushiro Oki earthquake (Mw = 7.0) is another significant stressing event that changed the pattern of Coulomb stress in the area. We found that stressing events with magnitude smaller than 7.0 has minimal impact on Coulomb stress change in the Pacific slab. Similarly, comparatively deep focused large earthquakes could not change Coulomb stress significantly. Further the pattern of Coulomb stress change after the 2003 Tokachi Oki earthquake correlates the pattern of afterslip distribution in Hokkaido.  相似文献   

10.
大地震导致的同震及震后效应,对于分析不同地震之间的相互影响及区域地震危险性等有着重要的作用.文中开发了模拟地震同震及震后效应的三维黏弹性有限元程序,通过计算走滑断层震例(概念性模型)引起的同震及震后效应,并与解析/半解析解进行对比,验证了程序的可靠性.同时基于概念性模型,分析了不同介质参数对同震及震后的地表变形的影响....  相似文献   

11.
To better understand the role the Zipingpu Reservoir may have played in triggering the 2008 Ms8 (Mw7.9) Wenchuan earthquake in China, this study evaluates changes of Coulomb failure stress (ΔCFS) and assesses their role in local seismicity and their potential impact on the Wenchuan earthquake. In addition, key aspects associated with reservoir-triggered earthquake (RTS), including mechanisms of stress triggering and permeability of fault zones, is briefly reviewed. ΔCFS was calculated at the faults involved in the Wenchuan earthquake due to the combined effects of gravitational loading and pore-pressure diffusion from the impoundment history of the reservoir. ΔCFS on the major source fault is larger than 0.1 MPa in the upper 10 km below the reservoir and reached a few tens of kPa at the focal depth. Such levels of ΔCFS are large enough to modulate the secular stress buildup of a few kPa/yr in the Longmen-shan thrust zone. Based on detailed analysis of numerical results and local seismicity, the author suggests that it is not proper to rule out the possibility of the Wenchuan earthquake being a RTS only based on very limited knowledge from a few cases of historical RTS so far.  相似文献   

12.
The spatio-temporal variation in seismicity in western Turkey since the late 1970s is investigated through a rate/state model, which considers the stressing history to forecast the reference seismicity rate evolution. The basic catalog was divided according to specific criteria into four subsets, which correspond to areas exhibiting almost identical seismotectonic features. Completeness magnitude and reference seismicity rates are individually calculated for each subset. The forecasting periods are selected to be the inter-seismic time intervals between successive strong (M ≥ 5.8) earthquakes. The Coulomb stress changes associated with their coseismic slip are considered, along with the constant stressing rate to alter the rates of earthquake production. These rates are expressed by a probability density function and smoothed over the study area with different degrees of smoothing. The influence of the rate/state parameters in the model efficiency is explored by evaluating the Pearson linear correlation coefficient between simulated and observed earthquake occurrence rates along with its 95 % confidence limits. Application of different parameter values is attempted for the sensitivity of the calculated seismicity rates and their fit to the real data to be tested. Despite the ambiguities and the difficulties involved in the experimental parameter value determination, the results demonstrate that the present formulation and the available datasets are sufficient enough to contribute to seismic hazard assessment starting from a point such far back in time.  相似文献   

13.
The M w 8.6 Indian Ocean earthquake occurred on April 11, 2012 near the NW junction of three plates viz. Indian, Australian and Sunda plate, which caused widespread coseismic displacements and Coulomb stress changes. We analyzed the GPS data from three IGS sites PBRI, NTUS & COCO and computed the coseismic horizontal displacements. In order to have in-depth understanding of the physics of earthquake processes and probabilistic hazard, we estimated the coseismic displacements and associated Coulomb stress changes from two rectangular parallel fault geometries, constrained by Global Positioning System (GPS) derived coseismic displacements. The Coulomb stress changes following the earthquake found to be in the range of 5 to ?4 bar with maximum displacement of ~11 m near the epicenter. We find that most of the aftershocks occurred in the areas of increased Coulomb stress and concentrated in three clusters. The temporal variation of the aftershocks, not conformed to modified Omori’s law, speculating poroelastic processes. It is also ascertained that the spatio-temporal transient stress changes may promote the occurrence of the subsequent earthquakes and enhance the seismic risk in the region.  相似文献   

14.
Deformation models used to explain the triggering mechanism often assume pure elastic behaviour for the crust and upper mantle. In reality however, the mantle and possibly the lower crust behave viscoelastically, particularly over longer time scales. Consequently, the stress field of an earthquake is in general time-dependent. In addition, if the elastic stress increase were enough to trigger a later earthquake, this triggered event should occur instantaneously and not many years after the triggering event. Hence, it is appropriate to include inelastic behaviour when analysing stress transfer and earthquake interaction.In this work, we analyse a sequence of 10 magnitude Ms > 6.5 events along the North Anatolian Fault between 1939 and 1999 to study the evolution of the regional Coulomb stress field. We investigate the triggering of these events by stress transfer, taking viscoelastic relaxation into account. We evaluate the contribution of elastic stress changes, of post-seismic viscoelastic relaxation in the lower crust and mantle, and of steady tectonic loading to the total Coulomb stress field. We analyse the evolution of stress in the region under study, as well as on the rupture surfaces of the considered events and their epicentres. We study the state of the Coulomb stress field before the 1999 İzmit and Düzce earthquakes, as well as in the Marmara Sea region.In general, the Coulomb stress failure criterion offers a plausible explanation for the location of these events. However, we show that using a purely elastic model disregards an important part of the actual stress increase/decrease. In several cases, post-seismic relaxation effects are important and greater in magnitude than the stress changes due to steady tectonic loading. Consequently, viscoelastic relaxation should be considered in any study dealing with Coulomb stress changes.According to our study, and assuming that an important part of the rupture surface must be stressed for an earthquake to occur, the most likely value for the viscosity of the lower crust or mantle in this region is 5 · 1017–1018 Pa · s. Our results cannot rule out the possibility of other time-dependent processes involved in the triggering of the 1999 Düzce event. However, the stress increase due to viscoelastic relaxation brought 22% of the 1999 Düzce rupture area over the threshold value of Δσc ≥ 0.01 MPa (0.1 bar), and took the whole surface closer to failure by an average of 0.2 MPa. Finally, we argue that the Marmara Sea region is currently being loaded with positive Coulomb stresses at a much faster rate than would arise exclusively from steady tectonic loading on the North Anatolian Fault.  相似文献   

15.
The Longquan–Shan fault and the Huya fault are two major neighboring faults of the Longmen–Shan fault zone where the 12 May 2008 Wenchuan earthquake (Mw 7.9) occurred. To study the influence of the Wenchuan event on these two active faults, we calculate changes of Coulomb stress on the Longquan–Shan fault and the Huya fault caused by the Wenchuan mainshock. Our results indicate that the Coulomb stress in the northern section (Zone A) of the Longquan–Shan fault is increased by 0.07–0.10 bars, that in the middle section (Zone B) by 0.04–0.11 bars, and that in the southern section (Zone C) shows almost no change. For the Huya fault, the Coulomb stress is decreased by 0.01–0.03 bars in the northern section (Zone A), 0.10–0.35 bars in the middle section (Zone B), and nearly 0.5 bars in the southern section (Zone C). The epicenter distribution of small earthquakes (ML  1.5) on the Longquan–Shan fault and the Huya fault after the Wenchuan earthquake is consistent with the distribution of the Coulomb stress change. This implies that the Wenchuan earthquake may have triggered small events on the Longquan–Shan fault, but inhibited those on the Huya fault. We then use the rate/state friction law to calculate the occurrence probability of future earthquakes in the study region for the next decade. They include the distribution of b-values, magnitude of completeness (Mc), the background seismicity rate, a value of n and the duration for the transient effect (ta) in the study region. We also estimate the earthquake occurrence probabilities on the neighboring faults after the Wenchuan earthquake. Our results show that, the occurrence probability of future earthquakes in the Longquan–Shan has a slight increase, being 7% for M  5.0 shocks during the next decade, but the earthquake probability in the Huya region is reduced obviously, being 5–20%, 7–26% and 3–9% for M  5.0 shocks during the next decade in sections A, B and C of the Huya fault, respectively.  相似文献   

16.
A growing body of evidence suggests that fluids are intimately linked to a variety of faulting processes. Yet, the particular mechanisms through which fluids and associated parameters influence the stress regime and thus the seismicity of a particular area are not well understood.We carry out a study of the spatio-temporal behavior of earthquakes, fluid-related parameters (groundwater levels) and meteorological observables (precipitation) in the swarm earthquake area of Bad Reichenhall, southeastern Germany. The small volume in which the earthquakes take place, almost yearly occurring earthquake swarms and a permanent, seismo-meteorological monitoring network, provide nearly controlled experimental conditions to study the physics of earthquake swarms and to infer characteristic properties of the seismogenic crust.In this paper we (1) describe this fairly unique study area in terms of geology, seismicity and atmospheric conditions; (2) present two cases of earthquake swarms that seem to follow above-average rainfall events; and (3) examine the observed migration of hypocenters with a simple pore pressure diffusion model.We find significant correlation of seismicity with rainfall and groundwater level increase, and estimate an average hydraulic diffusivity of D = 0.75 ± 0.35 m2/s for Mt. Hochstaufen in 2002.  相似文献   

17.
地震学中非线性预测方法的初步研究   总被引:2,自引:0,他引:2  
介绍了近年来地震预测学中非线性理论和非线性方法的研究趋势和最新研究进展。在非线性数学模型的研究中,较为成功地将非线性门限模型,指数模型、具有长程关联自回归模型等应用于地震的中期预测上,在分形研究上,明确地取代了以往的一些经验结果,使对地震的活动的经验统计关系上升到分形的理论,在研究地震的动力学机制中,以多滑块-弹簧模型为代表,模拟地壳上地震断层运动机制和事实,建立了粘滑摩擦情况下的参数动力学方程。  相似文献   

18.
Observations indicate that earthquake faults occur in topologically complex, multi-scale networks driven by plate tectonic forces. We present realistic numerical simulations, involving data-mining, pattern recognition, theoretical analyses and ensemble forecasting techniques, to understand how the observable space–time earthquake patterns are related to the fundamentally inaccessible and unobservable dynamics. Numerical simulations can also help us to understand how the different scales involved in earthquake physics interact and influence the resulting dynamics. Our simulations indicate that elastic interactions (stress transfer) combined with the nonlinearity in the frictional failure threshold law lead to the self-organization of the statistical dynamics, producing 1) statistical distributions for magnitudes and frequencies of earthquakes that have characteristics similar to those possessed by the Gutenberg–Richter magnitude–frequency distributions observed in nature; and 2) clear examples of stress transfer among fault activity described by stress shadows, in which an earthquake on one group of faults reduces the Coulomb failure stress on other faults, thereby delaying activity on those faults. In this paper, we describe the current state of modeling and simulation efforts for Virtual California, a model for all the major active strike slip faults in California. Noting that the Working Group on California Earthquake Probabilities (WGCEP) uses statistical distributions to produce earthquake forecast probabilities, we demonstrate that Virtual California provides a powerful tool for testing the applicability and reliability of the WGCEP statistical methods. Furthermore, we show how the simulations can be used to develop statistical earthquake forecasting techniques that are complementary to the methods used by the WGCEP, but improve upon those methods in a number of important ways. In doing so, we distinguish between the “official” forecasts of the WGCEP, and the “research-quality” forecasts that we discuss here. Finally, we provide a brief discussion of future problems and issues related to the development of ensemble earthquake hazard estimation and forecasting techniques.  相似文献   

19.
Characterization of critically stressed seismogenic fault systems in diverse tectonic settings can be used to explore the stress/frictional condition of faults, along with its sensitivity for seismicity modulation by periodic stress perturbation. However, the process of seismicity modulation in response to external stress perturbation remains debated. In this paper, the characteristic difference in the seismicity modulation due to resonance destabilization phenomenon governed by rate-and-state friction is presented and validated with the globally reported cases of seismicity modulation in diverse tectonic settings. The relatively faster-moving plate boundary regions are equally susceptible for both shorter-period (e.g., semi-diurnal, diurnal, and other small tidal constituents) and long-period (e.g., semi-annual, annual, pole tide and pole wobble) seismicity modulation processes in response to stress perturbations from natural harmonic forcing, including tidal, semi-annual, annual, or multi-annual time scales. In contrast, slowly deforming stable plate interior regions and diffuse deformation zones appear to be more sensitive for long-period seismicity modulation of semi-annual, annual, or even multi-annual time scales but less sensitive for short-period seismicity modulation. This finding is also supported by the theoretical model predictions from the resonance destabilization process and worldwide documented natural observations of seismicity modulation in diverse types of tectonic settings.  相似文献   

20.
We found a characteristic space–time pattern of the tidal triggering effect on earthquake occurrence in the subducting Philippine Sea plate beneath the locked zone of the plate interface in the Tokai region, central Japan, where a large interplate earthquake may be impending. We measured the correlation between the Earth tide and earthquake occurrence using microearthquakes that took place in the Philippine Sea plate for about two decades. For each event, we assigned the tidal phase angle at the origin time by theoretically calculating the tidal shear stress on the fault plane. Based on the distribution of the tidal phase angles, we statistically tested whether they concentrate near some particular angle or not by using Schuster's test. In this test, the result is evaluated by p-value, which represents the significance level to reject the null hypothesis that earthquakes occur randomly irrespective of the tidal phase angle. As a result of analysis, no correlation was found for the data set including all the earthquakes. However, we found a systematic pattern in the temporal variation of the tidal effect; the p-value significantly decreased preceding the occurrence of M ≥ 4.5 earthquakes, and it recovered a high level afterwards. We note that those M ≥ 4.5 earthquakes were considerably larger than the normal background seismicity in the study area. The frequency distribution of tidal phase angles in the pre-event period exhibited a peak at the phase angle where the tidal shear stress is at its maximum to accelerate the fault slip. This indicates that the observed small p-value is a physical consequence of the tidal effect. We also found a distinctive feature in the spatial distribution of p-values. The small p-values appeared just beneath the strongly coupled portion of the plate interface, as inferred from the seismicity rate change in the past few years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号