首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the results of a comparative analysis of the atmospheric chemical abundances of red giants in several open clusters: the Hyades, Collinder 350, NGC 6475, and Ruprecht 147. We determined the atmospheric parameters of all the stars and the elemental abundances in their atmospheres, as well as their masses, Galactic velocities, and the elements of their orbits in the Galaxy. The observed excess [Na/Fe] and [Eu/Fe] abundances in the atmospheres of Hyades giants suggests that matter later used for star formation had been enriched in the ejecta from type II supernovae.  相似文献   

2.
The results of a comparative analysis of the kinematics, ages, and elemental abundances for 17 red giants in the Hercules moving group are presented. Model atmospheres are used to determine the parameters of the stellar atmospheres and the abundances of about 20 elements. The masses and ages of the stars are estimated, and the components of their Galactic velocities and the elements of their Galactic orbits are calculated. Our analysis demonstrates that the Hercules stream is a heterogeneous group of objects from the thin and thick disks.  相似文献   

3.
We analyze the Na, Mg, Al, and Si abundances in the atmospheres of more than 40 stars, includingred giants of different spectral subgroups (normal red giants, mild and classical barium stars) and several supergiants. All these elements exhibit abundance excesses, with the overabundance increasing with the star’s luminosity. The dependence of the overabundances for each of these elements on the luminosity (or log g) is the same for all the spectral subgroups, testifying to a common origin: they are all products of hydrogen burning in the NeNa and MgAl cycles that have been dredged up from the stellar interiors to the outer atmospheric layers by convection that gradually develops during the star’s evolution from the main sequence to the red-giant stage. The sodium abundances derived for several stars are lower than for other stars with similar atmospheric parameters. The ages and kinematic characteristics of these two groups of stars suggest that they probably belong to different stellar generations.  相似文献   

4.
We used high-resolution spectra to compute model atmospheres to derive the atmospheric abundances of moderate barium stars. Comparing our results with analogous data for normal red giants, we find that the moderate barium stars appear to not differ systematically from normal red giants. Their chemical abundance anomalies show the same patterns and can be interpreted in terms of evolutionary effects: the evolutionary stage, mass, luminosity, and metallicity of the objects.  相似文献   

5.
Using atmosphere models based on high-resolution spectra, we have derived the abundances of chemical elements in the atmospheres of seven classical barium stars and compared them with the elemental abundances of moderate barium stars and normal red giants. The behavior of elements up to the iron peak is the same in all three groups of giants, providing evidence that they have a common origin. The dependence of the anomalous abundances of s-process elements on stellar mass and metallicity is qualitatively similar for all three groups, probably indicating that a substantial role is played by the evolutionary phase of the stars. We conclude that the barium-star phenomenon and the overabundances of s-process elements in barium stars cannot be explained as a consequence of binarity alone. The extent to which the s-process elements are overabundant is affected by the mass, metallicity, and evolutionary phase of the given star, and any of these parameters may prove to be important in a specific object.  相似文献   

6.
The properties of the relative abundances of rapid and slow neutron-capture elements are studied using a catalog containing spectroscopic abundance determinations for 14 elements produced in various nuclear-synthesis processes for 90 open clusters. The catalog also contains the positions, ages, velocities, and elements of the Galactic orbits of the clusters. The relative abundances of both r-elements (Eu) and s-elements (Y, Ba, La, and Ce) in clusters with high, elongated orbits and in field stars of the Galactic thin disk display different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits, supporting the view that these objects have different natures. In young clusters, not only barium, but also the three other studied s-elements display significantly higher relative abundances than field stars of the same metallicity. The relative abundances of Eu are lower in highmetallicity clusters ([Fe/H] > -0.1) with high, elongated orbits than in field giants, on average, while the [Eu/Fe] ratios in lower-metallicity clusters are the same as those in field stars, on average, although with a large scatter. The metallicity dependence of the [O, Mg/Eu] ratios in clusters with high, elongated orbits and in field stars are substantially different. These and other described properties of the Eu abundances, together with the properties of the abundances of primary a-elements, can be understood in a natural way if clusters with high, elongated orbits with different metallicities formed as a result of interactions of two types of high-velocity clouds with the interstellar medium of the Galactic disk: low-metallicity highvelocity clouds that formed from “primordial” gas, and high-metallicity clouds with intermediate velocities that formed in “Galactic fountains.”  相似文献   

7.
Model atmospheres are fitted to spectroscopic data in order to analyze the elemental abundances in the atmospheres of three red giants in the Hyades cluster. The three stars have almost identical chemical compositions, with iron-group elements slightly overabundant compared to the solar values—a pattern that is typical of Hyades dwarfs. The overabundances of the light elements Na, Al, and Si are virtually equal to those observed for field giants. No enrichment in rare-earth elements relative to iron was found, in sharp contrast to field giants. It is concluded that these discrepancies are due to the age difference between the two groups of stars, which have resulted in different degrees of convective overshooting.  相似文献   

8.
Antipova  L. I.  Boyarchuk  A. A. 《Astronomy Reports》2015,59(11):1015-1018

The atmospheric abundances of various chemical elements and other atmospheric parameters of four stars belonging to the HR 1614 moving cluster are determined and analyzed using a single technique. For three of the stars, the derived atmospheric parameters are typical of stars of their types, and their elemental abundances are close to those determined earlier for these and other stars of the moving cluster. However, the atmospheric parameters derived for the red dwarf HD 32147 would be more typical of a giant, and its metallicity is much lower than is characteristic of stars of this moving group.

  相似文献   

9.
We present our analysis of elemental abundances in the atmospheres of 16 classical barium stars derived from high-resolution spectra and model atmospheres. Comparison of the results with analogous data for moderate barium stars and normal red giants shows that the abundance patterns for elements before the iron peak are the same for all three groups of red giants, testifying to a similar origin. For binary systems, we confirm the influence of the orbital period and, hence, the component separation, on the overabundance of s-process elements. The amount of enrichment in s-process elements is also influenced by mass, metallicity, and evolutionary phase. Any of these parameters can be important in individual objects.  相似文献   

10.
We analyze previously published chemical abundances in the atmospheres of red giants. Excess abundances are observed not only for Na, but also for Al and Si, with the overabundances increasing with the stars’ luminosity. The observed anomalies provide evidence that, in addition to the CNO hydrogen-burning cycle, the Mg-Al and Ne-Na cycles operate in the interiors of main-sequence stars; their products are brought to the stellar atmospheres by convection after the transition to the red-giant phase. The abundance anomalies for s-process elements, also observed in the atmospheres of field stars, testify to the presence of a substantial number of neutrons. The s-process abundance anomalies are absent from giants of the young Hyades cluster.  相似文献   

11.
The elemental abundances in the atmosphere of the red dwarf HD 32147, which belongs to the HR 1614 moving groups, are analyzed. The atmospheric parameters determined from spectroscopic data (the condition of equal abundances for neutral and ionized atoms of a given element) differ considerably from those derived from photometry and parallax data. The abundances of several elements are also anomalous, with the anomaly increasing with decreasing ionization potential. It is concluded that this star is a red dwarf displaying solar-like activity; i.e., having dark (cool) spots on its surface, which may sometimes be considerable in size. Modeling synthetic spectra of stars with cool spots on their surfaces, with the spectral lines consisting of two components formed in media with different temperatures, indicate that the spectroscopic atmospheric parameters derived in such cases are incorrect; this can also explain the observed dependence of the elemental abundances on the corresponding ionization potentials. This leads to the conclusion thatHD32147 is indeed a star with solar-like activity. Several other such stars considered as examples display the same anomalies as those of HD 32147. These modeling results are also valid for Ap and Am stars, and are able to explain short-wavelength observations of the Sun and some stars (the FIP effect).  相似文献   

12.
An analysis of the abundance of cobalt in atmospheres of red giants, indicates they can be divided into two groups: stars with the normal [Co/Fe] abundance and those with a small [Co/Fe] excess. A comparative analysis of the spectrograms taking into account the effect of superfine splitting provides evidence for a [Co/Fe] excess in some stars. We have also detected physical and kinematical differences between these groups. Stars with a [Co/Fe] excess are related to the thick-disk population of the Galaxy. These stars are older and less massive, display lower metallicities, and have Galactic velocities corresponding to those of thick-disk objects. It is suggested that the observed pattern of a [Co/Fe] excess in the halo and thick disk reflects the chemical composition of the Galaxy at a very early stage of its evolution, when Population III objects existed. The lower abundance excess in the thick disk compared to the halo and the absence of an excess in the thin disk are due to the contributiuon from Type I supernovae at later stages of the Galaxy’s evolution. We have found that the thick disk of the Galaxy displays gradients of its cobalt and iron abundances, possibly providing evidence that the thick disk formed as a result of the collapse of a protogalactic cloud.  相似文献   

13.
Marsakov  V. A.  Gozha  M. L.  Koval’  V. V. 《Astronomy Reports》2019,63(3):203-211

The surface gravities and effective temperatures have been added to a compilative catalog published earlier, which includes the relative abundances of several chemical elements for 100 field RR Lyrae stars. These atmoshperic parameters and evolutionary tracks from the Dartmouth database are used to determine the masses of the stars and perform a comparative analysis of the properties of RR Lyrae stars with different chemical compositions. The masses of metal-rich ([Fe/H] > −0.5) RR Lyrae stars with thin disk kinematics are in the range (0.51−0.60)M. Only stars with initial masses exceeding 1M can reach the horizontal branch during the lifetime of this subsystem. To become an RR Lyrae variable, a star must have lost approximately half of its mass during the red-giant phase. The appearance of such young, metal-rich RR Lyrae stars is possibly due to high initial helium abundances of their progenitors. According to the Dartmouth evolutionary tracks for Y = 0.4, a star with an initial mass as low as 0.8 M could evolve to become an RR Lyrae variable during this time. Such stars should have lost (0.2−0.3)M in the red-giant phase, which seems quite realistic. Populations of red giants and RR Lyrae stars with such high helium abundances have already been discovered in the bulge; some of these could easily be transported to the solar neighborhood as a consequence of perturbations due to inhomogeneities of the Galaxy’s gravitational potential.

  相似文献   

14.
We present a compiled catalog of effective temperatures, surface gravities, iron and magnesium abundances, distances, velocity components, and orbital elements for stars in the solar neighborhood. The atmospheric parameters and iron abundances are averages of published values derived from model synthetic spectra for a total of about 2000 values in 80 publications. Our relative magnesium abundances were found from 1412 values in 31 publications for 876 dwarfs and subgiants using a three-step iterative averaging procedure, with weights assigned to each source of data as well as to each individual determination, and taking into account systematic deviations of each scale relative to the reduced mean scale. The estimated completeness for data sources containing more than five stars up to late December 2003 exceeds 90%. For the vast majority of stars in the catalog, the spatial-velocity components were derived from modern high-precision astrometric observations and their Galactic orbital elements were computed using a three-component model of the Galaxy, consisting of a disk, a bulge, and a massive extended halo.  相似文献   

15.
The abundances of 19 chemical elements in the atmospheres of five stars belonging to three globular clusters have been determined by applying the model-atmospheremethod to 430.0–790.0 nm spectra obtained with the échelle spectrometer of the 6-m telescope of the Special Astrophysical Observatory. The abundances of silicon, calcium, iron-peak elements, copper, zinc, and neutron-capture elements follow the abundance patterns for halo stars. The abundance of sodium in M 10 giants provides evidence that different mixing mechanisms operate in halo and cluster stars or that light elements are enriched in different ways in the pre-stellar matter from which some globular clusters and halo stars were formed.  相似文献   

16.
A catalog compiling the parameters of 346 open clusters, including their metallicities, positions, ages, and velocities has been composed. The elements of the Galactic orbits for 272 of the clusters have been calculated. Spectroscopic determinations of the relative abundances, [el/Fe], for 14 elements synthesized in various nuclear processes averaged over data from 109 publications are presented for 90 clusters. The compiled data indicate that the relative abundances of primary α elements (oxygen and magnesium) exhibit different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits in clusters with high, elongated orbits satisfying the criterion (Zmax2 + 4e2)1/2 > 0.40 and in field stars of the Galactic thin disk (Zmax is the maximum distance of the orbit from the Galactic plane in kiloparsec and e is the eccentricity of the Galactic orbit). Since no systematic effects distorting the relative abundances of the studied elements in these clusters have been found, these difference suggest real differences between clusters with high, elongated orbits and field stars. In particular, this supports the earlier conclusion, based on an analysis of the elements of the Galactic orbits, that some clusters formed as a result of interactions between high-velocity,metal-poor clouds and the interstellar mediumof theGalactic thin disk. On average, clusters with high, elongated orbits and metallicities [Fe/H] < -0.1 display lower relative abundances of the primary a elements than do field stars. The low [O, Mg/Fe] ratios of these clusters can be understood if the high-velocity clouds that gave rise to them were formed of interstellar material from regions where the star-formation rate and/or the masses of Type II supernovae were lower than near the Galactic plane. It is also shown that, on average, the relative abundances of the primary a elements are higher in relatively metal-rich clusters with high, elongated orbits than in field stars. This can be understood if clusters with [Fe/H] > -0.1 formed as a result of interactions between metal-rich clouds with intermediate velocities and the interstellar medium of the Galactic disk; such clouds could form from returning gas in a so-called “Galactic fountain.”  相似文献   

17.
We have determined the atmospheric abundances of Y, Ba, La, Ce, Pr, Nd, and Eu for a sample of 171 giants selected as clump giants with metallicities [Fe/H] between ?0.7 and 0.3 dex, based on photometric criteria. In our analysis, we assumed local thermodynamic equilibrium and fit the parameters of model atmospheres to high-resolution (R = 42 000) echelle spectra with high signal-to-noise ratios. The Ba and Eu abundances were derived using synthetic spectra, including hyperfine structure. We find no significant difference in the abundances of s-or r-process neutron-capture elements between clump giants and ascending-branch giants selected by us earlier. We also analyze the relation between the abundances of neutron-capture elements and [Fe/H].  相似文献   

18.
We have used high-resolution spectra to study the giants 15 Ori and 22 ? Sex. The effective temperature T eff = 7060 K, gravity log g = 3.16, and microturbulence velocity ξ t = 3.5 km/s were determined for 15 Ori, with T eff = 7350 K and log g = 3.90 for 22 ? Sex (the microturbulence velocity for 22 ? Sex was assumed to be ξ t = 2.7 km/s). We estimated the abundances of C, N, O, Na, Si, Ca, Fe, and Ba (N and Ba, for 15 Ori only). The abundances of carbon, iron, and oxygen in 22 ? Sex are higher than the solar values by +0.31 dex, +0.33 dex, and +0.18 dex, respectively, while the calcium abundance is ?0.19 dex below the solar level. For 15 Ori, we find a slight carbon excess (+0.19 dex), a slight nitrogen deficiency (?0.13 dex), and a considerable deficiency of silicon (?0.42 dex). The abundances of the remaining elements in both stars are near-solar. We find no substantial differences between the abundances derived for 15 Ori and 22 ? Sex and the results of earlier studies of giants by both ourselves and Erspamer and North. A comparison of the atmospheric elemental abundances of giants and δ Scuti stars indicates that the abundances of some lighter elements (oxygen, sodium, silicon, and possibly nitrogen) are somewhat lower for δ Scuti stars than for A-F giants. We determined the masses, radii, luminosities, and ages for 15 Ori and 22 ? Sex.  相似文献   

19.
We transformed radial velocities compiled from more than 1400 published sources, including the Geneva-Copenhagen survey of the solar neighborhood (CORAVEL-CfA), into a uniform system based on the radial velocities of 854 standard stars in our list. This enabled us to calculate the average weighted radial velocities for more than 25000 HIPPARCOS stars located in the local Galactic spiral arm (Orion arm) with a median error of ±1 km/s. We use these radial velocities together with the stars’ coordinates, parallaxes, and proper motions to determine their Galactic coordinates and space velocities. These quantities, along with other parameters of the stars, are available from the continuously updated Orion Spiral Arm Catalogue (OSACA) and the associated database. We perform a kinematic analysis of the stars by applying an Ogorodnikov-Milne model to the OSACA data. The kinematics of the nearest single and multiple main-sequence stars differ substantially. We used distant (-r ≈ 0.2 kpc) stars of mixed spectral composition to estimate the angular velocity of the Galactic rotation, ωo = ?25.7 ± 1.2 kms?1 kpc?1, and the vertex deviation, l = 13° ± 2°, and detected a negative K effect. This negative K effect is most conspicuous in the motion of A0–A5 giants and is equal to K = ?13.1 ± 2.0 kms?1 kpc?1.  相似文献   

20.
We determine the abundances of Pr and Nd in the atmospheres of magnetic and non-magnetic chemically peculiar stars from the lines of rare earth elements in the first and second ionization states. The computations for the magnetic stars take into account the influence of the magnetic field on line formation. We studied the influence of errors in the stellar-atmosphere parameters and the atomic parameters of the spectral lines on the accuracy of abundance determinations. Within the derived accuracy, ionization equilibrium is satisfied in the atmospheres of non-pulsating magnetic and non-magnetic stars (so that abundances derived separately from lines of first and second ions agree). For all the pulsating magnetic (roAp) stars studied, the abundances derived from lines of second ions are 1.0 to 1.7 dex higher than those derived from first ions. The violation of ionization equilibrium in the atmospheres of pulsating stars is probably due to, first, considerable enrichment of Pr and Nd in the uppermost atmospheric layers, and second, a higher location for the layer of enhanced elemental abundance in roAp stars than in non-pulsating stars. Two objects from the list of non-pulsating magnetic stars, HD 62140 and HD 115708, exhibit anomalies of their Pr and Nd lines characteristic of roAp stars. The differences in the rare earth anomalies for the pulsating and non-pulsating peculiar stars can be used as a selection criterion for candidate roAp stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号