首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For high resolution spectral observations of the Sun – particularly its chromosphere, we have developed a dual-band echelle spectrograph named Fast Imaging Solar Spectrograph (FISS), and installed it in a vertical optical table in the Coudé Lab of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. This instrument can cover any part of the visible and near-infrared spectrum, but it usually records the Hα band and the Ca ii 8542 Å band simultaneously using two CCD cameras, producing data well suited for the study of the structure and dynamics of the chromosphere and filaments/prominences. The instrument does imaging of high quality using a fast scan of the slit across the field of view with the aid of adaptive optics. We describe its design, specifics, and performance as well as data processing  相似文献   

2.
We report on the development of a fast crossed-dispersion spectrograph (CRAB) mounted at the Nasmyth focus of the 6-m telescope. The spectrograph is designed for visible and near-infrared (3800–10 500 Å) CCD observations with the spectral resolution R=4000. We give the basic parameters of the optical scheme and the parameters of the echelle frame. We determined the gain involved in putting the spectrograph into observational practice and discuss the possible range of spectroscopic problems for which the instrument is optimal.  相似文献   

3.
Solar irradiation fluxes are determined between 150 and 210 nm from stigmatic spectra of the Sun obtained by means of a rocket-borne spectrograph. Absolute intensities at the disk center with a spectral resolution of 0.04 nm and a spatial resolution of 7 arc sec are presented. From center-to-limb intensity variations determined from the same spectra, mean full disk intensities of the quiet Sun can be deduced. In order to compare them with other measurements, the new solar fluxes have been averaged over a bandpass of 1 nm.  相似文献   

4.
5.
We describe the future night‐time spectrograph for the GREGOR solar telescope and present its science core projects. The spectrograph provides a 3‐pixel resolution of up to R = 87 000 in 45 échelle orders covering the wavelength range 390‐900 nm with three grating settings. An iodine cell can be used for high‐precision radial velocity work in the 500‐630 nm range. The operation of the spectrograph and the telescope will be fully automated without the presence of humans during night‐time and will be based on the successful STELLA control system. Future upgrades include a second optical camera for even higher spectral resolution, a Stokes‐V polarimeter and a link to the laser‐frequency comb at the Vacuum Tower Telescope. The night‐time core projects are a study of the angular‐momentum evolution of “The Sun in Time” and a continuation of our long‐term Doppler imaging of active stars (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
The combination of high spatial and spectral resolution in optical astronomy enables new observational approaches to many open problems in stellar and circumstellar astrophysics. However, constructing a high-resolution spectrograph for an interferometer is a costly and time-intensive undertaking. Our aim is to show that, by coupling existing high-resolution spectrographs to existing interferometers, one could observe in the domain of high spectral and spatial resolution, and avoid the construction of a new complex and expensive instrument. We investigate in this article the different challenges which arise from combining an interferometer with a high-resolution spectrograph. The requirements for the different sub-systems are determined, with special attention given to the problems of fringe tracking and dispersion. A concept study for the combination of the VLTI (Very Large Telescope Interferometer) with UVES (UV-Visual Echelle Spectrograph) is carried out, and several other specific instrument pairings are discussed. We show that the proposed combination of an interferometer with a high-resolution spectrograph is indeed feasible with current technology, for a fraction of the cost of building a whole new spectrograph. The impact on the existing instruments and their ongoing programs would be minimal.  相似文献   

8.
We present the status of an ongoing study for a high‐resolution near‐infrared echelle spectrograph for the 10.4‐m GTC (Gran Telescopio de Canarias) which will soon start operating at the Observatorio del Roque de los Muchachos on the island of La Palma. The main science driver of this instrument, which we have baptized NAHUAL, is to carry out a high precision radial velocity survey of exoplanets around ultracool dwarfs. NAHUAL is being especially designed to achieve the highest possible accuracy for radial velocity measurements. The goal is to reach an accuracy of a few m/s. It is thus required that the instrument is cross‐dispersed and that it covers simultaneously a wide wavelength range. Absorption cells will be placed in front of the slit which will allow a simultaneous self‐reference similar to an iodine‐cell in the optical regime. It is planned to place the instrument at one of the Nasmyth platform of the GTC behind the Adaptive Optics system. Our current design reaches a maximum spectral resolution of λ/Δλ = 50000 with a slit width of 0.175 arcsec, and gives nearly complete spectral coverage from 900 to 2400 nm. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A multi-slit digital imaging spectrograph has been installed at Udaipur Solar Observatory, Udaipur (India) to measure the line-of-sight velocities in H associated with the mass motions of the dynamic phenomena on the solar surface viz. solar flares, eruptive prominences and surges. This spectrograph is being used in conjunction with a 15 cm aperture Coudé telescope to obtain the H spectra at a high rate of a specific region of interest on the Sun. In this paper, we describe the principal features of this instrument and the data acquisition method. We also present spectral observations of a surge and a quiescent prominence recorded using this instrument.  相似文献   

10.
Snapshot spectroscopic imagers/instruments (SSI) are a class of spectroscopic instruments that are capable of acquiring spectral information of a given field of view in a single frame. Standard spectroscopic instruments like a grating-based spectrograph or a Fabry–Pérot-based spectrograph obtain two dimensional data of 2D space or 1D space and 1D wavelength. But SSIs have three dimensional data of 2D space and wavelength embedded in two dimensional detector/image plane. So standard data reduction techniques are not applicable. Lenslet array spectroscope is a novel SSI which images the object on to a hybrid spatio-spectral image plane. A procedure to extract the spatial and spectral information of the field of view from this hyperplane is presented. We demonstrate the snapshot capabilities of this instrument to study dynamic activities of the Sun as inferred from two measurements: (i) Evershed flow in a sunspot in NOAA 12526 at Fe?i 6301.5 Å and (ii) oscillations in a quiescent prominence at H\(\upalpha \) 6562.8 Å. This instrument can be used for large or small scale structures, making it efficient for studying a wide range of dynamic activities like helioseismology, Moreton waves, prominence oscillation etc.  相似文献   

11.
In this paper, we present the design of a high resolution Chirp Transform Spectrometer (CTS) which is part of the GREAT (German REceiver for Astronomy at Terahertz frequencies) instrument onboard SOFIA, the Stratospheric Observatory For Infrared Astronomy. The new spectrometer will provide unique spectral resolving power and linearity response, since the analog Fourier transform performed by the CTS spectrometer was improved through a new design, that we call “Adaptive Digital Chirp Processor (ADCP)”. The principle behind the ADCP consists on digitally generating the dispersive signal which adapts to the compressor dispersive properties, achieving maximum spectral resolution and higher dynamic range. Excellent test results have been obtained such as a white noise dynamic range of 30 dB, and a spectral resolution (FWHM) of 41.68 kHz which would mean if analyzing signals with the high frequency band receiver on the GREAT instrument (4.7 THz) a spectral resolving power (λ/Δ λ) higher than 108.  相似文献   

12.
Sun’s atmosphere is an ideal place to study and test many magnetohydrodynamic (MHD) processes controlling turbulent plasma. We wish to resolve some of the finest solar features (which remain unresolved presently) and study their dynamics. Indian Institute of Astrophysics has proposed to design, fabricate and install a 2-meter class solar telescope at a suitable site in India to resolve features on the Sun of the size of about 0.1 arcsec. The focal plane instruments will include a high resolution polarimeteric package to measure polarization with an accuracy of 0.01 per cent; a high spectral resolution spectrograph to obtain spectra in 5 widely separated absorption lines simultaneously and high spatial resolution narrow band imagers in various lines. The Himalayan region appears to be a good choice keeping in view the prevailing dry and clear weather conditions. We have started detailed analysis of the weather conditions in the area and at some other locations in India. The site characterization will be done using the Sun-photometer, S-DIMM and SHABAR techniques to determine the seeing conditions.  相似文献   

13.
We present here stellar spectra of B stars obtained with the EURD spectrograph, one of the three instruments on board MINISAT-01. EURD is a spectrograph specially designed to detect diffuse radiation in thewavelength range between 350 and 1100 Å with 5 Å spectral resolution. EURD main scientific targets are: the spectrum of interstellar medium,atmospheric airglow, decaying neutrinos, Moon and early type stars.  相似文献   

14.
A new radio spectrograph, dedicated to observe the Sun, has been recently commissioned by the Indian Institute of Astrophysics (IIA) at the Gauribidanur Radio Observatory, about 100 km North of Bangalore. The instrument, called the Gauribidanur Low-frequency Solar Spectrograph (GLOSS), operates in the frequency range≈40?–?440 MHz. Radio emission in this frequency range originates close to the Sun, typically in the radial distance range r≈1.1?–?2.0 R. This article describes the characteristics of the GLOSS and the first results.  相似文献   

15.
From stellar spectra, a variety of physical properties of stars can be derived. In particular, the chemical composition of stellar atmospheres can be inferred from absorption line analyses. These provide key information on large scales, such as the formation of our Galaxy, down to the small‐scale nucleosynthesis processes that take place in stars and supernovae. By extending the observed wavelength range toward bluer wavelengths, we optimize such studies to also include critical absorption lines in metal‐poor stars, and allow for studies of heavy elements (Z ≥ 38) whose formation processes remain poorly constrained. In this context, spectrographs optimized for observing blue wavelength ranges are essential, since many absorption lines at redder wavelengths are too weak to be detected in metal‐poor stars. This means that some elements cannot be studied in the visual‐redder regions, and important scientific tracers and science cases are lost. The present era of large public surveys will target millions of stars. It is therefore important that the next generation of spectrographs are designed such that they cover a wide wavelength range and can observe a large number of stars simultaneously. Only then, we can gain the full information from stellar spectra, from both metal‐poor to metal‐rich ones, that will allow us to understand the aforementioned formation scenarios in greater detail. Here we describe the requirements driving the design of the forthcoming survey instrument 4MOST, a multi‐object spectrograph commissioned for the ESO VISTA 4 m‐telescope. While 4MOST is also intended for studies of active galactic nuclei, baryonic acoustic oscillations, weak lensing, cosmological constants, supernovae and other transients, we focus here on high‐density, wide‐area survey of stars and the science that can be achieved with high‐resolution stellar spectroscopy. Scientific and technical requirements that governed the design are described along with a thorough line blending analysis. For the high‐resolution spectrograph, we find that a sampling of ≥2.5 (pixels per resolving element), spectral resolution of 18000 or higher, and a wavelength range covering 393–436 nm, is the most well‐balanced solution for the instrument. A spectrograph with these characteristics will enable accurate abundance analysis (±0.1 dex) in the blue and allow us to confront the outlined scientific questions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The X-ray Telescope (XRT) of the Hinode mission provides an unprecedented combination of spatial and temporal resolution in solar coronal studies. The high sensitivity and broad dynamic range of XRT, coupled with the spacecraft’s onboard memory capacity and the planned downlink capability will permit a broad range of coronal studies over an extended period of time, for targets ranging from quiet Sun to X-flares. This paper discusses in detail the design, calibration, and measured performance of the XRT instrument up to the focal plane. The CCD camera and data handling are discussed separately in a companion paper.  相似文献   

17.
We present the design, manufacturing, test and performance of two image slicers for high resolution spectroscopy. Based on the classical Bowen-Walraven concept, our slicers allow to make two slices of the image of the input fibre. We introduce the idea of a second fibre that can be cropped in half to reach the same width of the science target fibre and that can be used for simultaneous wavelength reference. The slicers presented are mirror and prism based, respectively. Both devices work within expectation, showing differences mainly in their efficiency. The prism based slicer is the solution that was adopted for the FIDEOS spectrograph, an instrument built by the AIUC for the ESO 1m telescope of La Silla. Test spectra obtained with this instrument are included as examples of a real application of the device.  相似文献   

18.
We describe a multi-order spectrograph concept suitable for 8-m class telescopes, using the intrinsic spectral resolution of superconducting tunnelling junction detectors to sort the spectral orders. The spectrograph works at low orders, 1–5 or 1–6, and provides spectral coverage with a resolving power of   R ≃ 8000  from the atmospheric cut-off at 320 nm to the long-wavelength end of the infrared H or K band at 1800 nm or 2400 nm. We calculate that the spectrograph would provide substantial throughput and wavelength coverage, together with high time resolution and sufficient dynamic range. The concept uses currently available technology, or technologies with short development horizons, restricting the spatial sampling to two linear arrays; however, an upgrade path to provide more spatial sampling is identified. All of the other challenging aspects of the concept – the cryogenics, thermal baffling and magnetic field biasing – are identified as being feasible.  相似文献   

19.
The new échelle spectrograph FLECHAS (Fibre Linked ECHelle Astronomical Spectrograph) is in operation at the Nasmyth‐focus of the 0.9 m telescope of the University Observatory Jena. FLECHAS is equipped with a sensitive back‐illuminated and midband coated CCD‐detector, as well as with a calibration unit for flatfield and wavelength‐calibration. The spectrograph covers the spectral range between about 3900 and 8100 Å and exhibits a resolving power of R ∼ 9300. In this article all technical characteristics of FLECHAS are described and examples of the first astronomical observations obtained with the new instrument in July 2013 at the University Observatory Jena are presented, among them the first light spectra taken with FLECHAS, simultaneous imaging and spectroscopic observations, the determination of the detection limit of the instrument, the spectroscopy of stars of different spectral types and of faint extended objects, as well as the Li‐line detection in the spectra of young solar‐like stars. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
HERMES, a fibre‐fed high‐resolution (R = 85000) échelle spectrograph with good stability and excellent throughput, is the work‐horse instrument of the 1.2‐m Mercator telescope on La Palma. HERMES targets building up time series of high‐quality data of variable stellar phenomena, mainly for asteroseismology and binary‐evolution research. In this paper we present the HERMES project and discuss the instrument design, performance, and a future upgrade. We also present some results of the first four years of HERMES observations. We illustrate the value of small telescopes, equipped with efficient instrumentation, for high‐resolution spectroscopy. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号