首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brabban  D. H. 《Solar physics》1974,38(2):449-464
A rocket-borne, collimated spectrometer has obtained the soft X-ray (1.0–2.2 nm) spectra of three solar active regions. The principal features of the spectra are described and are then used to determine the conditions in the active regions. An isothermal (single temperature) model is not able to describe the observed spectra so that a continuous distribution of emission measure with temperature is introduced.This distribution, based on that proposed by Chambe, is then used to investigate the structure of the active regions. Several simple models are considered. It is shown that each active region has a hot, dense core surrounded by a large outer volume through which the temperature and density fall until normal coronal conditions are reached.Two of the regions exhibited similar characteristics with the cores having electron densities 1010 cm–3 and temperatures of at least 4 × 106K. Even the third region, which was much less impressive and quite compact in H, appears to have had a small amount of this dense plasma in its central core.  相似文献   

2.
During the GRIF experiment onboard the Mir orbiting station, the sky was monitored with a PX-2 wide-field (~1 sr) scintillation X-ray spectrometer to detect bursts in the photon energy range 10–300 keV. Because of the comprehensive instrumentation, which, apart from the X-ray and gamma-ray instruments, also included charged-particle detectors, the imitations of astrophysical bursts by magnetospheric electron precipitations and strongly ionizing nuclei were effectively filtered out. It was also possible to separate solar and atmospheric events. Several tens of bursts interpreted as being astrophysical were detected in the experiment at sensitivity levels S~10?7 erg cm?2 (for bursts whose spectra were characterized by effective temperatures kT~100 keV) and S~3×10?8 erg cm?2 (for bursts with kT~25 keV). Some of the soft gamma-ray or hard X-ray bursts with kT~10–50 keV were identified with the bursting pulsar GRO J1744-28. Our estimate of the detection rate for cosmological soft gamma-ray or hard X-ray bursts from the entire sky suggests that the distributions of long-duration (>1 s) gamma-ray bursts (GRBs) in characteristic energy kT and duration are inconsistent with the steady-state cosmological model in which the evolution of burst sources is disregarded. Based on GRIF and BATSE/CGRO data, we conclude that most of the GRB sources originate at redshifts 1<z<5.  相似文献   

3.
R. P. Lin 《Solar physics》1982,113(1-2):217-220
We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting 3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to 100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically 102 kV compared to 10 kV for auroral substorms.  相似文献   

4.
The High-Energy Transient Experiment (HETE) is designed for the multiwavelengths study of Gamma-Ray Bursts (GRBs) in UV, X-ray and gamma-ray range with three scientific instruments. The X-ray instrument, Wide-field X-ray Monitor (WXM), consists of four units of one-dimensional position sensitive gas proportional counters and two perpendicularly oriented one-dimensional coded apertures. The WXM has a wide FOV of 1.5 steradian together with the capability to locate GRBs with 10 arcmin accuracy, and covers photon energies of 2 to 25 keV with an energy resolution of typically 18 % at 6 keV, measuring wide band spectra together with the gamma-ray spectrometer (FREGATE). The coded X-ray image will be deconvolved on board and the GRB location will be provided to the UV camera within 1 sec . GRB locations will also be broadcast in real time to ground-based observers for follow-up observations.  相似文献   

5.
The type IV burst phenomenon consists of at least five physically distinct components or phases. Concerning the spectral and polarization characteristics of the radio emission, the X-ray emission and the association of energetic particle emission, two main classes of type IV burst components can be distinguished. The first class associated with energetic particle events comprises the (especially hard) X-ray burst, the type IV and mA1 components. With respect to the dynamics of the burst source a quasistationary mA1-phase can be distinguished from a moving mA2-phase. The general tendencies of the development of large type IV events have been discussed with regard to the possibility of the occurrence of neutral points of the magnetic field in greater coronal heights.  相似文献   

6.
Finding an optical-UV counterpart to a gamma ray burst may solve the burst mystery, and therefore many searches in this wavelength band are planned or underway. To both predict detectability and understand the implications of any upper limits, we extrapolate the optical-UV fluxes from the fitted gamma ray spectra of 54 bright BATSE bursts. Based on a simple extrapolation of the burst spectrum, only the most sensitive detectors, such as the ETC and HETE, will be able to detect a few (5) bursts per year.  相似文献   

7.
We simulate the occurrence of star formation bursts, during the past 3×109 yr, superimposed on old populations, by combining visible and near-infrared integrated spectra of star clusters with those of red galaxy nuclei. We track the resultant spectral evolution of the composite object for burst to old population mass ratios of 10, 1, and 0.1%. If a star formation burst uses 10% of the galaxy mass, the underlying old population will be undetectable, at least by means of integrated spectra, during 5×107 yr. At intermediate ages, 2×109 yr, the burst will still contribute around 20% of the total optical flux. For a 1% mass, the burst becomes barely visible at intermediate ages; and, finally, for an 0.1% mass, the burst will affect the galaxy spectrum during 2×107 yr only.  相似文献   

8.
R. Snijders 《Solar physics》1969,6(2):290-293
According to Snijders (1968) the decay profile of an X-ray burst determines the effective temperature describing the distribution of fast electrons in the emitting source. In this paper it is concluded that the observations of the hard X-ray burst of 7 July, 1966; 0038 UT are not in disagreement with the concept of thermal bremsstrahlung from electrons with a Maxwellian distribution of about 108 K. Some physical parameters of the source are determined. The magnetic field strength is found to be about 1200 gauss. The initial temperature kT 0 is approximately 40 keV.  相似文献   

9.
We report on eight X-ray bursts detected by ASTRON from the Rapid Burster (RB) on 13 and 28 April and 16 August, 1983. Six of them (trailing bursts), with durations of 1.5–2 min, rise times of 5–10 s and intervals of 1–1.5 hours, exhibit spectral softening during the burst decay and may be related to the type I bursts. Two of the bursts (triangle bursts) observed on 28 April at interval of 28 min with much longer rise times (30–50 s) and longer durations (3 min), do not show distinct spectral softening. Persistent flux from RB on 16 August was estimated asF p(2.0–2.4)×10–9 erg cm–2 s–1. Spectral evolution of two trailing bursts was investigated by fitting their spectra in consecutive time intervals with the blackbody (BB), isothermal scattering photosphere (SP) and thermal bremsstrahlung (TB) models. Around the burst maxima the SP model fits the data best whereas in the burst tails the TB model is generally better. The BB model is worse than at least one of the two others. Interpretation of the burst spectra in terms of the BB radiation leads to improbably small neutron star mass and radius (M<0.86M ,R NS<5 km) if the peak luminosity does not exceed the Eddington limit. Interpretation of the spectra around the burst maxima (3–15 s from the burst onset) in terms of an isothermal SP yields reasonable constraints onM,R NS, and distanceD. For instance, for the hydrogen photosphere we obtainedM=(1.0–2.1)M R NS=(7.1–16.4) km ifD=11 kpc. If one postulatesM=1.4M , thenD=(8.5–13) kpc for hydrogen photosphere; if, besides,D=11 kpc, thenR NS=(8.1–13.3) km. It follows also from the SP-interpretation that the photosphere radius may increase up to 20–30 km in maxima of the trailing bursts when the luminosity becomes close to the Eddington luminosity.  相似文献   

10.
Ning  Zongjun  Fu  Qijun  Lu  Quankang 《Solar physics》2000,194(1):137-145
We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0–2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta 0.01 is much less than 1 and the beams have velocity of about 1.07×108 cm s–1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.  相似文献   

11.
The RELEC scientific instrumentation onboard the Vernov spacecraft launched on July 8, 2014, included the DRGE gamma-ray and electron spectrometer. This instrument incorporates a set of scintillation phoswich detectors, including four identical X-ray and gamma-ray detectors in the energy range from 10 keV to 3 MeV with a total area of ~500 cm2 directed toward the nadir, and an electron spectrometer containing three mutually orthogonal detector units with a geometry factor of ~2 cm2 sr, which is also sensitive to X-rays and gamma-rays. The goal of the space experiment with the DRGE instrument was to investigate phenomena with fast temporal variability, in particular, terrestrial gammaray flashes (TGFs) and magnetospheric electron precipitations. However, the detectors of the DRGE instrument could record cosmic gamma-ray bursts (GRBs) and allowed one not only to perform a detailed analysis of the gamma-ray variability but also to compare the time profiles with the measurements made by other instruments of the RELEC scientific instrumentation (the detectors of optical and ultraviolet flashes, the radio-frequency and low-frequency analyzers of electromagnetic field parameters). We present the results of our observations of cosmicGRB 141011A and GRB 141104A, compare the parameters obtained in the GBM/Fermi and KONUS–Wind experiments, and estimate the redshifts and E iso for the sources of these GRBs. The detectability of GRBs and good agreement between the independent estimates of their parameters obtained in various experiments are important factors of the successful operation of similar detectors onboard the Lomonosov spacecraft.  相似文献   

12.
The High Energy Transient Experiment (HETE), scheduled for launch this year, is a small satellite dedicated to multiwavelength observations of -ray and X-ray bursts. The HETE spacecraft will be equipped with gamma-ray detectors, X-ray detectors with a coded mask, and ultraviolet-sensitive CCD cameras. The UV cameras on HETE are wide-field imagers which will a) provide UV images of the regions in which -ray or X-ray bursts are detected, before, duringand after the burst, b) detect UV transients, whether associated with a high-energy transient or not, c) monitor the brightnesses of field stars for variability over a wide range of timescales, and d) serve as star trackers for HETE. In this poster, we describe the HETE UV instrumentation, control software, and data products.  相似文献   

13.
We present a high-resolution Bragg spectrometer designed for the observation of the soft X-ray cosmic diffuse background. The instrument concept is derived from the de Broglie geometry for the study of extended sources. It consists in a mosaïc of spherical TlAP crystals associated with position sensitive detectors located on the focussing surface. The spectral resolution and its variation with the field of view is estimated by Monte-Carlo simulations for different X-ray energies chosen among the most intense lines emitted by an astrophysical plasma in the temperature range 1–4×106K. The estimated sensitivity and the simulations of actual space observations show that the instrument is capable to separate the strongest lines emitted by the most abundant ions (OVII,OVIII, FeXVII, NeIX, etc.) and to map the whole sky during a six month mission.  相似文献   

14.
The burst component of the solar X-ray flux in the soft wavelength range 2 < < 12 Å observed from Explorer 33 and Explorer 35 from July 1966 to September 1968 was analyzed. In this period 4028 burst peaks were identified.The differential distributions of the temporal and intensity parameters of the bursts revealed no separation into more than one class of bursts. The most frequently observed value for rise time was 4 min and for decay time was 12 min. The distribution of the ratio of rise to decay time can be represented by an exponential with exponent -2.31 from a ratio of 0.3 to 2.7; the maximum in this distribution occurred at a ratio of 0.3. The values of the total observed flux, divided by the background flux at burst maximum, can be represented by a power law with exponent -2.62 for ratios between 1.5 and 32. The distribution of peak burst fluxes can be represented by a power law with exponent - 1.75 over the range 1–100 milli-erg (cm2 sec)–1. The flux time integral values are given by a power law with exponent -1.44 over the range 1–50 erg cm–2.The distribution of peak burst flux as a function of H importance revealed a general tendency for larger peak X-ray fluxes to occur with both larger H flare areas and with brighter H flares. There is no significant dependence of X-ray burst occurrence on heliographic longitude; the emission thus lacks directivity.The theory of free-free emission by a thermal electron distribution was applied to a composite quantitative discussion of hard X-ray fluxes (data from Arnoldy et al., 1968; Kane and Winckler, 1969; and Hudson et al., 1969) and soft X-ray fluxes during solar X-ray bursts. Using bursts yielding measured X-ray intensities in three different energy intervals, covering a total range of 1–50 keV, temperatures and emission measures were derived. The emission measure was found to vary from event to event. The peak time of hard X-ray events was found to occur an average of 3 min before the peak time of the corresponding soft X-ray bursts. Thus a changing emission measure during the event is also required. A free-free emission process with temperatures of 12–39 × 106K and with an emission measure in the range 3.6 × 1047 to 2.1 × 1050 cm–3 which varies both from event to event and within an individual event is required by the data examined.Now at Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey.  相似文献   

15.
With the observations from Rossi X-ray Timing Explorer, we search and study the X-ray bursts of accreting millisecond X-ray pulsar SAX J1748.9-2021 during its 2010 outburst. We find 13 X-ray bursts, including 12 standard type-I X-ray bursts and an irregular X-ray burst which lacks cooling tail. During the outburst, the persistent emission occurred at \(\sim (1\mbox{--}5)\%{\dot{\mathrm{M}}_{\mathrm{Edd}}}\). We use a combination model of a blackbody (BB), a powerlaw, and a line component to fit the persistent emission spectra. Another BB is added into the combination model to account for the emission of the X-ray bursts due to the thermonuclear burning on the surface of the neutron star. Finally, we modify the combination model with a multiplicative factor \(f_{\mathrm{a}}\), plus a BB to fit the spectra during the X-ray bursts. It is found that the \(f_{\mathrm{a}}\) is inversely correlated with the burst flux in some cases. Our analysis suggests that the ignition depth of the irregular X-ray burst is obviously smaller than those of the type-I X-ray bursts. We argue that the detected type-I X-ray bursts originate from helium-rich or pure-helium environment, while the irregular X-ray burst originates from the thermonuclear flash in a shallow ocean.  相似文献   

16.
We present observations of the solar flare on 1980 June 27, 16:14–16:33 UT, which was observed by a balloon-borne 300 cm2 phoswich hard X-ray detector and by the IKARUS radio spectrometer. This flare shows intense hard X-ray (HXR) emission and an extreme productivity of (at least 754) type III bursts at 200–400 MHz. A linear correlation was found between the type III burst rate and the HXR fluence, with a coefficient of 7.6 × 1027 photons keV–1 per type III burst at 20 keV. The occurrence of 10 type III bursts per second, and also the even higher rate of millisecond spikes, suggests a high degree of fragmentation in the acceleration region. This high quantization of injected beams, assuming the thick-target model, shows up in a linear relationship between hard X-ray fluence and the type III rate, but not as fine structures in the HXR time profile.The generation of a superhot isothermal HXR component in the decay phase of the flare coincides with the fade-out of type III production.Universities Space Research Associates.ST Systems Corporation.  相似文献   

17.
Using data from a proportional counter spectrometer, sensitive in the wavelength range 1–20 Å, on OSO-4, X-ray bursts in the energy band 3.0 to 4.5 keV have been studied. 150 events have been identified between October 27, 1967 and May 8, 1968, mostly of an impulsive nature. Some gradual rise and fall bursts occur, but there is a selection bias against such long-enduring events. A study of the profiles of these events reveals no basis for identifying different types of impulsive event.Single frequency radio bursts and H flares of class > 1F are almost always accompanied by X-ray enhancements. For the sample of X-ray events, only 25% are correlated with radio bursts and 46% with flares. Only 11% of the sample events are associated with type III radio bursts. Microwave burst peaks occur an average of two minutes earlier than the X-ray burst peak, but the first observation of X-ray activity is usually before the start of the corresponding microwave burst.Impulsive bursts, although differing widely in fall time, are due to the heating of a volume of plasma from a temperature of 10.0 to 30.0 × 106 K. Differences infall time probably indicate different electron densities in the source. Observation of an iron line at 1.9 Å suggests that a non-thermal mechanism may be operating during some of these events since the temperatures are too low to permit thermal excitation of the 1s 2-1s 2p transition in Fe+24. It is also possible that, in spite of the low temperature, most of the iron ions have been stripped to the Fe+24 stage. Collisional excitation and dielectronic recombination processes would then be able to provide the observed flux in the resonance line of Fe+24. A gradual rise and fall event and event precursors have also been studied.  相似文献   

18.
The peculiar -ray burst phenomenon of 5 March, 1979, and the other subsequent bursts on 6 March, 4 April, and 24 April, 1979, are studied, using the physically more realistic exponentially increasing accretion rate on a highly magnetized neutron star from its companion, and the conclusions that pycnonuclear reaction flash for the first and thermonuclear flashes for the subsequent bursts as the most probable model for this series of bursts, are made.We further conclude that a huge -ray burst is a sequel to rapid X-ray transient or type-I X-ray bursts, i.e., an almost exactly similar burst as on 5 April, 1979 will never repeat from the same source, instead rapid X-ray transient burst, or type-I X-ray burst will be occured. A rough estimate gives that the next burst will occur within 0.5 yr since 24 April, 1979.  相似文献   

19.
Three methods permitting to characterize space and onboard spacecraft radiation environment have been developed and/or upgraded in our laboratories: MDU equipment with a semiconductor detector as sensitive element devoted to register energy deposition spectra in the Si-diode; a spectrometer of the linear energy transfer (LET) based on chemically etched polyallyldiglycolcarbonate (PADC) track etch detectors (TED); and thermoluminescent detectors (TLDs) with different dependences of relative TL yield on the LET of particles transferring their energy in them.We have used all these types of dosimetry equipments onboard spacecrafts since several years and succeeded to treat directly read data in terms of both quantitative and qualitative dosimetry characteristics and deduce from them related radiation risk.During last few years all these three types of detectors have been intensely studied to understand still better their possibilities to characterize space radiation fields. Particularly:
1.
Both PADC TED LET spectrometer and TLDs have been exposed in heavier ion beams with LET in water ranging from 1 to about 700 keV/μm with the goal to upgrade their calibration curves;
2.
A new method of MDU directly read data has been developed, permitting to measure not only dose in Si-detector, but also to estimate radiation protection quantities and the neutron contribution to the onboard exposure level;
3.
All three methods have been tested onboard spacecrafts during several missions.
Contribution presents, analyses and discusses the results obtained in items 1-3 and, also, the possibilities of these detectors to help in characterizing radiation fields during longer space missions, above 1 year.  相似文献   

20.
We present an analysis of spacecraft observations of non-thermal X-rays and escaping electrons for 5 selected small solar flares in 1967. OSO-3 multi-channel energetic X-ray measurements during the non-thermal component of the solar flare X-ray bursts are used to derive the parent electron spectrum and emission measure. IMP-4 and Explorer-35 observations of > 22 keV and > 45 keV electrons in the interplanetary medium after the flares provide a measure of the total number and spectrum of the escaping particles. The ratio of electron energy loss due to collisions with the ambient solar flare gas to the energy loss due to bremsstrahlung is derived. The total energy loss due to collisions is then computed from the integrated bremsstrahlung energy loss during the non-thermal X-ray burst. For > 22 keV flare electrons the total energy loss due to collisions is found to be 104 times greater than the bremsstrahlung energy loss and 102 times greater than the energy loss due to escaping electrons. Therefore the escape of electrons into the interplanetary medium is a negligible energetic electron loss mechanism and cannot be a substantial factor in the observed decay of the non-thermal X-ray burst for these solar flares.We present a picture of electron acceleration, energy loss and escape consistent with previous observations of an inverse relationship between rise and decay times of the non-thermal X-ray burst and X-ray energy. In this picture the acceleration of electrons occurs throughout the 10–100 sec duration of the non-thermal X-ray burst and determines the time profile of the burst. The average energy of the accelerated electrons first rises and then falls through the burst. Collisions with the ambient gas provide the dominant energetic electron loss mechanism with a loss time of 1 sec. This picture is consistent with the ratio of the total number of energetic electrons accelerated in the flare to the maximum instantaneous number of electrons in the flare region. Typical values for the parameters derived from the X-ray and electron observations are: total energy in > 22 keV electrons total energy lost by collisions = 1028–29 erg, total number of electrons accelerated above 22 keV = 1036, total energy lost by non-thermal bremsstrahlung = 1024erg, total energy lost in escaping > 22 keV electrons = 1026erg, total number of > 22 keV electrons escaping = 1033–34.The total energy in electrons accelerated above 22 keV is comparable to the energy in the optical or quasi-thermal flare, implying a flare mechanism with particle acceleration as one of the dominant modes of energy dissipation.The overall efficiency for electron escape into the interplanetary medium is 0.1–1% for these flares, and the spectrum of escaping electrons is found to be substantially harder than the X-ray producing electrons.Currently at Tokyo Astronomical Observatory, Mitaka, Tokyo, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号