共查询到20条相似文献,搜索用时 12 毫秒
1.
The Neo-Tethyan subduction in Iran is characterized by the Urumieh–Dokhtar magmatic arc (UDMA), formed by northeast-ward subduction of the oceanic crust beneath the central Iran. This belt coincides with the porphyry copper metallogenic belt that comprises several metallogenic zones, including Ahar–Jolfa in northwest Iran. The Ahar–Jolfa metallogenic zone encompasses two main batholiths of Qaradagh and Sheyvardagh and numerous intrusive bodies of Cenozoic, which have produced many base and precious metal deposits and prospects. The former is considered as continuation of the Meghri–Ordubad pluton in South Armenian Block (SAB), which also hosts porphyry copper deposits (PCDs). The Sungun PCD is the largest occurrence in northwest Iran. Rhenium-Osmium ages of Sungun molybdenites are early Miocene and range between 22.9 ± 0.2 and 21.7 ± 0.2 Ma. Comparison of the ages obtained here with published ages for mineralization across the region suggests the following sequence. The earliest porphyry Cu–Mo mineralization event in northwest Iran is represented by Saheb Divan PCD of late Eocene age, which is followed by the second epoch of middle Oligocene, including the Cu–Mo–Au mineralization at Qarachilar and the Haftcheshmeh PCD. Mineralization in Sungun, Masjed Daghi, Kighal and Niaz deposits corresponds to the third mineralization event in northwest Iran. The first epoch in northwest Iran postdates all Eocene mineralizations in SAB, while the second epoch is coeval with Paragachay and the first-stage of Kadjaran PCDs. Its third epoch is younger than all mineralizations in SAB, except the second stage in Kadjaran PCD. Finally, the Cu mineralization epochs in northwest Iran are older than nearly all PCDs and prospects in Central Iran (except the Bondar Hanza PCD), altogether revealing an old to young trend along the UDMA and the porphyry Cu belt towards southeast, resulted from diachronous, later closure of the Neo-Tethyan oceanic basin in central and SE Iran. 相似文献
2.
3.
The Daolundaba Cu–polymetallic deposit is a newly discovered Cu–W–Sn deposit on the western slopes of the southern Great Xing’an Range, and its mineralization was related to an early Permian coarse-grained biotite granite. However, there is little information on the age of formation of the deposit. In this article, we present the results of our investigation into the age of the Daolundaba Cu–polymetallic deposit, which involved the selection of chalcopyrite and pyrrhotite samples for Rb–Sr isochron dating. A Rb–Sr isochron defined by the chalcopyrite samples yielded a Rb–Sr isochron age of 290.0 ± 11 Ma (MSWD = 1.2) with an initial Sr isotopic composition (ISr) of 0.71446. The pyrrhotite samples yielded a Rb–Sr isochron age of 283.0 ± 2.6 Ma (MSWD = 1.16) with an initial Sr isotopic composition (ISr) of 0.71447. The Rb–Sr isochron age determined from the chalcopyrite and pyrrhotite is 282.7 ± 1.7 Ma (MSWD = 1.13). These results indicate that the Daolundaba Cu–polymetallic deposit formed during the early Permian (282.7–290.0 Ma). The Rb and Sr contents of the chalcopyrite and pyrrhotite range from ~0.1325 to ~3.6810 ppm and from ~0.1219 to ~9.5740 ppm, respectively, and the initial Sr isotope ratios (ISr) range from 0.71047 to 0.71869, with an average of 0.714723. These isotopic characteristics indicate the ore-forming minerals of the Daolundaba Cu–polymetallic deposit originated mainly from the crust, but with small amounts of mantle material involved. The copper was derived from the associated magma whereas the W and Sn was derived from the surrounding strata. The Permian mineralization of the Xing’an–Mongolia region occurred in an active continental margin setting during subduction of the Palaeo-Asian oceanic plate beneath the Siberian Plate. 相似文献
4.
The Freda-Rebecca Mine is currently the largest gold producer in Zimbabwe. The ore deposit is hosted by two main shear systems
crosscutting the Rebecca diorite and Bindura granodiorite (2.65 Ga) as well as Shamvaian metasediments, which are affected
by contact metamorphism. Following the intrusion of the Bindura granodiorite, intensive hydrothermal alteration developed
preferentially in the dioritic part of the igneous complex (Rebecca diorite). The hydrothermal alteration started with an
extensive K-dominated hydrothermal metasomatism in the whole Rebecca diorite. It was followed by less penetrative hydrothermal
alteration developed preferentially near shear zones and veinlets. Hydrothermal metasomatism caused microcline and biotite
formation, prevailing in the Rebecca diorite. Two main stages of post-metasomatic hydrothermal alteration and mineralization
were distinguished, based on spatial relationships between different minerals and some geochemical aspects. In the first stage,
an actinolite-tourmaline-arsenopyrite mineralization formed, which is characterized by Ni-Co arsenopyrite associated with actinolite, tourmaline and quartz. The second, lower temperature stage gave a polyphase gold-rich mineralization that developed in four phases which are distinguished by different parageneses including:
Phase 1. Actinolite, chlorite, clinozoisite/epidote, quartz, calcite, arsenopyrite, pyrite, pyrrhotite, chalcopyrite.
Phase 2. Chlorite, epidote, calcite, gold, native Bi, Bi-Pb sulfides, galena, chalcopyrite, fahlore, pyrite, Fe-gersdorffite.
Phase 3. Epidote, calcite, (Ni, Co, Fe) As S phases, Co-Fe-gersdorffite.
Phase 4. Chlorite, calcite, quartz.
The gold mineralization is exclusively associated with phase 2 and developed in three sulfide parageneses:
– Gold + Bi-Pb sulfides + bismuth + chalcopyrite + galena, associated with chlorite (Au 1).
– Gold + galena + pyrite, associated with calcite and chlorite (Au 2).
– Gold + pyrite + Fe-gersdorffite, associated with epidote, chlorite and calcite (Au 3).
The hydrothermal alteration and mineralization formed after the consolidation of the Rebecca diorite and Bindura granodiorite,
most probably in the postmagmatic cooling stage. The mineralization was emplaced either synchronously or subsequently to the
shear zones which crosscut the consolidated pluton. Not all shear zones are mineralized and different shear zones show different
amounts of mineralization and hydrothermal alteration. Thus, it is suggested that during the cooling stage of the pluton and
subsequent to the formation of the K-metasomatic zone (microcline + biotite), hydrothermal fluids preferentially followed
just forming or pre-existing shear zones. It cannot be excluded that this process developed in a plutonic porphyry copper-like
environment, in which the classically hydrothermal zonation did not form due to synchronous tectonic disturbance, which preferentially
drives the hydrothermal flow along shear zones. Mineral parageneses and data from chlorite geothermometry indicate that the
different stages and phases of hydrothermal alteration reflect cooling stages of the hydrothermal system, from >300 °C in
the first stage to about 150 °C in the last phases.
Received: 4 January 1999 / Accepted: 13 August 1999 相似文献
5.
Natalia Astudillo Pierrick Roperch Brian Townley Cesar Arriagada Annick Chauvin 《Mineralium Deposita》2010,45(1):23-41
El Teniente porphyry copper deposit, the world’s greatest intrusion-related Cu–Mo ore body, is hosted within basaltic–andesitic
volcanic and gabbroic rocks (mafic complex). This ore body is strongly affected by multiple events of alteration/mineralization
with pervasive potassic and chloritic alteration and coetaneous with associated copper mineralization. We present paleomagnetic
results obtained from oriented samples at four locations within the mine and from two drill cores, 200 and 400 m long, respectively.
Samples are representative of all the main hydrothermally altered rock units, with emphasis on the mafic host rock and dacitic
(Teniente dacite porphyry) and dioritic porphyry intrusions. Magnetic experiments [hysteresis loop, isothermal remanent magnetization
(IRM), k–T curves, thermal, and alternating field demagnetization] show the presence of prevailing magnetite. Microscope and SEM observations
show two families of magnetite, (a) large multidomain magnetite grains, associated with biotite and chlorite of various different
hydrothermal alteration events, and (b) abundant small to medium grain-size magnetite (<10 μm) contained within plagioclase,
either related to an early Na–Ca–Fe alteration or included within plagioclase during magmatic crystal growth. While the Teniente
dacite porphyry and the quartz diorite–tonalite have low magnetic susceptibility (<0.0005 SI) and low natural remanent magnetization
(NRM, 10−4–10−3 Am−1), the mineralized mafic host rocks have usually high susceptibility (>0.01 and up to 0.2 SI) with NRM in the range 0.1–2 Am−1. Most mafic complex rock samples have univectorial magnetizations during alternating field or thermal demagnetization. Within
the mine, the magnetic polarity is spatially distributed. In the northern part of the deposit, the Teniente dacite porphyry,
the associated hydrothermal breccias, and the hosting mafic complex record a reverse polarity magnetization, also observed
in the El Teniente sub-6 mine sector immediately to the east and southeast. In the eastern part of the deposit, a normal polarity
is observed for samples of the mafic complex from the two long drill cores. There is no evidence for superimposed magnetizations
of opposite polarities in samples of the mafic complex. Anhysteretic remanent magnetization (ARM) in a DC field of 40 μT and
NRM have similar magnitude and comparable behavior upon alternating field demagnetization. The well-defined strong remanent
magnetizations associated with high unblocking temperatures (>500°C) indicate an acquisition of remanent magnetization during
mineralization by circulating high temperature fluids related with ore deposition. Paleomagnetic results and the recorded
polarity zonation suggest multiple mineralization events occurred at El Teniente, each one with its own evolution stages,
superimposed within the district. These results indicate that a simplified broad four-stage model for El Teniente, as presented
and overly employed by many authors, divided in (1) late magmatic, (2) main hydrothermal, (3) late hydrothermal, and (4) posthumous
stage, does not recognize various short-lived single mineralization events, some superimposed and some distinctly separated
in time and space. There is no paleomagnetic evidence for post-mineralization deformation 相似文献
6.
《International Geology Review》2012,54(2):158-184
Early Miocene igneous rocks associated with the Dalli porphyry ore body are exposed within the Urumieh-Dokhtar Magmatic Arc (UDMA). The Dalli porphyry Cu–Au deposit is hosted by subduction-related subvolcanic plutons with chemical composition from diorite to granodiorite, which intruded andesitic and dacitic volcanic rocks and a variety of sedimentary sequences. 40Ar/39Ar age data indicate a minimum emplacement age of ~21 million years for a potasically altered porphyritic diorite that hosts the porphyry system. The deposit has a proven reserve of 8 million tonnes of rock containing 0.75 g/t Au and 0.5% Cu. Chondrite-normalized rare earth element (REE) patterns for the subvolcanic rocks are characterized by light REE enrichments [(La/Sm) n ?=?2.57–6.40] and flat to gently upward-sloping profiles from middle to heavy REEs [(Dy/Yb) n ?=?0.99–2.78; (Gd/Yb) n ?=?1.37–3.54], with no significant Eu anomalies. These characteristics are generated by the fractionation of amphibole and the suppression of plagioclase crystallization from hydrous calc-alkaline magmas. In normalized multi-element diagrams, all analysed rocks are characterized by enrichments in large ion lithophile elements and depletions in high field strength elements, and display typical features of subduction-related calc-alkaline magmas. We used igneous mineral compositions to constrain the conditions of crystallization and emplacement. Biotite compositions plot above the nickel–nickel oxide (NNO) buffer and close to oxygen fugacity values defined by the hematite–magnetite (HM) buffer, indicating oxidizing conditions during crystallization. Assuming a minimum crystallization temperature of 775°C, the oxygen (fO2) and water (fH2O) fugacities are estimated to be 10?10.3 bars (~ΔNNO+4) and ≤748 bars, respectively, during the crystallization of biotite phenocrysts. The temperature and pressure conditions, estimated from temperature–corrected Al-in-hornblende barometry and amphibole-plagioclase thermometry, suggest that the hornblende phenocrysts in Dalli rocks crystallized at around 780 ± 20°C and 3.8 ± 0.4 kbar. An alternative method using the calcic amphibole thermobarometer indicates that the Dalli magmas were, on average, characterized by an H2O content of 4.3 wt.%, a relatively high oxygen fugacity of 10?11.0 bars (ΔNNO+1.3), and a hornblende phenocryst crystallization temperature of 880 ± 68°C and pressure of 2.6 ± 1.7 kbar. 相似文献
7.
The Xiongcun district, located in the western segment of the Gangdese porphyry copper belt (GPCB), hosts the only known Jurassic mineralization in the GPCB, Tibet, PRC. The No. I deposit in the Xiongcun district is related to the Middle Jurassic quartz diorite porphyry (167–161 Ma) and the mineralization was formed at ca. 161.5 ± 2.7 Ma. Ore-bearing Middle Jurassic quartz diorite porphyry emplaced into the Early Jurassic volcano-sedimentary rock sequences of the Xiongcun Formation. Veinlets and disseminated mineralization developed within the Middle Jurassic quartz diorite porphyry and the surrounding metamorphosed tuff, hosting a measured and indicated resource of 1.04 Mt copper, 143.31 t gold and 900.43 t silver with an average grade of 0.48% copper, 0.66 g/t gold, and 4.19 g/t silver. The mineralization can be assigned to four stages, including three main stages of hypogene mineralization and one epigenetic stage. The main alteration associated with mineralization is potassic. Seven mineralization-related hydrothermal veins have been recognized, including quartz–sulfide, biotite–sulfide, magnetite–sulfide, quartz–molybdenite–sulfide, chalcopyrite–pyrite–pyrrhotite, pyrite and polymetallic veins. The S and Pb isotopic compositions of the ore sulfides and the Re contents of the molybdenite suggest a mantle source for the ore-forming materials with minor contamination from the subducted sediments. Hydrogen and oxygen isotope compositions of quartz in the ores suggest that both magmatic and meteoric waters were involved in the ore-forming process. The ore-bearing porphyry (167–161 Ma) and ore-forming (161.5 ± 2.7 Ma) ages of the No. I deposit correspond to the time of northward subduction of Neo-Tethys oceanic slab. The geochemical data of the ore-bearing porphyry indicate that the No. I deposit formed in an intra-oceanic island arc setting and the ore-bearing porphyry originated from the partial melting of mantle with limited contribution of subducted sediments. The genesis of the ore-bearing porphyry and No. I deposit is interpreted as being related to northward intra-oceanic subduction of Neo-Tethys oceanic slab in the Middle Jurassic time (167–161 Ma). 相似文献
8.
Ryan Mathur Joaquin Ruiz Michael J. Casselman Peter Megaw Robert van Egmond 《Mineralium Deposita》2012,47(7):755-762
A significant proportion of the copper in the Ca?ariaco Norte porphyry copper deposit in northern Peru occurs in chalcocite and covellite-rich veins and disseminations that exist from the surface to depths greater than 1?km. The overall range of Cu isotopic ratios of 42 mineral separates from Ca?ariaco varies from ?8.42 to 0.61?‰, with near-surface chalcocite and Fe oxides having isotopically depleted values compared to chalcocite, covellite, and chalcopyrite from deeper levels. The majority (34 of 36) of measured Cu sulfides have a typical hypogene copper isotope composition of δ65Cu?=?0.18?±?0.38?‰, with no enriched isotopic signature existing in the Ca?ariaco Norte sulfide data. Thus, the copper isotope data indicate that most of the chalcocite and covellite formed from high-temperature hypogene mineralization processes and that only a minor portion of the deposit is enriched by supergene processes. The nonexistence of an enriched δ65Cu reservoir suggest the presence of an undiscovered lateral/exotic Cu occurrence that enriched 65Cu that remained in solution during weathering. Regardless of the cause, the comparative analysis of the Cu isotope dataset reveals that little exploration potential for an extensive supergene enrichment blanket exists because the weathering history at Ca?ariaco Norte was not conducive to preservation of enriched Cu at depth beneath the leach cap. 相似文献
9.
《Journal of Asian Earth Sciences》2007,29(4-6):409-422
The Sar-Cheshmeh porphyry Cu–Mo deposit is located in Southwestern Iran (∼65 km southwest of Kerman City) and is associated with a composite Miocene stock, ranging in composition from diorite through granodiorite to quartz-monzonite. Field observations and petrographic studies demonstrate that the emplacement of the Sar-Cheshmeh stock took place in several pulses, each with associated hydrothermal activity. Molybdenum was concentrated at a very early stage in the evolution of the hydrothermal system and copper was concentrated later. Four main vein Groups have been identified: (I) quartz+molybdenite+anhydrite±K-feldspar with minor pyrite, chalcopyrite and bornite; (II) quartz+chalcopyrite+pyrite±molybdenite±calcite; (III) quartz+pyrite+calcite±chalcopyrite±anhydrite (gypsum)±molybdenite; (IV) quartz±calcite±gypsum±pyrite±dolomite. Early hydrothermal alteration produced a potassic assemblage (orthoclase-biotite) in the central part of the stock, propylitic alteration occurred in the peripheral parts of the stock, contemporaneously with potassic alteration, and phyllic alteration occurred later, overprinting earlier alteration. The early hydrothermal fluids are represented by high temperature (350–520 °C), high salinity (up to 61 wt% NaCl equivalent) liquid-rich fluid inclusions, and high temperature (340–570 °C), low-salinity, vapor-rich inclusions. These fluids are interpreted to represent an orthomagmatic fluid, which cooled episodically; the brines are interpreted to have caused potassic alteration and deposition of Group I and II quartz veins containing molybdenite and chalcopyrite. Propylitic alteration is attributed to a liquid-rich, lower temperature (220–310 °C), Ca-rich, evolved meteoric fluid. Influx of meteoric water into the central part of the system and mixing with magmatic fluid produced albitization at depth and shallow phyllic alteration. This influx also caused the dissolution of early-formed copper sulphides and the remobilization of Cu into the sericitic zone, the main zone of the copper deposition in Sar-Cheshmeh, where it was redeposited in response to a decrease in temperature. 相似文献
10.
The Fujiawu porphyry Cu–Mo deposit is one of several porphyry Cu–Mo deposits in the Dexing district, Jiangxi Province, Southeast China. New zircon SHRIMP U–Pb data yield a weighted mean 206Pb/238U age of 172.0 ± 2.1 and 168.5 ± 1.4 Ma from weakly altered granodiorite porphyry and quartz diorite porphyry, respectively. Two hydrothermal biotites from granodiorite porphyry give an Ar–Ar step-heating plateau age of 169.9 ± 1.8 and 168.7 ± 1.8 Ma. Hydrothermal apatite exsolved from altered biotite yields an isotope dilution thermal ionization mass spectrometry isochron age of 164.4 ± 0.9 Ma. The apatite age is similar to the ages obtained from hydrothermal rutile (165.0 ± 1.1 and 164.8 ± 1.6 Ma) and indicates that the magmatism and hydrothermal activity in the Fujiawu deposit occurred in the Middle Jurassic. Hydrothermal fluid circulation related to multiple stages of magma emplacement resulted in Cu–Mo mineralization in the Fujiawu porphyry deposit. The zircon SHRIMP U–Pb ages and the published molybdenite Re–Os age (170.9 ± 1.5 Ma) represent the timing of magma crystallization and Mo mineralization, whereas the rutile and apatite U–Pb ages reflect the timing of Cu mineralization following quartz diorite emplacement. The data suggest slow cooling after emplacement of the quartz diorite porphyry. 相似文献
11.
《International Geology Review》2012,54(10):1145-1160
Lanjiagou is a porphyry Mo deposit in terms of its alteration zonation and mineralization associated with granitic intrusions and predominance of quartz vein-hosted molybdenum mineralization. It is the largest Mo deposit in North China Craton (404,000 t). There is an intimate spatial/temporal association between all stages of mineralization and Early Jurassic granitic intrusions at Lanjiagou. Most of the molybdenum was emplaced during the principal hydrothermal (PH) stage (184.6 ± 1.3 – 185.6 ± 1.4 Ma), contemporaneously with intrusion of fine-grained porphyritic granite (188.9 ± 1.2 Ma) into a granite batholith (193 ± 3 Ma). The PH mineralization stage is mainly hosted by a quartz-dominated stockwork associated with phyllic alteration in the fine-grained porphyritic granite. This stage was followed by the late hydrothermal (LH) activity. Thick Mo-rich quartz veins were emplaced during the LH stage and cut the porphyry ore bodies. A ring breccia zone formed during the last hydrothermal stage and apparently cuts both the porphyry and the quartz vein ore bodies. The main hydrothermal vein stages have predominantly concentric and radial vein orientations centred on the ring breccia zone. Most of the concentric veins have shallow dips, whereas the radial veins are subvertical. The LH veins have predominantly NEE and NW orientations in the deposit and are moderately inclined. We surmise that the veining was controlled by the local stress regime generated by the intrusion of a large, deep pluton that we interpreted to be the source of the granites, the breccia zone, and the molybdenum mineralization. Resurgence within the magma chamber reactivated the steep concentric structures in a reverse sense, and accumulation of magmatic and/or fluid pressure resulted in explosive brecciation, producing the ring breccia zone. A predominantly late set of NW-trending, post-ore felsic dikes, associated with the regional structures, are a consequence of far-field stresses exceeding local stresses in the deposit. 相似文献
12.
A wide variety of porphyry copper deposits have been reported along the Cenozoic Urumieh–Dokhtar magmatic arc in Iran. The formation of these deposits is attributed to closure of Neo-Tethys and the subsequent collisional tectonic regime during the Tertiary. This study presents whole-rock rare earth element (REE) data for the giant to small (Sarcheshmeh, Meiduk, Sungun, Darreh-Zerreshk, Dalli, Iju, Parkam and Ali-Abad) with sub-economic (Daraloo and Reagan) porphyry copper systems. The data indicate a temporal and geochemical evolution from sub-economic porphyry systems to economic deposits. All the economic and sub-economic porphyry copper systems exhibit LREE enrichment relative to HREE, whereas the economic deposits exhibit a relatively steep downward LREE to HREE profile, reflecting higher LREE abundance. The Eu anomalies vary from distinct negative in sub-economic deposits (Eu/Eu* = 0.28–0.70) to either markedly less negative or positive anomalies (Eu/Eu* = 0.45–1.67) in economic deposit. The economic porphyry deposits are characterized by relatively high La/Sm and Sm/Yb values, representing high crustal assimilation in a relatively thickened crust and provide insight into fractionation of hornblende with minor garnet in deep crustal parts (MASH zone). Compared with sub-economic deposits, the steep downward LREE to MREE and flatter to slightly upward MREE to HREE in economic deposits indicate hornblende involvement (magma evolution toward more volatile content). It seems that in an ongoing process of closure of Neo-Tethys, during compression and crustal shortening, the early Eocene–Oligocene sub-economic intrusions are followed by adakite-like hydrous Miocene (and younger) economic Cu-bearing intrusions. 相似文献
13.
The Kirganik copper–porphyry deposit is situated in the central part of the Sredinnyi Mountain Range of Kamchatka and is confined to fields of development of potassic orthoclase metasomatite and hypabyssal intrusions of shonkinite. Platinum group metals (PGMs), such as merenskyite, kotulskite, keithconnite, and temagamite, were discovered in the chalcopyrite–bornite and chalcopyrite–bornite–chalcosine ore of the deposit for the first time. 相似文献
14.
Here we report the occurrence of some uncommon mineral assemblages including pääkönenite, aurostibite, native arsenic, native antimony, and native bismuth found in the Baogutu gold deposit in the western Junggar, Xinjiang, NW China. The mineralization could be generally subdivided into two types: the gold-bearing quartz-vein type mineralization and disseminated mineralization in the wall rocks. The sulfide minerals in gold lodes commonly include pyrite, arsenopyrite, marcasite, and stibnite. However, the L7 lode in No. 4 orebody and the L1 lode in No. 11 orebody of the Baogutu gold deposit are quite different in terms of their mineral assemblages. The L7 lode contains native arsenic–quartz veins in shallow levels and stibnite–quartz veins at depth. Gold-bearing minerals (electrum, native gold, and rarely aurostibite) mainly coexist with pääkönenite, stibnite, native arsenic, and native antimony. The crystallization of As- and Sb-bearing minerals was likely to have consumed H2S from the hydrothermal fluid, which probably triggered the precipitation of native gold. The L1 lode consists of several discontinuous sulfide-dominated lensoid orebodies. The massive sulfide ores that produced most of the gold resource are characterized by an intimate association between native bismuth and native gold mineralization. 相似文献
15.
Lena V. S. Monteiro Roberto P. Xavier Emerson R. de Carvalho Murray W. Hitzman Craig A. Johnson Carlos Roberto de Souza Filho Ignácio Torresi 《Mineralium Deposita》2008,43(2):129-159
The Sossego iron oxide–copper–gold deposit (245 Mt @ 1.1% Cu, 0.28 g/t Au) in the Carajás Mineral Province of Brazil consists
of two major groups of orebodies (Pista–Sequeirinho–Baiano and Sossego–Curral) with distinct alteration assemblages that are
separated from each other by a major high angle fault. The deposit is located along a regional WNW–ESE-striking shear zone
that defines the contact between metavolcano–sedimentary units of the ∼2.76 Ga Itacaiúnas Supergroup and tonalitic to trondhjemitic
gneisses and migmatites of the ∼2.8 Ga Xingu Complex. The deposit is hosted by granite, granophyric granite, gabbro, and felsic
metavolcanic rocks. The Pista–Sequeirinho–Baiano orebodies have undergone regional sodic (albite–hematite) alteration and
later sodic–calcic (actinolite-rich) alteration associated with the formation of massive magnetite–(apatite) bodies. Both
these alteration assemblages display ductile to ductile–brittle fabrics. They are cut by spatially restricted zones of potassic
(biotite and potassium feldspar) alteration that grades outward to chlorite-rich assemblages. The Sossego–Curral orebodies
contain weakly developed early albitic alteration and very poorly developed subsequent calcic–sodic alteration. These orebodies
contain well-developed potassic alteration assemblages that were formed during brittle deformation that resulted in the formation
of breccia bodies. Breccia matrix commonly displays coarse mineral infill suggestive of growth into open space. Sulfides in
both groups of deposits were precipitated first with potassic alteration and more importantly with a later assemblage of calcite–quartz–epidote–chlorite.
In the Sequeirinho orebodies, sulfides range from undeformed to deformed; sulfides in the Sossego–Curral orebodies are undeformed.
Very late, weakly mineralized hydrolytic alteration is present in the Sossego/Currral orebodies. The sulfide assemblage is
dominated by chalcopyrite with subsidiary siegenite, and millerite. Pyrrhotite and pyrite are minor constituents of ore in
the Sequerinho orebodies while pyrite is relatively abundant in the Sossego–Curral bodies. Oxygen isotope partitioning between
mineral pairs constrains temperatures in the deposit spatially and through time. In the Sequeirinho orebody, the early sodic–calcic
alteration stage was characterized by temperatures exceeding 500°C and values for the alteration fluid of 6.9 ± 0.9‰. Temperature declines outward and upward from the zone of most intense alteration.
Paragenetically later copper–gold mineralization displays markedly lower temperatures (<300°C) and was characterized by the
introduction of 18O-depleted hydrothermal fluids −1.8 ± 3.4‰. The calculated δDH2O and values suggest that the fluids that formed the early calcic–sodic alteration assemblage were of formational/metamorphic or
magmatic origin. The decrease of values through time may reflect influx of surficially derived waters during later alteration and mineralization events. Influx
of such fluids could be related to episodic fluid overpressure, resulting in dilution and cooling of the metalliferous fluid,
causing deposition of metals transported as metal chloride complexes. 相似文献
16.
Yu. N. Nikolaev I. A. Baksheev V. Yu. Prokofiev E. V. Nagornaya L. I. Marushchenko Yu. N. Sidorina A. F. Chitalin I. A. Kal’ko 《Geology of Ore Deposits》2016,58(4):284-307
Mineralogical, fluid inclusion, and geochemical studies of precious metal mineralization within the Baimka trend in the western Chukchi Peninsula have been preformed. Porphyry copper–molybdenum–gold deposits and prospects of the Baimka trend are spatially related to monzonitic rocks of the Early Cretaceous Egdygkych Complex. Four types of precious metal-bearing assemblages have been identified: (1) chalcopyrite + bornite + quartz with high-fineness native gold enclosed in bornite, (2) low-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite-tetrahedrite) ± tourmaline with low-fineness native gold and hessite, (3) rhodochrosite + high-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite- tetrahedrite) with low-fineness native gold, electrum, acanthite, Ag and Au–Ag tellurides, and Ag sulfosalts, and (4) calcite + quartz + sulfide (chalcopyrite, sphalerite, galena) with low-fineness native gold, Ag sulfides and selenides, and Ag-bearing sulfosalts. Study of fluid inclusions from quartz, sphalerite, and fluorite have revealed that hydrothermal ores within the Baimka trend precipitated from fluids with strongly variable salinity at temperatures and pressures ranging from 594 to 104°C and from 1200 to 170 bar, respectively. An indicator of vertical AgPbZn/CuBiMo geochemical zoning is proposed. The value range of this indicator makes it possible to estimate the erosion level of the porphyry–epithermal system. The erosion level of the Baimka deposits and prospects deepens in the following order: Vesenny deposit → Pryamoi prospect → Nakhodka prospect → Peschanka deposit → III Vesenny prospect. 相似文献
17.
Tabular–type uranium ore deposits (the Hangjinqi and Daying deposits) have recently been found in the Middle Jurassic Zhiluo Formation, north of the Ordos Basin, China. Petrographic observations, the chemical composition of U minerals determined by EMPA and fs–LA–ICP–MS, whole rock geochemistry and the microthermometric study of fluid inclusions have been integrated to characterize the genetic conditions of the U mineralization in the Hangjinqi sandstone–hosted deposit. Two different groups of U minerals have been identified. One group includes coffinite(I) associated with vanadium–rich micas. Coffinite(I) is enriched in vanadium (V) and devoid of iron (Fe) and yttrium (Y) and has a LREE–enriched chondrite–normalized REE pattern. The U minerals of this group are similar to meteoric fluid infiltration related deposits. The second group has coeval coffinite(II) and coarsely crystalline calcite cement. Coffinite(II) is enriched in Y and Fe and depleted in V and is marked by a flat chondrite–normalized REE pattern, which is compatible with typical hydrothermal genetic deposits with high–salinity mineralizing fluids. The temperature and salinity of the primary aqueous inclusions in the ore–stage calcite are 120–180 °C and 8.00–16.34% (eq. wt% NaCl), respectively. These mineral assemblages, temperatures and salinities indicate that the Hangjinqi deposit was affected by two distinct types of ore–bearing fluids: low–salinity meteoric waters and high–salinity hydrothermal fluids. The meteoric fluids event began at 97 ± 5 Ma with the titling of the northern Ordos Basin and the uplift of the Hetao region to the north. Hydrothermal U mineralization occurred since 39 ± 2 Ma with the rifting of the Hetao graben. Thus, the previous biogenic model for the U mineralization should be modified in the uraniferous region of the north Ordos Basin. 相似文献
18.
Taiyangshan is a poorly studied copper–molybdenum deposit located in the Triassic Western Qinling collisional belt of northwest China. The intrusions exposed in the vicinity of the Taiyangshan deposit record episodic magmatism over 20–30 million years. Pre-mineralization quartz diorite porphyries, which host some of the deposit, were emplaced at 226.6 ± 6.2 Ma. Syn-collisional monzonite and quartz monzonite porphyries, which also host mineralization, were emplaced at 218.0 ± 6.1 Ma and 215.0 ± 5.8 Ma, respectively. Mineralization occurred during the transition from a syn-collisional to a post-collisional setting at ca. 208 Ma. A barren post-mineralization granite porphyry marked the end of post-collisional magmatism at 200.7 ± 5.1 Ma. The ore-bearing monzonite and quartz monzonite porphyries have a εHf(t) range from − 2.0 to + 12.5, which is much more variable than that of the slightly older quartz diorite porphyries, with TDM2 of 1.15–1.23 Ga corresponding to the positive εHf(t) values and TDM1 of 0.62–0.90 Ga corresponding to the negative εHf(t) values. Molybdenite in the Taiyangshan deposit with 27.70 to 38.43 ppm Re suggests metal sourced from a mantle–crust mixture or from mafic and ultramafic rocks in the lower crust. The δ34S values obtained for pyrite, chalcopyrite, and molybdenite from the deposit range from + 1.3‰ to + 4.0‰, + 0.2‰ to + 1.1‰, and + 5.3‰ to + 5.9‰, respectively, suggesting a magmatic source for the sulfur. Calculated δ18Ofluid values for magmatic K-feldspar from porphyries (+ 13.3‰), hydrothermal K-feldspar from stockwork veins related to potassic alteration (+ 11.6‰), and hydrothermal sericite from quartz–pyrite veins (+ 8.6 to + 10.6‰) indicate the Taiyangshan deposit formed dominantly from magmatic water. Hydrogen isotope values for hydrothermal sericite ranging from − 85 to − 50‰ may indicate that magma degassing progressively depleted residual liquid in deuterium during the life of the magmatic–hydrothermal system. Alternatively, δD variability may have been caused by a minor amount of mixing with meteoric waters. We propose that the ore-related magma was derived from partial melting of the ancient Mesoproterozoic to Neoproterozoic middle to lower continental crust. This crust was likely metasomatized during earlier subduction, and the crustal magmas may have been contaminated with lithospheric mantle derived magma triggered by MASH (e.g., melting, assimilation, storage, and homogenization) processes during collisional orogeny. In addition, a significant proportion of the metals and sulfur supplied from mafic magma were simultaneously incorporated into the resultant hybrid magmas. 相似文献
19.
The Navachab gold deposit in the Damara belt of central Namibia is hosted by a near-vertical sequence of amphibolite facies
shelf-type metasediments, including marble, calc-silicate rock, and biotite schist. Petrologic and geochemical data were collected
in the ore, alteration halos, and the wall rock to evaluate transport of elements and interaction between the wall rock and
the mineralizing fluid. The semi-massive sulfide lenses and quartz–sulfide veins are characterized by a complex polymetallic
ore assemblage, comprising pyrrhotite, chalcopyrite, sphalerite, and arsenopyrite, native bismuth, gold, bismuthinite, and
bismuth tellurides. Mass balance calculations indicate the addition of up to several orders of magnitude of Au, Bi, As, Ag,
and Cu. The mineralized zones also record up to eightfold higher Mn and Fe concentrations. The semi-massive sulfide lenses
are situated in the banded calc-silicate rock. Petrologic and textural data indicate that they represent hydraulic breccias
that contain up to 50 vol.% ore minerals, and that are dominated by a high-temperature (T) alteration assemblage of garnet–clinopyroxene–K-feldspar–quartz.
The quartz–sulfide veins crosscut all lithological units. Their thickness and mineralogy is strongly controlled by the composition
and rheological behavior of the wall rocks. In the biotite schist and calc-silicate rock, they are up to several decimeters
thick and quartz-rich, whereas in the marble, the same veins are only a few millimeters thick and dominated by sulfides. The
associated alteration halos comprise (1) an actinolite–quartz alteration in the biotite schist, (2) a garnet–clinopyroxene–K-feldspar–quartz
alteration in the marble and calc-silicate rock, and (3) a garnet–biotite alteration that is recorded in all rock types except
the marble. The hydrothermal overprint was associated with large-scale carbonate dissolution and a dramatic increase in CO2 in the ore fluid. Decarbonation of wall rocks, as well as a low REE content of the ore fluid resulted in the mobilization
of the REE, and the decoupling of the LREE from the HREE. The alteration halos not only parallel the mineralized zones, but
may also follow up single layers away from the mineralization. Alteration is far more pronounced facing upward, indicating
that the rocks were steep when veining occurred. The petrologic and geochemical data indicate that the actinolite–quartz–
and garnet–clinopyroxene–K-feldspar–quartz alterations formed in equilibrium with a fluid (super-) saturated in Si, and were
mainly controlled by the composition of the wall rocks. In contrast, the garnet–biotite alteration formed by interaction with
a fluid undersaturated in Si, and was mainly controlled by the fluid composition. This points to major differences in fluid–rock
ratios and changes in fluid composition during alteration. The alteration systematics and geometry of the hydrothermal vein
system are consistent with cyclic fluctuations in fluid pressure during fault valve action.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
20.
The Yandong porphyry copper deposit, located in the Eastern Tianshan Mountains, Xinjiang, China, is part of the Central Asian Orogenic Belt. The Yandong deposit is hosted by a volcanic complex in the Early Carboniferous Qi’eshan Group and a felsic intrusion. The complex consists of andesite, basalt, diorite porphyry, and porphyritic quartz diorite. The felsic intrusion is a plagiogranite porphyry emplaced within the complex. The diorite porphyry and plagiogranite porphyry yield SIMS zircon U–Pb ages of 340.0 ± 3 and 332.2 ± 2.3 Ma, respectively. Element geochemistry shows that both the complex and plagiogranite porphyry formed in the Dananhu–Tousuquan island arc, a Carboniferous magmatic arc.The diorite porphyry and plagiogranite porphyry are host porphyries, but the plagiogranite porphyry is a productive porphyry. It caused the porphyry-style Cu mineralization and associated alteration. The alteration assemblages include early potassic and propylitic assemblages. These were overprinted by a chlorite–sericite assemblage, which in turn was overprinted by a late phyllic assemblage. The phyllic alteration is associated with the highest Cu grades. The mineralization is recognized to include three stages, from early to late: stage 1, a potassic alteration associated with a chalcopyrite + pyrite assemblage; stage 2, represented by chlorite–sericite alteration with a chalcopyrite + pyrite assemblage; and stage 3, the main-ore stage that is marked by phyllic alteration with chalcopyrite + pyrite ± molybdenite and producing more than 70% of the total copper production at Yandong. Yandong may represent a common scenario for Paleozoic porphyry Cu systems in the Central Asian Orogenic Belt. 相似文献