首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The orogenic Balkanid belt, which developed between the Moesian Plate and the Moravian-Rhodopi-Thracian Massifs, was affected by the Late Carboniferous and Early Permian opening of W-E oriented graben structures. The progressive tectonic rejuvenation of the basins is demonstrated by the deposition of repeated regional sedimentary cycles, associated with volcanism that was mostly localised along the tectonic boundaries, in an intramontane setting.The Late Carboniferous volcanism is represented by rhyodacitic explosive products and hyaloclastites, and by andesitic flows. During the Early Permian, subvolcanic rhyodacitic and rhyolitic bodies and the explosive products prevailed in the western sectors, whereas rhyolitic ignimbrites occur to the east.The tectonically active basins are interpreted due to late orogenic collapse, and the alternation of extensional tectonics and minor compressional phases is consistent with the regional transtensional regime, active along the Variscan suture of Pangaea. The volcanic activity associated with the evolution of the basins matches the petrogenetic features and the evolution from early dacitic – andesitic to late rhyolitic activity in the Southern European segment of the Variscan system.These Late Carboniferous-Early Permian sedimentary and tectono-magmatic events in Bulgaria are characterized, and compared with the homologous Permo-Carboniferous sequences along some western European segments of the Variscan belt.  相似文献   

2.
In the nappe zone of the Sardinian Variscan chain, the deformation and metamorphic grade increase throughout the tectonic nappe stack from lower greenschist to upper amphibolite facies conditions in the deepest nappe, the Monte Grighini Unit. A synthesis of petrological, structural and radiometric data is presented that allows us to constrain the thermal and mechanical evolution of this unit. Carboniferous subduction under a low geothermal gradient (~490–570 °C GPa?1) was followed by exhumation accompanied by heating and Late Carboniferous magma emplacement at a high apparent geothermal gradient (~1200–1450 °C GPa?1). Exhumation coeval with nappe stacking was closely followed by activity on a ductile strike‐slip shear zone that accommodated magma intrusion and enabled the final exhumation of the Monte Grighini Unit to upper crustal levels. The reconstructed thermo‐mechanical evolution allows a more complete understanding of the Variscan orogenic wedge in central Sardinia. As a result we are able to confirm a diachronous evolution of metamorphic and tectonic events from the inner axial zone to the outer nappe zone, with the Late Variscan low‐P/high‐T metamorphism and crustal anatexis as a common feature across the Sardinian portion of the Variscan orogen.  相似文献   

3.
《Geodinamica Acta》2013,26(3-4):155-164
New structural data pointed out the presence of an older scattered migmatization event (Devonian?, M1) overcome by the well known Variscan migmatization event (Lower-Middle Carboniferous, M2) related to the Late extensional tectonic that affected the High Grade Metamorphic Complex (HGMC) in the Variscan Belt of Sardinia (Italy). The M1 event is only recognizable in the kyanite – amphibole bearing migmatitic gneiss. Both migmatization events (M1 and M2) are characterized by a syn-tectonic non coaxial deformations (D1 and D2 deformational events). D1 shows a top to NW sense of shear while the D2 event a top to NE/SE sense of shear (the shear senses are considered at the present Sardinia – Corsica block position in the Mediterranean sea). The M2+D2 is characterized by a complicate, composite normal shear network; the M1+D1 by inverse shear zones. The M2+D2 is transposed by the late D3 strike slip shear event: the D3 is characterized by strike slip shear zones syn-kinematic to the emplacement of Late Carboniferous granitoids (320 Ma – 300 Ma). Despite the absence of geochronological data about the M1+D1 event, the field relationships suggest, for first time, an older migmatization process (Devonian?) syn-tectonic with the late stage of thickness of the Sardinia Variscan Belt. Similar evolutions are recognized in different segments of the Variscan Belt such as the Massif Central (France) or in the eastern mid-European Variscides.  相似文献   

4.
In the Ligurian Alps, the Barbassiria massif (a Variscan basement unit of the Briançonnais domain) is made up of orthogneisses derived from K‐rich rhyolite protoliths and minor rhyolite dykes. However, on account of subsequent Alpine deformation and a related blueschist facies metamorphic overprint that are pervasive within the Barbassiria Orthogneisses, little evidence of the earlier Variscan metamorphism is preserved. In this study, new U–Pb laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) dating of zircon from the Barbassiria Orthogneisses and dykes was undertaken to unravel the relationships between protolith magmatism and the Variscan metamorphic overprint. The results suggest a protolith age for the Barbassiria Orthogneisses of ~315–320 Ma (i.e., Early/Late Carboniferous), and constrain the age of a subsequent rhyolite dyke emplacement event to 260.2 ± 3.1 Ma (i.e., Late Permian). The Variscan high‐temperature (greenschist–amphibolite facies) metamorphic event that affected the Barbassiria Orthogneisses was likely associated with both tectonic burial and compression during the final stages of the Variscan collision during the Late Carboniferous period. Emplacement of late‐stage rhyolite dykes that cut the Barbassiria Orthogneisses is linked to a diffuse episode of Late Permian rhyolite volcanism that is commonly observed in the Ligurian Alps. The age of this dyke emplacement event followed a ~10–15 Ma Mid‐Permian gap in the volcano‐sedimentary cover sequence of the Ligurian Alps, and represents the post‐orogenic stage in this segment of the Variscides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

Throughout SE France, 13C-values of CO2releases suggest that a variable part of the C02 emission derives from mantle and/or lower crust. Carbon dioxide emission takes place in various geological settings. Geodynamical analyses lead to the identification of five provinces: the Sub-Alpine Ranges, the French Massif Central, the Mediterranean part of the Languedoc, the western Pyrénées and the Alps at the West of the Penninic front. Possible correlations are suggested between CO2 flux and tectonic history of the structural provinces.

Possible processes by which CO2 is extracted from the mantle, stored and transferred to the surface are investigated for each of these provinces. Major crustal scale gas movements may have taken place during the Carboniferous (Variscan and Late Variscan tectogenesis), the Lias and Dogger (rifting), the Upper Cretaceous and the Cenozoic (Alpine tectogenesis), A model of successive circulations of fluids on the scale of the whole Southeastern France CO2-belt is proposed. This integrated isotopic and geodynamic approach contributes to a better understanding of the regional CO2flux.  相似文献   

6.
Abstract

Variscan convergence produced two-sided (bivergent) crustal-scale thrusting in the Vosges Mountains. In the northern Vosges the central polymetamorphic crystallines were thrust to the NW over Cambrian to Silurian low-grade and very low-grade metamorphic clastics. Synorogenic upper Devonian - lower Carboniferous turbidites and volcanics were folded into NW-vergent structures which display SE-dipping slaty cleavage. The entire sequence shows increasing metamorphism and deformation from NW to SE. Late right-lateral strike-slip faulting along the Lalaye-Lubine fault zone outlasted thrusting. In the southern Vosges a lower Carboniferous turbiditic basin that was fringed on the south by a volcanic arc was tectonically shortened by south-directed tectonic imbrication of slivers of varied rocks including ultramafics, gneissic basement, and synorogenic elastics. The increasing degree of deformation and metamorphism towards the north suggests a thrust contact with the polymetamorphic gneisses of the central Vosges. The final stages of Variscan convergence were accompanied by voluminous granitic plutonism and by faulting along NNE-SSW and E-W-trending strike-slip faults. The tectonic evolution reflects progressive Variscan closure of a previously extended basinal crust in a high-temperature regime.  相似文献   

7.
New data on the stratigraphy, structure, isotopic age, geochemistry, and geodynamic characteristics of the lithotectonic complexes of the Baikal-Vitim Fold System are reported. In particular, it is shown that Middle and Upper Paleozoic rocks are widespread along with Precambrian and Lower Paleozoic sequences. The Baikal-Vitim Fold System is characterized by cyclic evolution and comprises four structural stages: Baikalian (Riphean-Vendian), Caledonian (Cambrian-Early Silurian), Variscan (Late Silurian-Early Carboniferous), and Hercynian (Middle Carboniferous-Permian). A specific set of lithotectonic complexes formed in certain geodynamic settings corresponds to each stage. According to the proposed model, the Variscan and Hercynian complexes developed under conditions of progressively changing geodynamic settings of passive (Late Silurian-Middle Devonian), Andean-type active (Middle Devonian-Early Carboniferous), and Californian-type (Middle Carboniferous-Permian) continental margins. The Middle and Late Paleozoic evolution of the Baikal-Vitim Fold System is correlated with that of the Mongolia-Okhotsk Belt (Aga paleooceanic basin).  相似文献   

8.
《Geodinamica Acta》2013,26(4):203-218
The Variscan continental collision is expressed by large shear zones in Western Europe. The synthesis of granite ages, related to different deformation fields in the Vendée area, suggests a geodynamic model for the tectonic evolution of this part of the Variscan belt between 370 Ma – 320 Ma. After the first step of the continental collision, leading to high temperature and anatexis at 375-360 Ma, the south-eastern part of the Armorican massif underwent large dextral shearing along N110-N125 trending shear zones, related to a bulk NNW-SSE shortening direction, up to early Visean time. Large-scale displacements progressively decreased at around 345-340Ma. During middle Visean time, the shortening axis direction rotated towards a NNE-SSW position implying changes in the regional deformation field. The occurrence of N70-N100 sinistral and N110-N130 dextral conjugate shear zones within leucogranites are related to that epoch. Finally, a new dextral shear zone system, trending N130-N150 along the Parthenay shear zone, occurs during late Visean time. This progressive middle Visean change of shortening direction probably corresponds to a major change in the Iberian plate motion and indentation during the Mississipian collision.  相似文献   

9.
通过对扎伊尔山至哈拉阿拉特山一带详细的构造变形分析, 揭示出准噶尔西北缘主要发育以下3组构造组合: 近南北向、北东-南西向和近东西向.其变形序列为: 晚石炭世早期, 发育近南北向褶皱-冲断构造; 晚石炭世时期, 近南北向构造线受牵引拖拽呈北东-南西向, 达尔布特、克拉玛依蛇绿混杂岩以右旋走滑拉出或侧向楔冲形式构造就位于上覆石炭系中; 晚石炭世晚期至二叠纪, 发育以达尔布特断裂为代表的北东-南西向伸展断裂, 伴随广泛的中基性岩脉及花岗岩侵入; 二叠纪末至三叠纪初, 发育广泛的近东西向劈理、哈山一带逆冲推覆构造及达尔布特左旋走滑活动.石炭纪至二叠纪, 西准地区经历了从俯冲到碰撞再到碰撞后陆内变形的演化过程, 伴随着挤压和伸展多期构造叠加, 充分体现了该地区复杂构造转换变形的动力学过程.   相似文献   

10.
新生代阿尔卑斯是非洲和欧洲之间的陆陆碰撞造山带。强烈的造山作用使大量前中生代基底出露地表,尽管这些基底被强烈逆冲推覆和走滑叠置,但是仍保留较丰富的前中生代基底演化信息。结合近几年对东阿尔卑斯原-古特提斯的研究,本文梳理和重建了阿尔卑斯前中生代基底的构造格局,认为前阿尔卑斯基底受原特提斯、南华力西洋、古特提斯洋构造体系影响而经历了多期造山过程。新元古代-早古生代的原阿尔卑斯作为环冈瓦纳地块群的组成部分,受原特提斯洋俯冲的制约,是新元古-早古生代环冈瓦纳活动陆缘的组成部分,其中,海尔微-彭尼内基底组成外缘增生系统,包括卡多米期地壳碎片在内的陆缘弧/岛弧以及大量增生楔组成内缘增生系统。早奥陶世瑞亚克洋打开,随后原阿尔卑斯从冈瓦纳陆缘裂离,在泥盆纪-石炭纪受南华力西洋控制,海尔微-彭尼内-中、下奥地利阿尔卑斯从冈瓦纳分离。在早石炭世(维宪期)南阿尔卑斯(或与之相当的冈瓦纳源地块)与北部阿莫里卡地块群拼贴增生于古欧洲大陆南缘,共同组成华力西造山带(广义),华力西期缝合带保留在绍山-科尔山南侧。晚石炭世-早二叠世,阿尔卑斯受古特提斯洋的俯冲影响,在华力西造山带南侧形成安第斯山型活动大陆边缘,古特提斯洋在阿尔卑斯的演化至少持续到早三叠世,消亡遗迹保留在中奥地利阿尔卑斯基底的Plankogel杂岩中。  相似文献   

11.
青海滩间山金矿床地质特征和控矿因素分析   总被引:7,自引:5,他引:2  
滩间山金矿床产于中元古界万洞沟群碳质糜棱片岩和华力西晚期侵入岩中。矿床是在热水沉积、区域变质和热变质的预富集基础上,与区域进变质型绿片岩相韧性剪切带的退化演化同步,经历了脆韧性、韧脆性和脆性剪切变形成矿阶段的演化,并遭受华力西晚期侵入岩浆活动相伴的热液成矿作用的叠加改造形成的。不同时期、不同成矿作用的叠加和多种有利因素的结合控制了滩间山金矿床的形成。经生产实践证实,具有形成大型金矿床的多种有利成矿地质条件  相似文献   

12.
Stratigraphic and structural correlations between the Palaeozoic massifs of eastern Morocco and northern Algeria allow three tectonic domains to be distinguished: (1) The cratonic zone, i.e. the West African platform which remained outside the Variscan chain and its peripherical margin (Moroccan Anti-Atlas and Algerian Ougarta); (2) a WSW-ENE trending zone, over 1500 km from Marrakech to Kabylia and Calabria (in their assumed Palaeozoic location). — This zone was characterized during the Late Palaeozoic by a continuous instability indicated by the development of successive turbiditic basins and a major orogeny at the Devonian-Carboniferous boundary; and (3) central and western Morocco, which corresponds to the external zones of the European Hercynides.The Marrakech-Kabylia zone separates the Variscan domain from the stable and undeformed West African craton. During Early Palaeozoic times it began as an extensive or transtensive zone. It has been deformed by the Late Devonian orogeny and by Carboniferous and Permian reactivation. The zone represents the southern limit of the Hercynian chain and is distinguished by its transcurrent regime throughout the Late Palaeozoic. Correspondence to: A. Piqué  相似文献   

13.
汪新文  刘友元 《现代地质》1997,11(4):434-443
摘  要  东北地区前中生代构造演化可大致分为如下阶段:(1) 中、新元古代阶段;(2) 早古 生代加里东阶段;(3) 泥盆纪—早石炭世早华力西阶段;(4) 晚石炭世—三叠纪晚华力西—印 支阶段。多旋回构造演化使该区形成由多期褶皱带和多中间或边缘地块组成的 “镶嵌构造 区”‚并为晚中生代大型含油气盆地的发育奠定了基础。  相似文献   

14.
The structural study of the Saint-Laurent – La Jonquera pluton (Eastern Pyrenees), a Variscan composite laccolithic intrusion emplaced in metasedimentary and gneissic rocks of the Roc de Frausa dome, by means of the anisotropy of magnetic susceptibility (AMS) technique has allowed the determination of the nature and orientation of its magmatic fabrics. The magmatic foliation has a predominant NE–SW strike and the mean lineation is also NE–SW trending with a shallow plunge. A strain gradient is measured so that the tonalites to granodiorites that form the basal parts of the pluton, and are intruded into amphibolite-facies metamorphic rocks, recorded the highest anisotropies, whereas the monzogranites and leucogranites, emplaced into upper crustal, low-grade metamorphic rocks, are weakly deformed. These results point to the synkinematic sequential emplacement of multiple granitoid sheets, from less to more differentiated magmatic stages, during the Late Carboniferous D2 event characterized by an E–W-trending dextral transpression. The magmatic foliation appears locally disturbed by the effects of two tectonic events. The first of them (D3) produced mylonitization of granitoids along NW–SE retrograding shear zones and open folds in the host Ediacaran metasediments of the Roc de Frausa massif, likely during late Variscan times. Interference between D2 and D3 structures was responsible for the dome geometry of the whole Roc de Frausa massif. The second and last perturbation consisted of local southward tilting of the granitoids coupled to the Mesozoic–Cenozoic cover during the Alpine.  相似文献   

15.
The Variscan orogenesis in Europe peaked during the Late Devonian–Early Carboniferous times when Gondwanan terranes collided with Laurasia. Hitherto it has been thought that Carboniferous tectonics in northern Arabia and the adjacent parts of NE Africa were broad swells (‘arches’) and depressions (‘basins’) that formed as a far-field contractional effect of the Variscan compression. The discovery of a 351 ± 3 Ma (U–Pb in zircon) within-plate felsic volcanism in the Helez borehole, southern coastal Israel, suggests that the Levant Arch is, instead, extensional in origin. Felsic volcanism was associated with gabbro underplating of the crust, an extreme (~50°C/km) crustal thermal gradient, major uplift, and truncation of the ≥2.5 km section. Taken together with the recent discovery of the ~340 Ma oceanic crust in the Eastern Mediterranean, the Levant Arch is interpreted as an uplifted shoulder of a rift, preceding ocean spreading.  相似文献   

16.
ABSTRACT

The Circum–Balkhash–Junggar area, including mostly Kazakhstan, NW China, Russia, Kyrgyzstan, Tajikistan, Uzbekistan, and Mongolia, occupies an important tectonic position of the Central Asian Orogenic Belt (CAOB) (Figure 1). Tectonically, this vast area records the complicated geodynamic processes, among which the most prominent stages are the formation of the U-shaped Kazakhstan Orocline and its interactions with adjacent Altai (Altay), Junggar (West Junggar, Junggar Basin, and East Junggar), and Tianshan orogenic collages in the Palaeozoic, bearing large-scale mineral deposits. The formation of the Late Palaeozoic mineral deposits is related to the tectonic evolution of the Devonian and Carboniferous–Permian volcano-magmatic arcs in the region. However, the link between the metallogeny and the evolution of the volcano-magmatic arcs is not well understood and existing geodynamic models have not explained satisfactorily the mechanism of the huge metallogenic belt. Therefore, this special issue focuses on the formation of the Late Palaeozoic porphyry Cu deposits and their link to the tectonic evolution of the Devonian and Carboniferous–Permian volcano-magmatic arcs with emphasis on comparative studies across the international borders.  相似文献   

17.
The Late Carboniferous to Permian continental successions of the Southern Alps can be subdivided into two main tectono-sedimentary Cycles, separated by a marked unconformity sealing a Middle Permian time gap, generally estimated at over 10 Ma. The lower cycle (1), between the Variscan crystalline basement and the Early Permian, is mainly characterised by fluvio-lacustrine and volcanic deposits of calc-alkaline acidic-to-intermediate composition, which range up to a maximum thickness of more than 2,000 m. The upper cycle (2), which is devoid of volcanics, is mostly dominated through the Mid?–Late Permian by alluvial sedimentation which covered the previous basins and the surrounding highs, giving rise to the subaerial Verrucano Lombardo-Val Gardena (Gröden) red-beds, up to about 800 m thick. The palaeontological record from the terrigenous deposits of both the above cycles consists mainly of macro- and microfloras and tetrapod footprints. The age of the continental deposits is widely discussed because of the poor chronological significance of a large number of fossils which do not allow reliable datings; however, some sections are also controlled by radiometric calibrations. The comparison with some selected continental successions in southern Europe allows to determine their evolution and set up correlations. A marked stratigraphic gap shows everywhere between the above-mentioned Cycles 1 and 2. As in the Southern Alps, the gap reaches the greatest extent during the Mid-Permian, near the Illawarra Reversal geomagnetic event (265 Ma). In western Europe, however, such as in Provence and Sardinia, the discussed gap persists upwardly to Late Permian and Early Triassic or slightly younger times, i.e. to the onset of the “Alpine sedimentary Cycle”, even though in northeastern Spain (Iberian Ranges, Balearic Islands) this gap results clearly interrupted by late Guadalupian–Lopingian deposits. The above two major tectonosedimentary cycles reflect, in our view, two main geodynamic events that affected the southern Europe after the Variscan orogenesis: the Late Carboniferous–Early Permian transformation of the Gondwana–Eurasia collisional margin into a diffuse dextral transform margin and the Middle–Late Permian opening of the Neotethys Ocean, with the onset of a generalised extensional tectonic regime and the progressive westward marine ingression.  相似文献   

18.
The study of the magmatic fabrics of the Oulad Ouaslam Variscan granitic pluton, based on the Anisotropy of Magnetic Susceptibility technique, allows us to propose that this 30 km long laccolith corresponds to a forcibly emplaced intrusion which proceeded from west to east into its country rock of Carboniferous metapelites. The fact that the magmatic fabrics measured in this pluton are obliquely cut, in the southwestern part, by solid-state structures (cleavage, shear bands) related to the regional main phase of deformation shows that the pluton was emplaced before this phase. Consequently, the tectonic control of this emplacement appears to have been much less important than it was suggested in the previous interpretations which considered, on the basis of the study of the solid-state fabrics, a syn-tectonic emplacement of this granite, possibly linked to a sinistral NNW–SSE shear zone. Our results contribute to the definition of a new framework for the tectonic history of this part of the Variscan chain.  相似文献   

19.
博格达山晚石炭纪造山活动的变形地质记录   总被引:13,自引:2,他引:13  
主要由钙碱性火山岩、火山碎屑岩组成的博格达古岛弧是天山缝合造山带的重要组成部分 ,是一个发育较成熟的山链 ,其演化经历了晚古生代的韧性剪切收缩 ;中生代伸展调整及新生代再造山过程。晚古生代的造山活动在博格达山有很好的地质记录 ,并以显著的韧性剪切变形带的形成和发育同造山的褶皱构造为特点。剪切变形带内同构造的石英脉中的锆石U PbSHRIMP测年结果与山链中花岗岩、辉长岩年龄颇为一致 (311~ 316Ma) ,这个年龄反映在结束洋盆散聚、碰撞焊接的晚华力西期造山过程中 ,博格达古岛弧内存在一次虽不甚强烈 ,但又较为明显的构造岩浆事件 ,其成因可能与引起石炭纪大规模裂陆式喷发的深部断裂构造重新活动有关。  相似文献   

20.
应用岩石组合及元素地球化学组合特征,已经能够较成熟的研究区域构造一岩浆演化过程,界定区域构造演化的时空界限。双峰式火山岩组合可形成于不同的大地构造背景下,笔者对不同的大地构造背景形成的双峰式火山岩的岩石学和地球化学特征进行了总结,针对在博格达造山带发现的双峰式火山岩,讨论其对构造一岩浆演化指示作用。博格达双峰式火山岩岩石组合及元素地球化学特征表明:裂谷作用始于早石炭世,结束于晚石炭世晚期或早二叠世早期。博格达裂谷作用存在东西时空差异性,根据裂谷演化早期双峰式火山岩的空间及东西天山在石炭纪火山活动的的差异,推断博格达西段裂谷作用稍微早于东段开始,但由于区域构造演化差异,裂谷演化程度东段强于西段,而东段可能早于西段裂谷闭合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号