首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Geology Review》2012,54(12):1445-1461
We present zircon U–Pb ages, Hf isotopes, and whole-rock geochemistry of the Xiaochuan gneissic granite intrusion, SE China, to constrain its petrogenesis and provide insights into early crustal evolution of the Cathaysia Block. LA-ICP-MS zircon U–Pb dating of a representative sample yields a weighted mean 206Pb/207Pb age of 1839 ±16 Ma, interpreted as the emplacement age of the Xiaochuan granite. Zircons have ?Hf(t) values ranging from –8.1 to 2.7 and T DM2 model ages from 2.23 to 3.03 Ga. The granites are strongly peraluminious (A/CNK = 1.14–1.41), with relatively high FeOt, TiO2, and CaO/Na2O, and low CaO, Al2O3/TiO2, and Rb/Sr values. In addition, they show strongly negative Ba, Sr, Nb, and Ta and positive Th and Pb anomalies in the primitive mantle-normalized spider diagram, similar to other Cathaysia Palaeoproterozoic S-type granites. The geochemical and Hf isotopic signatures suggest that the Xiaochuan gneissic granites were generated by partial melting of Archaean crustal materials in an intraplate extensional setting. Our results, combined with existing geochronological data, further demonstrate that the Wuyishan terrane is underlain by Palaeoproterozoic crystalline basement.  相似文献   

2.
In this study, a combined study of zircon U–Pb and Hf–O isotopes, as well as whole-rock major and trace elements and Nd isotopes has been conducted for Yangjia gneissic granite from the southern Wuyishan terrane, Southeast China, to constrain its petrogenesis and provide a new window for investigating the tectonic evolution of the Cathaysia basement. U–Pb dating for magmatic zircons yields a 207Pb/206Pb age of ca. 1.80 Ga, interpreted as the emplacement age of the Yangjia granite. The granites have relatively high K2O, Rb, Ga, Zr, Nb, Y, and Ce contents and show low Al2O3, CaO, and Ba concentrations. Their 10,000*Ga/Al ratios range between 2.8 and 3.2. Zircons from the granite have εHf(t) values ranging from ?13.2 to ?7.2, corresponding to THfDM2 model ages of 2.99 Ga to 2.72 Ga. The zircon δ18O values range between 6.7‰ and 9.1‰ with an average of 7.7‰. In addition, the whole-rock εNd(t) values of the granites range from ?6.5 to ?5.4 and the TNdDM2 model ages from 2.73 Ga to 2.82 Ga. All these geochemical and Nd–Hf–O isotopic signatures suggest an A-type affinity for the Yangjia granites, and they were likely generated by partial melting of Palaeoproterozoic parametamorphic rocks of the Wuyishan terrane in a post-collisional extensional setting. When our data is combined with existing geochronological data, it provides further evidence for the Palaeoproterozoic basement in the southern Wuyishan terrane, which records a rapid tectonic transition from post-collision to intraplate extension (1.80–1.77 Ga) related to the break-up of the supercontinent Columbia.  相似文献   

3.
ABSTRACT

Due to sparse data for deciphering the late Neoproterozoic tectonic history, there is still considerable debate on whether long-lasting superplume-related or long-duration subduction-related dynamics dominated the Tarim Craton. In this contribution, our field investigations detail the late Neoproterozoic siliciclastic successions, and we report the first granitic conglomerates with zircon U–Pb ages of 753.9 ± 3.7 Ma in the SW Tarim Craton. Importantly, detrital zircons from the thick Cryogenian sedimentary basin also contain a major zircon population at ca. 750 Ma. Together with seismic data, this suggests a large ca. 750 Ma magmatic event in the SW Tarim Craton. Geochemically, the granitic clasts exhibit A-type granite features with high SiO2, high alkali but extremely low K, high FeOT/MgO and Ga/Al, and high high-field strength elements (HFSEs) (i.e. Nb, Hf, and Ta) with significant depletion in Rb, K, Sr, P, Eu, and Ti, and significant negative Eu anomalies (Eu* = 0.13–0.36), showing ferroan granite affinities. Including the detrital zircons, the ca. 750 Ma zircons have a large range of negative εHf(t) values (?19.46 to ?1.16). Elemental and zircon Hf isotope data suggest that the granites were derived from Palaeoproterozoic reworked continental crust and are probably related to crustal thinning and extension. By comparison with previous studies, we conclude that Rodinia breakup was diachronous in the outer parts of the supercontinent.  相似文献   

4.
ABSTRACT

We report new zircon U–Pb ages, Hf isotopic and geochemical results for the Tongling granitic plutons of Southeast China. SHRIMP U–Pb ages for the Miaojia quartz monzodiorite porphyrite,the Tianebaodan and Tongguanshan quartz monzodiorites, the Xinqiaotou granodiorite porphyry, and the Shatanjiao and Nanhongchong granodiorite are 143 ± 2, 141 ± 1 and 142 ± 1, 147 ± 1, and 145 ± 1 and 139 ± 1 Ma, respectively. Combined with previous geochronological data, our results indicate that the porphyritic rocks are older than rocks of the same type lacking porphyritic texture. Geochemically, these high-K calc-alkaline intrusive rocks are characterized by arc-like trace element distribution patterns, with significant enrichment in LILE and LREE but depletion in HFSE. Lu–Hf isotopic compositions of zircons from the high-K calc-alkaline (HKCA) rocks have εHf(t) values of magmatic 139–147 Ma zircons from ?8.1 to ?25.6, with two-stage model ages (tDM2) of 1.71–2.67 Ga, whereas εHf(t) values of inherited 582–844 Ma zircons range from 5.4 to ?9.5, with tDM2 of 1.39–2.22 Ma, younger than tDM2 values of igneous zircon, indicating that newly formed mantle material was added to the continental crust of the Yangtze Block. Moreover, εHf(t) values of inherited zircon cores older than 1000 Ma are from ?7.8 to ?26, similar to magmatic zircons, and the tDM2 values are all greater than 3.0 Ga (3.16–3.75 Ga), reflecting partial melting of ancient sialic material. We conclude that the plutonic melts were derived from both the enriched mantle and the ancient crust. The HKCA Tongling intrusions coincide temporally with the J3–K1 magmatic event that was widespread in Southeast China. This igneous activity may have accompanied sinistral slip along the Tan-Lu fault due to oblique subduction of the Palaeo-Pacific plate.  相似文献   

5.
The Palaeoproterozoic Hekou Group, an outcrop along the SW-margin of the Yangtze Block, consists of volcanic and sedimentary rocks that experienced greenschist facies metamorphism and was intruded by gabbroic and granitic plutons. The sedimentary rocks consist of coarse to fine-grained siliciclastic and carbonate rocks including quartzite, mica schists, polymictic meta-conglomerates and marble, whereas volcanic rocks consist of sodic lava and pyroclastic rocks including albitites, interbeded metatuffs, and metabasalts. Metatuffs from five layers have zircon U–Pb age of 1710 ± 18 Ma (MSWD = 1.6), 1637 ± 7 Ma (MSWD = 0.65), 1601 ± 15 Ma (MSWD = 0.94), 1661 ± 7 Ma (MSWD = 1.4), and 1718 ± 11 Ma (MSWD = 0.3) and these ages show that the Hekou Group deposited at ~1.7–1.6 Ga. The high content of light rare earth element (LREE), the low content of highrare earth element (HREE) and negative Ti anomalies, relatively high content of incompatible fluid-insoluble elements (Nb, Ta, and Th), and the high varied εNd(t) values (?6.0 to +4.6) of the metavolcanic rocks show that these rocks are formed in back-arc basin. Our study also implies that the Yangtze Block also underwent subduction-related, continental margin accretion on its SW-margin during the growth of the Nuna supercontinent at ~1.7–1.6 Ga.  相似文献   

6.
U–Pb age, trace element and Hf isotope compositions of zircon were analysed for a metasedimentary rock and two amphibolites from the Kongling terrane in the northern part of the Yangtze Craton. The zircon shows distinct morphological and chemical characteristics. Most zircon in an amphibolite shows oscillatory zoning, high Th/U and 176Lu/177Hf ratios, high formation temperature, high trace element contents, clear negative Eu anomaly, as well as HREE-enriched patterns, suggesting that it is igneous. The zircon yields a weighted mean 207Pb/206Pb age of 2857 ± 8 Ma, representing the age of the magmatic protolith. The zircon in the other two samples is metamorphic. It has low Th/U ratios, low trace element concentrations, variable HREE contents (33.8 ≥ LuN≥2213; 14.7 ≤ LuN/SmN ≤ 354) and 176Lu/177Hf ratios (0.000030–0.001168). The data indicate that the zircon formed in the presence of garnet and under upper amphibolite facies conditions. The metamorphic zircon yields a weighted mean 207Pb/206Pb age of 2010 ± 13 Ma. These results combined with previously obtained Palaeoproterozoic metamorphic ages suggest a c. 2.0 Ga Palaeoproterozoic collisional event in the Yangtze Craton, which may result from the assembly of the supercontinent Columbia. The zircon in two samples yields weighted mean two-stage Hf model ( T DM2) ages of 3217 ± 110 and 2943 ± 50 Ma, respectively, indicating that their protoliths were mainly derived from Archean crust.  相似文献   

7.
The Precambrian basement of northern Wuyishan (southern Zhejiang Province, eastern Cathaysia Block, South China), consists mainly of Paleoproterozoic granites and metamorphic rocks of the Badu Complex, which are the oldest rocks found in the Cathaysia Block. LA-ICPMS zircon U–Pb ages for a gneiss and five gneissic granites from the Tianhou, Danzhu, Xiaji and Lizhuang plutons indicate that magmatism and metamorphism took place between 1888 and 1855 Ma. The Xiaji (1888 ± 7 Ma) and Lizhuang (1875 ± 9 Ma) granites have high SiO2, K2O and Rb contents, high A/CNK (1.09–1.40) and Rb/Sr, and low contents of Sr, REE and mafic components (Mg, Fe, Ti, Mn and other transition metals). They have the geochemical signature of S-type granites, and a sedimentary protolith is confirmed by the presence of abundant inherited zircons with a range of ages and Hf-isotope compositions. The Tianhou and Danzhu granites are metaluminous to weakly peraluminous (A/CNK = 0.80–1.07), and have low SiO2 contents, high Ga/Al and FeO/(FeO + MgO) ratios, and Zn and HFSE concentrations typical of A-type granites. They also record high crystallization temperatures (885–920 °C), consistent with A-type granites. High Y/Nb ratios (>1.4) indicate that they belong to the A2 subgroup, suggesting that they probably formed in a post-orogenic tectonic setting. Their ages range from 1867 to 1855 Ma, slightly later than the syn-collisional Lizhuang and Xiaji S-type granites. These granitic rocks and the metamorphic rocks of the Badu Complex define a late Paleoproterozoic orogenic cycle in the area. All the 1.86–1.90 Ga zircons, whether derived from S- or A-type granites, show similar Hf-isotopic compositions, with Hf model ages clustering at 2.8 Ga. These model ages, and inherited zircons (ca. 2.5–2.7 Ga) found in some rocks, indicate that the late Paleoproterozoic magmatism and tectonism of the eastern Cathaysia Block represent an overprint on an Archaean basement. This Paleoproterozoic orogeny in the Wuyishan terrane coincides with the assembly of the supercontinent Columbia, suggesting that the Wuyishan terrane was the part of this supercontinent.Zircon ages also record an early Mesozoic (Triassic) tectonothermal overprint that was very intensive in the northern Wuyishan area, leading to high-grade metamorphism of Paleoproterozoic basement, Pb loss from Paleoproterozoic zircons and overgrowth of new zircon. The central and southern parts of Wuyishan and the Chencai area (northern Zhejiang Province) also experienced strong reworking in Neoproterozoic and early Paleozoic times. The Wuyishan terrane (especially in the north) represents a long-lived remnant of the old craton, which has survived for at least one billion years. The compositions of the basement rocks, the Paleoproterozoic orogeny and the Triassic tectonothermal imprint in the Wuyishan terrane are similar to those recognized in the Yeongnam massif of South Korea, suggesting that the two terranes may have been connected from Paleoproterozoic to Triassic time.  相似文献   

8.
The Triassic (Indosinian) granites in the South China Block (SCB) have important tectonic significance for understanding the evolution of Eastern Asia. The Dengfuxian biotite granite in eastern Hunan Province, China, reported in this article, was recognized as Late Triassic (late Indosinian) weakly peraluminous A-type granite with a zircon laser ablation inductively coupled plasma mass spectrometry U–Pb age of 225.7 ± 1.6 Ma. It is enriched in F, Cs, Rb, Th, high field strength elements, and rare earth elements (REEs) and depleted in Ba, Sr, P, Ti, Nb, and Ta, with high Ga/Al ratios and zircon saturation temperatures. The Dengfuxian biotite granite shows high initial Sr isotope values (0.715932 to 0.716499) and negative ?Nd(t) (?10.46 to ?9.67) and ?Hf(t) (?9.92 to ?6.29) values, corresponding to the Nd model ages of 1.79 to 1.85 Ga and the Hf model ages of 1.65 to 1.88 Ga. It is proposed that the Dengfuxian biotite granite was derived from high-temperature partial melting of the Palaeoproterozoic lower crust undergoing granulitization. Some Late Triassic A-type granites were recently identified in the SCB with the ages between 202 and 232 Ma. These A-type granites have the same geochemical characteristics and petrogenesis as Dengfuxian A-type granite, and show A2-subtype granite affinity. The Late Triassic A-type granite formed a NE-trending granite belt, which is consistent with the main NE-trending faults in the SCB. The formation of these A-type granites was in response to the subduction of the palaeo-Pacific plate underneath the SCB, and indicates an extensional tectonic environment in the SCB. Combined with previous studies on tectonic evolution, we suggest that there may be a tectonic transition inside the SCB from compression to extension at least from 225 to 230 Ma.  相似文献   

9.
西秦岭北缘花岗质岩浆作用及构造演化   总被引:4,自引:9,他引:4  
徐学义  陈隽璐  高婷  李平  李婷 《岩石学报》2014,30(2):371-389
西秦岭北部江里沟、阿夷山、德乌鲁、温泉和中川5个花岗质岩体岩石学、地球化学和LA-ICP-MS锆石U-Pb年代学研究结果表明,花岗岩体的岩性主体为花岗闪长岩-二长花岗岩,属高钾钙碱系列,少数为钙碱系列;形成时代为264~216Ma。江里沟、阿夷山和中川岩体属弱过铝质花岗岩(ACNK1.05),温泉岩体和德乌鲁岩体属准铝和弱过铝质花岗岩(ACNK=0.95~1.05);花岗岩具有埃达克岩(Sr400×10-6,Yb2×10-6)或喜马拉雅型花岗岩(Sr400×10-6,Yb2×10-6)的地球化学特征,或两者兼而有之。花岗岩浆起源于下地壳的部分熔融,源岩最有可能是古老的玄武质岩石。西秦岭北部存在埃达克岩和喜马拉雅型花岗岩,说明三叠纪时期存在陆陆碰撞或陆陆俯冲导致的地壳加厚,加厚的下地壳的部分熔融以及部分熔融发生深度的不同,形成本区具有埃达克或喜马拉雅型地球化学特点的花岗岩侵入体。埃达克岩和喜马拉雅型花岗岩对寻找金铜矿产具有一定的指导意义。  相似文献   

10.
The relationship among magmatism, large-scale metallogenesis of Southeast China, and subduction of the Pacific plate has long been debated. The lower Yangtze River belt (LYRB) in the northeastern edge of Southeast China is characterized by intense late Mesozoic magmatism and associated polymetallic mineralization such as copper, gold, iron, tungsten, molybdenum, etc. The copper-related adakitic rocks (148–130 Ma) in this belt are the oldest episode of magmatism and intruded as small intermediate-acid intrusive bodies. The Huayuangong granitoids (HYG), located in the southern part of this belt, however, are copper-barren. Three granitoid samples from this pluton give zircon U–Pb ages of 126.4 ± 1.6 Ma, 125.9 ± 1.9 Ma, and 126.2 ± 1.2 Ma, respectively. The HYG has A-type affinity with metaluminous to weakly peraluminous, high FeOT/(FeOT+MgO) ratios, and high Zr+Nb+Ce+Yb contents. Meanwhile, 10 late Mesozoic mafic samples from the LYRB exhibit similar trace element characteristics to those of ‘continental arc andesite’ (CAA) and suggest an enriched lithospheric mantle source with depletion in high field strength elements (e.g. Nb, Ta, Zr, Hf, and Ti) and enrichment of large ion lithophile elements (e.g. Rb, Th, U, and Pb). Although the HYG exhibits similar Sr–Nd isotope composition with the mafic dikes, distinct whole-rock Pb isotope ratios imply that the granitoids and mafic magmas originated from heterogeneous mantle sources. Compared with coeval Baijuhuajian A-type rocks that are exposed along the Jiang–Shao fault of Southeast China, the HYG shows enriched Hf isotope ratios of zircon with εHf(t) values ranging from ?4.8 to ?11.1. In the Yb/Ta versus Y/Nb diagram, being different from the major asthenospheric mantle-origin Baijuhuajian pluton, a large range of and high Y/Nb ratios as well as high Zr contents of the HYG pluton suggest a magmatic source of mixing between the asthenospheric and enriched crustal component in the LYRB. Compared with early-stage copper-related adakitic rocks (148–130 Ma) with subduction-related affinities and high oxygen fugacity, the copper-barren HYG has with-plate A-type affinities and lower oxygen fugacity. Summarizing, the production of early-stage (i.e. subduction related) adakitic rocks followed by late-stage A-type granitoids in the LYRB is ascribed to the rollback of the Palaeo-Pacific plate beneath Southeast China and associated with asthenospheric upwelling and lithospheric thinning during the late Mesozoic era.  相似文献   

11.
《International Geology Review》2012,54(15):1829-1842
The Tarim block, one of the largest cratons in China, records an important part of the Proterozoic crustal evolution of the Earth. Many previous studies have focused on the Neoproterozoic magmatism and tectonic evolution of this block in relation to the break-up of Rodinia, although relatively little is known about its earlier tectono-magmatic history. In this article, we present detailed petrographic, geochronologic, whole-rock geochemical, and in situ zircon Hf isotope data for the pre-Neoproterozoic Xishankou granitoid pluton (XBP), one of several blue quartz-bearing granitoid intrusions well exposed in the Quruqtagh area, and discuss these intrusions in terms of their tectonic environment. Zircon LA-ICP-MS dating indicates that gneissic quartz diorite and granodiorite of the XBP crystallized at 1934 ± 13 and 1944 ± 19 Ma, respectively. Both underwent metamorphism essentially coeval with emplacement, a time that is compatible with the globally distributed 2.1–1.8 Ga crustal amalgamation during formation of the supercontinent Columbia. Petrographic and geochemical evidence suggest that the XBP is a continental-arc-type granite and may have been generated by the partial melting of Archaean thickened lower crust; this would suggest that the northern Tarim block was a continental-type arc at ca. 1940 Ma. Our new data, together with previous regional geological studies, indicate that a series of Palaeoproterozoic (ca. 2.0–1.8 Ga) tectono-magmatic events occurred in the northern Tarim attending the assembly of Columbia.  相似文献   

12.
The origin of Neoproterozoic intrusions (ca. 860–750 Ma) along the western part of the Yangtze Craton has been the subject of debate in recent years, with two competing models proposed. The plume model argues for an extensional setting and emphasizes the role of a superplume in the Rodinia breakup, whereas the arc model argues for the presence of a subduction zone in the Yangtze Craton. As a contribution to this animated dispute, geochronologic and geochemical analyses have been carried out on the Mianning granite, which is the largest pluton (700 km2) in the northern Kangdian rift of the western Yangtze Craton. It is shown that the Mianning granites were emplaced at ca. 780 Ma and display highly fractionated feature (i.e., SiO2 > 75 wt%; Eu/Eu* = 0.03–0.50; enrichment of K, Rb, Th, U, Zr, Hf, Y and REEs; depletion of Nb, Ta, Ba, Sr, P, Eu and Ti). They are metaluminous to strongly peraluminous (A/CNK = 0.93–1.55) and contain abundant perthite and minor alkali riebeckite and sphene, sharing the petrological and geochemical characters of A2-type granites. Positive Nd (t) (2.97–5.24) and zircon Hf (t) (9.2–12.1) values are consistent with a derivation by partial melting of a relatively young crust formed about 1000–900 Ma. Given the general absence of A-type granites in arc settings, the Mianning A-type granites are suggestive of an anorogenic, crustal extensional environment for the western Yangtze Craton during the Neoproterozoic. The data presented in this study are therefore consistent with an intracontinental rift model, but are not sufficient to identify plume involvement in the Neoproterozoic magmatism.  相似文献   

13.
As part of Central Asian Orogenic Belt (CAOB), the Central Tianshan zone plays a crucial role in the reconstruction of the tectonic evolution of the CAOB. Furthermore, it is bordered by the Tarim Craton to the south, and the comparable evolutionary history between them enables the Central Tianshan zone to provide essential information on the crustal evolution of the Tarim Craton. The eastern segment of the Central Tianshan tectonic zone is characterized by the presence of numerous Precambrian metamorphic rocks, among which the Xingxingxia Group is the most representative one. The granitoids gneisses, intruded into the Xingxingxia Group, consist of two major lithological assemblages: (1) biotite-monzonitic gneisses and (2) biotite-plagioclase gneisses. These metamorphosed granitoid rocks are characterized by enrichment in SiO2, Al2O3 and K2O and depletion in MgO and FeOT. The Rittmann index (σ) spreads between 1.44 and 2.21 and ACNK (Al2O3/(CaO + Na2O + K2O)) ranges from 1.03 to 1.08, indicating that these granitoid gneisses are high-K calc-alkaline and peraluminous. Trace element data indicate that the studied samples are enriched in LREE with moderate REE fractionated patterns ((La/Yb)N = 10.5–75.3). The concentrations of HREE of the garnet-bearing gneisses are significantly higher than those of garnet-free gneisses. The former show pronounced negative Eu anomalies (Eu/Eu* = 0.32–0.57), while the latter are characterized by negligible negative Eu anomalies to moderate positive Eu anomalies (Eu/Eu* = 0.80–1.35). In addition, the enrichment of LILE (Rb, Th, K, Pb) and depletion of HFSE (Ta, Nb, P, Ti) of the examined granitoid gneisses are similar to typical volcanic-arc granites. Zircons U–Pb dating on the biotite monzonitic gneiss yields a weighted mean 206Pb/238U age of 942.4 ± 5.1 Ma, suggesting their protoliths were formed in the early Neoproterozoic, which is compatible with the time of the assembly of supercontinent Rodinia. The zircons have a large εHf(t) variation from −5.6 to +3.2, suggesting that both old crust-derived magmas and mantle-derived juvenile materials contributed to the formation of their protoliths. Based on field observation, and petrological, geochemical and geochronological investigations, we infer that the granitoid gneisses from Xingxingxia were probably formed on a continental arc that resulted from the interaction of Australia and the Tarim Craton during the assembly of the Rodinia supercontinent, and that the Central Tianshan zone was a part of the Tarim Craton during that time. Besides, the Grenvillian orogenic events may have developed better in the Tarim Craton than previously expected.  相似文献   

14.
《International Geology Review》2012,54(11):1359-1383
The Jiangnan Orogen is located at a key tectonic position along the junction between the Yangtze and Cathaysia blocks. We obtained detailed major and trace elements, whole-rock Nd + zircon Hf isotope data, and U–Pb age data from several Mesozoic granites, including the Fuling (FL), Taiping–Huangshan (TH), Lingshan (LS), Sanqingshan (SQS), and Baijuhuajian intrusions in order to investigate their sources and petrogeneses related to extension in South China. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of zircon from the FL, TH, SQS, and LS bodies yield Early Cretaceous ages of 124–135 Ma. These plutons are alkali-feldspar granites to syenogranites–monzogranites, and show A-type affinities. They have high K2O and total alkali contents, and are enriched in rare earth elements (except for Eu), Zr, and other high-field-strength elements as well as high Ga/Al ratios, and are depleted in Ba and Sr. These granites are metaluminous to weakly peraluminous (ACNK from 0.81 to 1.27). The whole-rock ?Nd(T) values of??5.34 to??0.96 are coupled with zircon ?Hf(T) values (from??5.3 to +4.24), and all samples plot along the mantle array. Field observations, geochronology, geochemistry, Nd isotopic, and zircon Hf isotopic compositions suggest that they formed by the partial melting of Mesoproterozoic metamorphic basement, with input from juvenile, mantle-derived materials in the shallow (<30 km) crust at high temperatures (756–965°C). These melts underwent crystal fractionation of biotite, plagioclase, and K-feldspar. The upwelling of asthenosphere triggered partial melting of the metamorphic protolith in a back-arc or intra-arc rift setting, reflecting rollback of the Pacific plate. Our research adds new geochronologic constraints on Cretaceous (135–120 Ma) A-type granites from the NE sector of the Jiangnan Orogen. Combined with previous research, we suggest that three main episodes of late Mesozoic extensional tectonism took place in South China: (1) 190–170 Ma (mainly inland), (2) 165–120 Ma (including 165–150 Ma in SE Shi-Hang, 135–120 Ma in NE Shi-Hang, and ~125 Ma in the Lower Yangtze River Belt), and (3) 100–90 Ma (coastal area), showing an oceanwards younging trend due to the subduction of the Palaeo-Pacific plate.  相似文献   

15.
The Zhongchuan district is an important component of the metallogenic belt in the Western Qinling. The Zhongchuan granite pluton occurring in the centre of the Zhongchuan metallogenic area has been poorly constrained, though the Triassic granite in Western Qinling has been well documented. In‐situ zircon U–Pb ages, Hf isotopic compositions and whole‐rock geochemical data are presented for host granite and mafic microgranular enclaves (MMES) from the Zhongchuan pluton, in order to constrain its sources, petrogenesis and tectonic setting of the pluton. The distribution of major, trace and rare earth elements apparently reflect exchange between the MMES and the host granitic rocks mainly due to interactions between coeval felsic host magma and mafic magma. The zircon U–Pb age of host granite (231.6 ± 1.5 to 235.8 ± 2.3 Ma) has overlapping uncertainty with that of the MMES (236.6 ± 1.3 Ma), establishing that the mafic and felsic magmas were coeval. The Hf isotopic composition of the MMES (εHf(t) = −13.4 to 4.0) is distinct from the host granite (εHf(t) = −15.7 to 0.0), indicating that both enriched subcontinental lithosphere mantle (SCLM) and crustal sources contributed to their origin. The zircons have two‐stage Hf model ages of 1064 to 1798 Ma for the host granite and 858 to 1747 Ma for the MMES. This suggests that the granitic pluton was likely derived from partial melting of a Late Mesoproterozoic crust, with subsequent interaction with the SCLM‐derived mafic magmas in tectonic affinity to the South China Block. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

The Mesozoic tectonic transition from the Palaeo-Tethys tectonic regime to the Palaeo-Pacific tectonic regime in the eastern South China Block has long been debated. Geochemical and zircon U–Pb–Hf isotopic studies were conducted on the Dashuang complex in the eastern Zhejiang Province. The Dashuang complex consists mainly of quartz syenite in the northwestern part and quartz monzonite in the southeastern part. New laser ablation inductively coupled plasma mass spectrometry zircon U–Pb data show that the quartz syenite, the quartz monzonite, and its chilled margin (fine-grained granite) crystallized at 235 ± 4 Ma, 232 ± 3 Ma, and 230 ± 1 Ma, respectively. The Dashuang complex intrudes into the Chencai Group gneiss that postdated ~646 Ma and underwent anatexis at 443 ± 14 Ma. The quartz monzonite shows A-type granite affinity, characterized by high K2O + Na2O and Zr + Nb + Ce + Y, high FeOT/(MgO + FeOT) and Ga/Al ratios, an enrichment in light rare earth elements, and depletions in Ba, Sr, and Eu. The quartz monzonite has zircon εHf(t) values of ?14.2 to –11.9 and two-stage model ages of 1788–1922 Ma. Zircon εHf(t) values of the chilled margin (fine-grained granite) and wall rock (gneiss) are scattered (?18.2 to –6.3 and ?19.5 to 10.2). The corresponding two-stage model ages are 1482–2133 Ma and 1184–2471 Ma, respectively. The Dashuang complex was derived mainly from partial melting of Neoproterozoic clastic rocks in the Cathaysia Block. Geochemical data indicate that the quartz monzonite formed in a post-collision extensional environment. These results, considered with previous data, indicate that the transition from the Palaeo-Tethys to the Palaeo-Pacific tectonic regimes of the eastern South China Block occurred during the Late Triassic (225–215 Ma).  相似文献   

17.
青藏高原拉萨地体北部早白垩世火山岩的成因及意义   总被引:4,自引:2,他引:2  
拉萨地体广泛分布中生代的岩浆岩,了解它们的成因和形成机制可以为认识和理解青藏高原前新生代演化历史提供重要信息。本文报道了拉萨地体北部早白垩世晚期的基性-酸性火山岩的岩石学、锆石U-Pb年代学及Hf同位素特征。岩石学和全岩地球化学特征表明它们为安山玄武岩、粗面英安岩和流纹岩。安山玄武岩为钙碱性岩石,富集Th、U和Pb,具有Nb和Ta的负异常,显示出岛弧玄武岩的特征。粗面英安岩和流纹岩大部分为铁质、钙碱性-碱性岩石,富集高场强元素(HFSE,如Zr),与A型花岗质岩石特征一致。此外,流纹岩具有较高的Si O2含量(75.19%~77.87%)和分异指数(DI=96~98),在原始地幔标准化微量元素蛛网图和球粒陨石标准化稀土元素模式图上,显示强烈Ba、Nb、Ta、Sr、P、Eu和Ti的负异常,说明它们为高分异的A型流纹岩。3个粗面英安岩和7个流纹岩样品的锆石定年结果表明,它们的结晶年龄分别为109~110Ma和106~110Ma,锆石εHf(t)分别为-10.2~+3.7和-8.7~+6.7,相对应的Hf二阶段模式年龄(tDM2)分别为1799~923Ma和1702~708Ma。我们认为安山玄武岩来源于交代岩石圈地幔中等程度(~20%)的部分熔融,并经历了以斜方辉石为主的分离结晶作用。粗面英安岩和流纹岩来源于古老基底岩石的部分熔融,并且有幔源岩浆的加入。流纹岩母岩浆形成后又经历了强烈分离结晶作用。我们推测,上述岩浆岩形成在安第斯型造山作用过程中的伸展机制下,可能与新特提斯洋岩石圈板片沿拉萨地体南缘北向俯冲过程中发生的板片回转、断离,以及岩石圈拆沉作用有关,也可能与班公-怒江大洋岩石圈板片沿拉萨地体北缘南向俯冲过程中发生的板片断离有关。  相似文献   

18.
Summary A number of small Palaeoproterozoic granitoid plutons were emplaced in the Khetri Copper Belt, which is an important Proterozoic metallogenic terrane in the northeastern part of Aravalli mountain range. Contiguous Biharipur and Dabla plutons are located about 15 km southeast of Khetri, close to a 170 km long intracontinental rift zone. The plutons are composed of amphibole-bearing alkali-feldspar granites, comprising microcline-albite granite, albite granite and late-stage microgranite. The albite granite in Biharipur is confined to the margins of the pluton, and shows extensive commingling with the synchronous mafic plutonics. Geochemically, the albite granites are characterised by low K2O (∼0.5 wt.%) and elevated Na2O (∼7.0 wt.%) abundances. By contrast, the microcline-albite granite does not show any significant mafic-granite interactions and shows normal concentrations of alkali elements. The granitoids display high concentrations of the rare earth (except Eu) and high field strength elements, high values of Ga/Al (>2.5), agpaitic index and Fe*-number. These features together with their alkaline metaluminous and ferroan nature classify the rocks as typical A-type within-plate granites. All the granitoid facies display similar REE and incompatible element profiles indicating their cogenetic nature. These granitoids were emplaced in a shallow crustal chamber under relatively low pressures, high temperature (≥850 °C) and relatively oxidising conditions. The oxidised nature, HFSE concentrations and Nd isotope data (ɛNd = −1.3 to −2.9) favour derivation of these granitoid rocks from crustal protoliths. The generation of albite granite is attributed to the replacement of alkali feldspar and plagioclase of the original granite by pure albite as a consequence of pervasive infiltration of a high Na/(Na + K) fluid at the late-magmatic stage. This model may have wider significance for the generation of albite granites/low-K granites or albitites in other areas. The A-type plutonism under consideration seems to be an outcome of ensialic rifting of the Bhilwara aulacogen.  相似文献   

19.
长枪穹隆位于青藏高原北部松潘-甘孜地体之南端的木里地区,被东部的扬子板块和西部的羌塘地块所围绕。伏于三叠纪复理石地层之下的长枪穹隆由一套浅变质的沉积岩系组成,核部主要为里伍群二云石英片岩。为精确限定长枪穹隆核部里伍群的沉积时代和源区特征,本文运用LA-ICP-MS锆石U-Pb微区定年和原位Lu-Hf同位素分析技术,对里伍群变沉积岩系样品进行了锆石年代学、锆石微量元素和Lu-Hf同位素研究。结果显示,155颗碎屑年龄横跨早奥陶世-太古宙(476~3583Ma),碎屑锆石的Th/U比值均大于0. 1,大部分锆石具有明显的震荡环带,且锆石的稀土元素呈现明显的HREE富集、正Ce异常和负Eu异常的特点;上述特征指示该系列锆石为岩浆成因。碎屑锆石原位Hf同位素显示其εHf(t)值具有较宽泛的变化范围,介于-22~+14。锆石混合年龄谱能区分出四个明显的特征年龄峰值:~516Ma、~740Ma、~884Ma和~2. 5Ga。综合对比区域研究结果,我们认为476~560Ma的碎屑锆石可能来自于当时邻区冈瓦纳大陆北缘的泛非造山带,而715~1000Ma碎屑锆石可能来源于扬子板块西缘的新元古代的岩浆岩带和江南造山带。  相似文献   

20.

扬子陆块西缘晚中元古代地质演化史一直存在较大争议,本文选择以扬子西缘元谋杂岩中一套二长花岗岩为研究对象,开展岩相学、锆石U-Pb年代学、全岩地球化学等综合研究,为认识和理解扬子西缘晚中元古代地质演化提供支撑。两件元谋二长花岗岩样品的LA-ICP-MS锆石U-Pb年龄分别为1086±10 Ma(MSWD=1.4,n=50)和1099±10 Ma(MSWD=1.8,n=58)。所有样品具有高硅(SiO2为69.44%~73.98%)、富碱(Na2O+K2O为6.11%~7.72%)、贫钙(CaO为0.39%~1.46%)、贫镁(MgO为0.52%~0.76%)、低钛(TiO2为0.30%~0.59%)的特点,同时表现出强过铝质(A/CNK=1.19~1.35)及中钾钙碱性–钾玄岩系列特征。它们具有高的稀土元素总量(∑REE=211.60×10−6~349.01×10−6),呈现轻稀土元素富集和重稀土元素亏损((La/Yb)N=4.32~7.36);富集Rb、U、Th等大离子亲石元素和Zr、Th、Hf等,亏损Nb、Ta、Ba等元素,并具有明显的负Eu异常(δEu=0.46~0.59),锆石饱和温度介于827~912℃之间,展示了A型花岗岩的属性。这些二长花岗岩可能是通过中上地壳的中酸性火成岩的部分熔融形成,结合前人的研究成果,它们最可能形成于弧后的伸展环境,综合扬子陆块周缘晚中元古代的岩浆记录,元谋杂岩中1.09 Ga二长花岗岩的形成应与扬子陆块开始参与Rodinia超大陆聚合有关。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号